www.mikrocontroller.net

Forum: Analoge Elektronik und Schaltungstechnik Würfel aus Widerständen


Autor: flashbanger (Gast)
Datum:
Angehängte Dateien:

Bewertung
0 lesenswert
nicht lesenswert
Hallo.

Hab mal ne Frage an euch bei der ich nicht weiter komme.
Also gegeben ist ein Würfel (aus draht) wo bei jede Kante einen 
Widerstand besitzt. (Bild entweder im Anhang oder hier: 
http://img515.imageshack.us/img515/7413/wuerfeldf0.gif)

Jeder Widerstand  ist 100ohm groß. Nun soll ausgerechnet werden, was 
angezeigt wird, wenn man an den Punkten (+) und (GND) ein Messgerät 
anschließt und den Wiederstand messen will.

Hat jemand ne Ahnung wie man das am einfachsten hinbekommt ?

Autor: 2917 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Die Maschengleichungen loesen, nachdem man die Pi - T Transformation 
gemacht hat. Ergibt ... sag ich nicht. Die aufgabe hat schon jeder 
geloest. Gehoert einfach dazu.

Autor: Stefan Noll (nollsen)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
hi,

schau dir mal die stern dreieckstransformation an,
das problem mit maschen / knotengleichungen zu lösen könnte etwas 
langwierig werden

Autor: Christian (Guest) (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Schau dir den Würfel an, ;-)

Tipp 1:
  nicht rechnen, überlegen

Tipp 2:
  äquipotential

Egal, schöne Übung

c.

Autor: AVRFan (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Stell den Wüfel auf die Ecke, wo der Strom rausfließt.  Dann hast Du 
vier "Ebenen": Die unterste (Ebene A) umfasst nur die Strom-Raus-Ecke, 
auf der der Würfel steht. Die nächsthöhere Ebene B besteht aus drei 
Ecken, die Ebene C darüber ebenfalls. Die oberste Ebene D umfasst nur 
die Strom-Rein-Ecke.

Jetzt kannst Du Dir überlegen, dass die je drei Ecken der Ebenen B und C 
auf gleicher "Höhe" und damit auch >> auf gleichem Potential << liegen. 
Deshalb kannst Du sie miteinander verbinden, ohne dass sich am 
Gesamtwiderstand zwischen A und D was ändert.

Tust Du das, liegt diese Konfiguration vor:

          |
      o---o---o  D
      |   |   |
      R   R   R
      |   |   |
o---o-o-o-o-o-o-o---o  C
|   |   |   |   |   |
R   R   R   R   R   R
|   |   |   |   |   |
o---o-o-o-o-o-o-o---o  B
      |   |   |
      R   R   R
      |   |   |
      o---o---o  A
          |

==> Ersatzwiderstand RE = R/3 + R/6 + R/3 = 5/6 R

Fertig.

Autor: Christian (Guest) (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
C und B sind die Äquipotential.

Durch die "mittleren" Widerstände fließt jeweils der gleiche Strom,
ohne dass diese verbunden wären, wie im Bild.

Das ist aber egal, da ja beide R-Anschlüsse jeweils das gleich Pot.
haben.

ich fand:
Schöne Aufgabe
c.

Autor: yalu (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Und wie sieht's aus, wenn man R1 in 50 Ohm ändert?

D&W ;-)

Autor: Christian (Guest) (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das ist gerade das besondere an diesen aufgaben,
wenn R1 = 50, dann alle = R1

:-)

Es soll das Verständnis geweckt werden, ...

Autor: Christian (Guest) (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe 2 Kondensatoren mit 1F
einer ist geladen : 1 V

dann schalte ich die zusammen, wie groß ist die Energie der C's ?

Klassische Frage - und alle machen_s richtig, ;-)


Das Zusammenschalten (umlegen des schalter o.s.)
geschied "energielos"!

Autor: yalu (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> dann schalte ich die zusammen, wie groß ist die Energie der C's ?

Wird hier etwa der Energiesatz widerlegt? =8-O

> Klassische Frage - und alle machen_s richtig, ;-)

Echt cooles Paradoxon, und für mich überhaupt nicht klassisch. Ich
lese es heute zum ersten Mal. Kann aber auch daran liegen, dass ich
kein Elektriker bin.

Die Lösung ist zwar schnell gefunden, aber dann gibt es da noch diesen
komischen Widerspruch aufzulösen ;-)

Die Aufgabe wird auf jeden Fall einen Platz in meiner
Paradoxienschatztruhe finden.

PS: Mit dem Posten der Lösung warte ich noch ein wenig, um den anderen
den Spaß nicht zu verderben.

Autor: Mathias U. (munter)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
...und wieder wurde eine Hausaufgabe gelöst, und derjenige hat sich 
wenig bis gar keine Gedanken gemacht, wie man die Sache lösen könnte.
Hätte AVRFan nur den Text und kein Bild und nicht schon die Lösung mit 
drangehängt, dann hätte ich nichts gesagt, aber so...tsetsetse

Autor: Tom (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> dann schalte ich die zusammen, wie groß ist die Energie der C's ?

In der Praxis: Energieverluste beim Umladen, Ladung bleibt gleich, 
Energie nimmt ab.

Theoretisch, Annahme eines idealen Kondensators mit R gegen Null: Strom 
gegen unendlich, I quadrat mal R ist unbestimmt. Integral I quadrat mal 
R dt ist die verlorenen Energie.

Nur ein vermeintliches Paradoxon.

Autor: libelle (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Gegeben ist ein isolierter Plattenkondensator (z.B. quadratisch, w=20cm 
x h=20cm, Abstand d=5 cm), welcher mit der Ladung Q aufgeladen ist.

Es wird ein Elektron mit der Geschwindigkeit v_1 parallel zu den Platten 
durch den Kondensator geschossen.

Nach dem Austritt hat das Elektron die Geschwindigkeit v_2. Der 
Kondensator hat wie vorher unverändert die Ladung Q.

Hat das Gesamtsystem jetzt eine höhere Energie?

Autor: Tom (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Gesamtsystem ist Kondensator plus Elektron?

Dann bleibt die Energie natürlich gleich.

Autor: Tom (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Oder nur der Kondensator?

Das Elektron würde beim Anflug auf den Kondensator genauso beschleunigt 
(oder verzögert, je nachdem ob es mehr auf die positive Platte oder auf 
die negative Platte zufliegt), wie es beim Abflug wieder umgekehrt 
verzögert (oder beschleunigt) wird.

Zwischen den Platten ist eh die Kraft quer zur Flugrichtung.

Ich würde sagen v2 = v1, jedenfalls betragsmässig. Daher auch die 
Energie des Kondensators unverändert.

Ausserdem ist ja U = Q/C, also konstant. Also ist auch W=0,5*CU2 
konstant.

Autor: ??? (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
und wenn das Elektron etwas schneller ist ... so 0.95c ...

Autor: yalu (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Tom:

> Nur ein vermeintliches Paradoxon.

Was ist ein vermeintliches Paradoxon?

Ein Paradoxon ist ein vermeintlicher Widerspruch. Ist dann ein
vermeintliches Paradoxon ein vermeintlich vermeintlicher Widerspruch,
also ein tatsächlicher Widerspruch? ;-)

Autor: Winfried (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das ist so ähnlich, wie die Kompetenz-Kompetenz, wie es uns Stoiber 
erklärt :-)

Youtube-Video "Stoiber Kompetenz Kompetenz Kompetenz"

Autor: AVRFan (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Was ist ein vermeintliches Paradoxon?

Das ist dasselbe wie ein scheinbares Paradoxon :-)

Autor: Frage (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich habe rausbekommen, dass sich die Energie halbiert, wenn man einen 
gelandenen Kondensator mit einem identischen zusammenschaltet. Warum? 
Was passiert mit der Energie? Reibung u.s.w werden ja vernachlässigt. 
Echt eigenartig!

Autor: vlad (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Leichenfledderer!

Das passt aber zum ursprünglichem Thema:
http://xkcd.com/356/

Autor: Dominik A. (domschl)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Frage schrieb:
> Ich habe rausbekommen, dass sich die Energie halbiert, wenn man einen
> gelandenen Kondensator mit einem identischen zusammenschaltet. Warum?
> Was passiert mit der Energie? Reibung u.s.w werden ja vernachlässigt.
> Echt eigenartig!

Erzähl mal, wie du da drauf gekommen bist. Würd mich Interessieren.

Autor: tom (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@ Dominik A.

.... das stimmt schon   E  = 0,5 C U^2  -  also geht beim Laden an 
konstanter Spannung echt die Hälfte flöten  - das lässt sich aber lösen, 
wenn man bedenkt, dass wir hier über eine Singularität reden  -  denn 
Laden an idealer Spannungsquelle bedeutet, dass unendlich viel Strom 
fließt, unendlich kurz....


Macht man eine reale Spannungsquelle mit Innenwiderstand, geht dort die 
Energie in Wärme über... und es gibt die exp Ladekurve mit Halbwertzeit 
RC......




hoffe geholfen zu haben,...

Gruß

Autor: Kevin K. (nemon) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
ebenso wird auch beim beschleunigen eines rotierenden körpers die 
spätere rotationsenergie nochmal im antrieb in wärme umgesetzt

Autor: Frage (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Man kann das durch den Limes vom praktischen Fall mit endlichem 
Widerstand in den theoretischen Fall mit Widerstand Null überführen. 
Dabei hängt die Verlustenergie nicht vom Widerstand ab! D.h. ich kann 
den Widerstand beliebig wählöen und damit auch gegen 0 konvergieren, 
wobei der Strom dann divergiert. Aber das Integral bleibt auch für R -> 
gleich! Mit der Annahme, R sei null Ohm darf man hier eigentlich gar 
nicht rechnen (da der Strom dann unendlich ist, was sowohl praktisch als 
auch theoretisch einen Widerspruch darstellt).

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Frage schrieb:
> Ich habe rausbekommen, dass sich die Energie halbiert, wenn man einen
> gelandenen Kondensator mit einem identischen zusammenschaltet. Warum?
> Was passiert mit der Energie? Reibung u.s.w werden ja vernachlässigt.
> Echt eigenartig!

Ja, die Energie in einem Kondensator, der der geladen war, halbiert 
sich. Die fehlende Hälfte findest du im Kondensator wieder, der dazu 
geschaltet wurde. Das ganze mit irgendwelchen Strömen zu erklären, die 
unendlich groß sind usw...also macht ihr euch das Leben immer so schwer 
oder nur hier im Forum?

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Michael Köhler schrieb:
> Ja, die Energie in einem Kondensator, der der geladen war, halbiert
> sich. Die fehlende Hälfte findest du im Kondensator wieder, der dazu
> geschaltet wurde.

Nein, das ist falsch.
Die Energie in jedem Kondensator ist nur noch 1/4 so groß, die gesamte 
Energie halbiert sich, d.h. die andere Hälfte ging beim Umladen in Wärme 
über.

PS: Würde das mit einem Schaltnetzteil nahezu verlustfrei funktionieren?

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>die andere Hälfte ging beim Umladen in Wärme
>über.

Ich mag mich irren aber hat oben nicht jemand gesagt, dass der zweite 
Kondensator verlustfrei (energielos) zugeschaltet wird? Wo wird dann 
Energie in Wärme umgesetzt?

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Das ist genau das Problem. Das funktioniert sowohl in der Theorie als 
auch in der Praxis nicht.

Autor: Helmut Lenzen (helmi1)
Datum:

Bewertung
0 lesenswert
nicht lesenswert

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Oh, in der Theorie klappt das schon. 1F sind 1As/V. Das ist auf dem 
ersten Kondensator gespeichert. Nun schalten wir verlustfrei einen 
zweiten Kondensator gleicher Größe aber ungeladen hinzu. Aus dem ersten 
Kondensator fließen nun die Hälfte der Ladungsträger zum zweiten, 
anfangs ungeladenen, Kondensator. Damit haben beide Kondensator nur noch 
die Hälfte der Ladungsträger inne und beide Kondensatoren speichern auch 
nur noch die Hälfte der anfänglichen Kapazität. Das ist übrigens ein 
Verhalten, dass an jeder Batterie beobachtet werden kann nur das hier, 
aufgrund der Innenwiderstände und co doch Verluste auftreten.

Autor: H.Joachim Seifert (crazyhorse)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Micheal: nochmal nachdenken :-)
Die Hälfte ist futsch.

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Wo ist denn die Hälfte hin, joachim? Die kann sich ja nicht in Luft 
auflösen. Und wenn diese Hälfte sich in Wärme umwandelt, wie einige 
sagen, dann frag ich einfach mal wo diese Wärme erzeugt wird? Die 
Kondensatoren werden ja, gemäß Aufgabenstellung, verlustfrei zusammen 
geschaltet. Widerstände sind in dem System ja nicht vorhanden oder hab 
ich da einen Überlesen? Sowie natürlich ein Widerstand im Spiel ist wird 
die Hälfte der Energie am Widerstand in Wärme umgesetzt aber wie cih 
schon schrieb, es hieß hier ja, dass kein Widerstand im Spiel ist. Also, 
wo ist diese Hälfte abgeblieben oder ist der Energieerhaltungssatz hier 
nicht mehr gültig?

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Michael Köhler schrieb:
> Die
> Kondensatoren werden ja, gemäß Aufgabenstellung, verlustfrei zusammen
> geschaltet. Widerstände sind in dem System ja nicht vorhanden oder hab
> ich da einen Überlesen?

Du hast nichts überlesen, aber alleine die Tatsache, dass die Bauteile 
alle ideal sind, ist unmöglich (sowohl praktisch als auch theoretisch). 
Das würde bedeuten, dass der Strom unendlich hoch ist und die Zeit 
unendlich klein, aber das ist einfach unmöglich.

Somit muss immer ein Widerstand im System sein, und unabhängig von 
diesem geht an diesem immer die Hälfte verloren.

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Na super, dann ändert man mal eben die Randbedingung, damit die eigene 
Aussage wieder stimmt und die Hälfte der Energie in Wärme umgewandelt 
wird. Warum ist den theoretisch ein ideales Bauteil unmöglich? Warum ist 
denn eine unendlich kleine Zeit bzw. ein unendlich großer Strom 
unmöglich? Passt jetzt wohl nur in die eigene Argumentation, wie?

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Les einfach mal das hier, da siehst du den Beweiß, dass es theoretisch 
nicht möglich ist, da sich die Formeln selbst widersprechen, bzw. zeigen 
dass die Hälfte der Energie verloren gehen muss:
http://www.hcrs.at/KOND.HTM

Autor: Matthias (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Jetzt  versucht mal einen Kondensator über eine induktivität umzuladen, 
da verscheindet nichts, wo auch...

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Benedikt K. schrieb:
> Les einfach mal das hier, da siehst du den Beweiß, dass es theoretisch
> nicht möglich ist, da sich die Formeln selbst widersprechen, bzw. zeigen
> dass die Hälfte der Energie verloren gehen muss:
> http://www.hcrs.at/KOND.HTM

Er hat einen Widerstand im System und da wird immer die halbe Energie 
dran verbraten, egal wie groß oder klein er ist. Der Autor da 
jedoch,geht davon aus, dass die Energie, die am Widerstand verbraten 
wird, proportional zum Widerstand ist. Das ist aber nur dann richtig, 
wenn der Strom konstant gehalten wird. Wir wissen aber, dass der Strom 
umgekehrt proportional zum Widerstand ist, also je kleiner der 
Widerstand desto größer der Strom. Es liegen hier also fehlerhafte 
Annahmen diese Autors vor.

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich meinte diese Formel:
http://www.hcrs.at/BILDER/KOND4.GIF

Da rechnet er nur mit der Ladung, bzw. dem Energieinhalt.
Wann immer diese beide Formeln ein unterschiedliches Ergebnis liefern, 
wurde Energie entnommen oder hinzugefügt.

Autor: Gast (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Somit muss immer ein Widerstand im System sein, und unabhängig von
>diesem geht an diesem immer die Hälfte verloren.

Es muss natürlich kein Widerstand vorhanden sein. Man könnte das 
Experiment z. B. in einer Kammer durchführen, in der es so kalt ist, 
dass es zur Supraleitung kommt. Dann haben die Leitungen keinen ohmschen 
Widerstand mehr und der Strom fließt verlustfrei. Aber der Kondensator 
hat nach wie vor seine Kapazität, weil das eine reine Geometriegröße 
ist. Als neuer und entscheidender Aspekt kommt die Induktivität der 
Verbindungsleitung ins Spiel, denn die ist ebenfalls eine reine 
Geometriegröße ("temperaturinvariant"). Normalerweise völlig 
vernachlässigbar, wird sie jetzt relevant. Die beiden Kondensatoren und 
ihre Verbindungsleitung bilden dann einen Schwingkreis, in dem die 
Ladung unendlich lange hin- und her pendelt. Energie geht dabei auch 
verloren, weil ständig ein kleines bisschen in den Raum abgestrahlt 
wird. Irgendwann wird die Schwingung also auch dann zum Erliegen 
gekommen sein. Letztlich sieht es mit der Energiebilanz genauso aus wie 
im nicht-supraleitenden Fall: Die Hälfte der anfänglich vorhandenen 
Energie geht durch Abstrahlung verloren.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Ich meinte diese Formel:
> http://www.hcrs.at/BILDER/KOND4.GIF
Es wird in diesen Formeln aber nicht die Kapazität verdoppelt.
Sondern nur jeweils die Energie bzw. die Ladung halbiert.

Und es ist klar, dass sich eine Halbierung der Ladung bzw. der Energie 
unterscheiden müssen.

BTW: was hat das Ganze mit einem Würfel aus Widerständen zu tun ;-)

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
>> Ich meinte diese Formel:
>> http://www.hcrs.at/BILDER/KOND4.GIF
> Es wird in diesen Formeln aber nicht die Kapazität verdoppelt.
> Sondern nur jeweils die Energie bzw. die Ladung halbiert.

Das dürfte daher kommen, da sich die Energie, bzw. Ladung gleichmäßig 
auf beide Kondensatoren verteilt. Er rechnet damit aus, wie sich die 
Spannung verhält wenn jetzt nur noch die Hälfte der Ladung bzw. der 
Energie da ist.

PS: Zieh die 2 aus dem Nenner jeweils auf die andere Seite, dann hast du 
2*C da stehen, kommt also das selbe raus.

Autor: Reinhard R. (reinhardr)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ein mechanisches Analogon zu dem Beispiel, das vielleicht einfacher zu 
verstehen ist, ist der inelastische Stoß. Da gibt es zum Parameter 
Geschwindigkeit eine lineare Größe (Impuls) und eine quadratische 
(Energie). Aufgrund der Impulserhaltung muss sich die Energie ändern, 
die Differenz steckt in der Verformungsenergie. Einen inelastischen Stoß 
bei dem auf zauberhafte Weise keine Energie "verloren" geht gibt es 
nicht.

Analog gilt beim Kondensatorbeispiel die Ladungserhaltung (linear zur 
Spannung) und die Energiedifferenz (quadratisch zur Spannung) muss man 
irgendwie loswerden (Wärme, Strahlung,...).

Gruß
Reinhard

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> PS: Zieh die 2 aus dem Nenner jeweils auf die andere Seite, dann hast du
> 2*C da stehen, kommt also das selbe raus.
Dann ändert sich aber gar nichts:
erst durch 2 teilen und danach mit 2 multiplizieren...
Denn ich habe dann ja auch 2*W und 2*Q da stehen.
Und das heißt doch nur, dass ich mit einem doppelt so großen Kondensator 
die doppelte Energie bzw. die doppelte Ladung speichern kann. Wirklich 
neu ist diese Erkenntnis nicht...

Der Witz an den Formeln ist doch, dass einfach auf beiden Seiten der 
Gleichung das selbe manipuliert wird. Es ändert sich also im 
Gesamtsystem gar nichts. Es wird eigentlich nichts verdoppelt oder 
halbiert. Es ist nur eine andere Darstellung genau der selben Formel.

EDIT:
> Aufgrund der Impulserhaltung muss sich die Energie ändern,
> die Differenz steckt in der Verformungsenergie. Einen inelastischen Stoß
> bei dem auf zauberhafte Weise keine Energie "verloren" geht gibt es nicht.
Aber warum denn genau die Hälfte?

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
>> PS: Zieh die 2 aus dem Nenner jeweils auf die andere Seite, dann hast du
>> 2*C da stehen, kommt also das selbe raus.
> Dann ändert sich aber gar nichts:
> erst durch 2 teilen und danach mit 2 multiplizieren...
> Denn ich habe dann ja auch 2*W und 2*Q da stehen.

Nein. Da steht kein 2W sondern nur W. Nur C wird durch 2C ersetzt, denn 
die Kapazität verdoppelt sich, W bzw. Q bleiben gleich, und U muss sich 
demnach ändern.

Das ist genauso als wenn du schreibst:
U=R*I

Jetzt möchtest du wissen was mit U passiert wenn du I verdoppelst, und R 
konstant lässt: Du ersetzt I durch 2I und erhälst dann:
2*U=R*2I
Somit hast du das Ergebnis, dass I->2I auch U->2U bewirkt.

Genau das hat er gemacht: Er hat gesagt W bzw. Q wurde nun gleichmäßig 
auf beide Cs verteilt, somit ist Q bzw. W nur noch in jedem C halb so 
groß.
Und das ist das selbe als wenn man W bzw. Q konstant lässt und für C 2C 
einsetzt.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Da steht kein 2W sondern nur W. Nur C wird durch 2C ersetzt, denn
> die Kapazität verdoppelt sich, W bzw. Q bleiben gleich, und U muss sich
> demnach ändern.
Also wird aus
mit 2C dann sowas

Das geht ins Auge, denn die 2. Formel ist garantiert falsch.
Da steht ja:

EDIT:
> Somit hast du das Ergebnis, dass I->2I auch U->2U bewirkt.
Also I ~ U
> Genau das hat er gemacht: Er hat gesagt W bzw. Q wurde nun gleichmäßig
> auf beide Cs verteilt, somit ist Q bzw. W nur noch in jedem C halb so
> groß.
Nein, er hat nur gesagt, dass die Energie bzw. die Ladung proportional 
zur Kapazität sind. Und das ist wie gesagt ein alter Hut  ;-)

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
>> Da steht kein 2W sondern nur W. Nur C wird durch 2C ersetzt, denn
>> die Kapazität verdoppelt sich, W bzw. Q bleiben gleich, und U muss sich
>> demnach ändern.
> Also wird aus
>
> mit 2C dann sowas
>

Nein!!!
Schau dir doch mal das Beispiel an, das ich mitgeliefert habe.
Das ganze ist keine Gleichung, sondern eine einfache Rechnung mit 
mehreren Zwischenschritten (mehrere = keine Ahnung wie man das 
mathematisch korrekt nennt).
Er fängt mit W/2 an, und setzt dann die obige Gleichung quasi in W ein 
und vereinfacht den Ausdruck immer weiter.

Autor: Fabian (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Habe auch noch eine Aufgabe...  :-)

http://www.elektor.de/theelectronicball

Gruss Fabian

Autor: Dominik A. (domschl)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Um noch mal zur ursprünglichen Behauptung zu kommen:
> Ich habe rausbekommen, dass sich die Energie halbiert, wenn man einen
> gelandenen Kondensator mit einem identischen zusammenschaltet. Warum?
> Was passiert mit der Energie? Reibung u.s.w werden ja vernachlässigt.
> Echt eigenartig!

Ich habe angenommen, dass der zweite Kondensator auch geladen ist (ist 
ja identisch mit dem ersten). In diesem Fall geht ja nichts verloren, 
weil beide Kondensatoren die selbe Spannung haben und daher bekanntlich 
kein Strom fließt. Die in Summe entnehmbare Energie wäre dann doppelt so 
groß wie bei nur einem geladenen Kondensator.

Bitte klärt mich auf, falls daran etwas falsch ist.

Autor: Benedikt K. (benedikt) (Moderator)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dominik A. schrieb:
> Die in Summe entnehmbare Energie wäre dann doppelt so
> groß wie bei nur einem geladenen Kondensator.

Passt. In der Praxis ist die entnehmbare Energie sogar minimal größer 
(je nach Strom), da der ESR kleiner kleiner wird.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Schau dir doch mal das Beispiel an, das ich mitgeliefert habe.
Ich habe es ausprobiert: es stimmt, der Mensch hat recht, ich bin zu 
tiefst erschüttert, eine Welt bricht zusammen.

Grübel, grübel:
Wie ist das dann bei Akkus?

Autor: Philipp Burch (philipp_burch)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Lothar Miller schrieb:
> Grübel, grübel:
> Wie ist das dann bei Akkus?

Nicht wesentlich anders. Deshalb soll man das ja auch nicht tun. Oder 
klemmst du öfters einen vollen und einen leeren Akku zusammen? ;)

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Akkus sind nichts anderes als Kondensatoren, überleg doch mal, wie die 
Kenndaten sind:

Kondensator:

Farad=>As/V Also eine Ladung pro Ladungstrennungsarbeit

Akku:

Ampérestunden bei Nennspannung=> Ah/V  Also ebenfalls Ladung pro 
Ladungstrennungsarbeit.

Autor: Z8 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
offtopic:

  hab mir mal ein Wochenende mit der Frage versaut:

  Prof?: Dodekaeder (großer Fußball) alle Kanten Rs,
         Rges für gegenüberliegende Konten?

Z8

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ohja, der Ball ist toll, den kenn ich auch von meinem Prof...allerdings 
mit Kondensatoren und dann die Ersatzkapazität bestimmen aber das ist 
genauso "lustig" ^^

Autor: Stefan Wimmer (wswbln)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Dominik A. schrieb:
> Frage schrieb:
>> Ich habe rausbekommen, dass sich die Energie halbiert, wenn man einen
>> gelandenen Kondensator mit einem identischen zusammenschaltet. Warum?
>> Was passiert mit der Energie? Reibung u.s.w werden ja vernachlässigt.
>> Echt eigenartig!
>
> Erzähl mal, wie du da drauf gekommen bist. Würd mich Interessieren.

und tom (Gast) ergänzt:
>.... das stimmt schon   E  = 0,5 C U^2  -  also geht beim Laden an
>konstanter Spannung echt die Hälfte flöten  - das lässt sich aber lösen,
>wenn man bedenkt, dass wir hier über eine Singularität reden  -  denn
>Laden an idealer Spannungsquelle bedeutet, dass unendlich viel Strom
>fließt, unendlich kurz....

Au weia!! Wird denn heutzutage keine Physik mehr an den Schulen 
gelehrt??

Also: zuerst mal gilt der Enegieerhaltungssatz. d.h. nach dem 
(verlustlosen) Zusammenschalten zweier gleicher Cs, von denen einer 
vorher geladen war, ist die Gesamternergie hinterher gleich der vorher, 
also ist in jedem C dann die halbe Energie gespeichert.

Stellt man die Gleichung (Energie vorher = Energie hinterher) auf 
bekommt man 1/2 C U1^2 = 2*1/2 C U2^2. Nach einigem Umstellen bleibt 
dann übrig: U2 = U1/Wurzel(2) (also ca. 0,7*U1).

Woher kommt bloss immer diese Behauptung, dass nach dem (postuliert: 
verlustlosen!) Zusammenschalten die Spannung an den Cs halbiert wäre?

Autor: Hauke Radtki (lafkaschar) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Verlustlos ist eben weder Praxis noch Theoriekonform.

Wenn der Ohmische verlust wegfällt dann kommt der Verlust über die 
Elektromagnetische Strahlung hinzu (über die Leitungsinduktivität und 
die daraus resultierende Schwingung), denn ein Kondensator hat immer 
eine geometrische Größe, sonst würde er keine Kapazität besitzen.

Und jetzt kommt nicht wieder mit, dass die Aufgabenstellung komplett 
verlustlos gemeint war, es ist doch absolut Sinnlos etwas zu berechnen 
zu versuchen was selbst Theoretisch unmöglich ist. Man kann sich 
natürlich seine eigenen Gesetze erfinden, aber das hat dann nix mehr mit 
der Realität zu tun ;)

Autor: Reinhard R. (reinhardr)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Betrachten wir es einmal rein mathematisch:

Wenn wir mehrere Kondensatoren betrachten, so gilt für jeden einzelnen 
zuerst einmal:

Falls wir auch noch Energie- und Ladungserhaltung voraussetzen gilt 
folglich:

So weit so gut. Jetzt kommt der ernüchternde Teil. Dieses mathematische 
Problem kennt genau eine Lösung, genau genommen eine Lösungsmenge:
Es müssen also schon alle Kondensatoren vor dem Zusammenschaltung die 
gleiche Spannung haben, wodurch sich natürlich an der Spannung auch 
nichts ändert. Wenn die Kondensatoren sich vorher auf eine 
unterschiedlichen Spannung befanden ist keine Lösung möglich für die 
sowohl Energie- als auch Ladungserhaltung gelten. Wers nicht glaubt kann 
es gerne selber nachrechnen ;-).

Um jetzt wieder etwas auf die (reale) Physik zurückzukommen. Es kann 
also im System entweder die Energie- oder die Ladungserhaltung gelten. 
Um letztere zu verletzen müssen Ladungsträger aus dem System entfernt 
oder zugeführt werden. Dafür gibt es in diesem galvanisch getrennten 
System keinen plausiblen Mechanismus. Energie kann hingegen leicht 
umgewandelt und somit aus dem von uns betrachtetem Teil des Systems 
entfernt werden. Global gilt die Energieerhaltung aber nach wie vor.

Autor: Lothar Miller (lkmiller) (Moderator) Benutzerseite
Datum:

Bewertung
0 lesenswert
nicht lesenswert
> Woher kommt bloss immer diese Behauptung, dass nach dem (postuliert:
> verlustlosen!) Zusammenschalten die Spannung an den Cs halbiert wäre?
Leider klappt das mit verlustlos in der Praxis offenbar nicht einmal 
ansatzweise.

Ich habe das mit den 2 Kondensatoren mit gleicher Kapazität auch mal 
einfach ausprobiert (kost' ja nix). Einen geladen auf 20V, der andere 
0V. Nach dem Zusammenschalten bleiben 10V an beiden. Irgendwie logisch, 
wenn ich im ersten eine Ladungsmenge von z.B. 20V*10mF = 200mC und im 
zweiten 0C habe, dann verteile ich genau diese Ladungsmenge 
anschliessend auf 2 Kondensatoren (mit gesamt 20mF). Erhalte also mithin 
eine Spannung von 200mC/20mF = 10V.

Wenn ich jetzt die Energie ausrechne, ist mir beim Zusammenschalten 
tatsächlich die Hälfte in den Kondensatoren flöten gegangen:
Wvorher  = 1/2*10mF*(20V)² + 1/2*10mF*(0V)² = 2J + 0J = 2J
Wnachher = 1/2*20mF*(10V)²                            = 1J


Bei dieser Zusammenschaltung ist es absolut egal, ob ich die Drähte der 
Kondensatoren direkt verbinde, oder einen 10k-Widerstand dazwischen 
schalte. Die Hälfte der Energie ist in jedem Fall aus den Kondensatoren 
raus   :-(

BTW:
Was passiert, wenn der eine Kondensator auf 10V, der andere auf 5V 
geladen war? Der Ladungserhaltungssatz gibt mir (wie das Messgerät) 7,5V 
nach dem Zusammenschalten.

Autor: M. Köhler (sylaina)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Leider klappt das mit verlustlos in der Praxis offenbar nicht einmal
>ansatzweise.

Richtig, das Problem ist der Widerstand, den man auf alle Fälle in der 
Praxis drinnen hat. An dem wird immer Leistung verballert. Schau dir mal 
einen idealen Kondensator an der über einen Vorwiderstand geladen wird. 
Du wirst feststellen, dass, unabhängig von der Größe des Widerstandes, 
an diesem immer genauso viel Engerie verbraten wird wie in dem 
Kondensator gespeichert wird.

Autor: Frank (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Ich war eigentlich immer der Meinung, dass hier im Forum einige 
kompetente Leute unterwegs sind. Aber was hier bei der Aufgabe mit dem 
Kondensator abgeht ist nicht zu fassen.

Leute es gilt der Energieerhaltungssatz und sonst nichts.

Autor: Frank (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
Der Ladungserhaltungssatz gilt natürlich auch.

Autor: Peter (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Frank
Ich wollte es auch nicht glauben, aber es ist nun mal so das beim laden 
einen Kondensator nur die Hälfte der Energie ankommt.

Und wenn man 2Kondensatoren verbinden von denen einer leer ist, dann ist 
es für ihn ein Ladevorgang und dort geht die Energie verloren*

*sie ist nicht weg, aber nicht mehr nutzbar

Autor: Michael (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@Peter

Wenn die Transistoren verlustfrei zusammen geschaltet werden ist die 
Energie nicht verloren, dann muss gemäß Ladungs- und 
Energieerhaltungssatz die Energie im betrachteten System sein und sie 
kann ja hier dann nur in beiden Kondensatoren stecken. Nimm einfach mal 
die Gleichung für das Laden eines Kondesators über einen Widerstand:

Bilde den Grenzübergang für R->0. Dann wirst du feststellen, dass sich 
das Laden abrupt abspielt für R=0.
Dass die Hälfte der Energie weg ist, was man auch in der Praxis sieht, 
liegt einfach darin begründet, dass, sobald ein Widerstand im Spiel ist, 
die Hälfte der Engerie an diesem in Wärme umgesetzt wird. Die Größe des 
Widerstandes hat nur Einfluss darauf, wie lange der Ladevorgang dauert, 
nicht aber wieviel Energie dabei verheizt wird. Das ist immer gleich 
(Durch geschicktes Aufstellen der Energiegleich wird man sehen, dass R 
auf einmal raus fliegt und nur noch in der Zeitkonstanten Tau=R*C 
steckt).

Autor: Gast (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
>Dodekaeder (großer Fußball) alle Kanten Rs,
>Rges für gegenüberliegende Konten?

Nett :-) Wenn man es geschickt anstellt (Ausnutzung von Symmetrien), 
kommt man mit 4 Knoten- und 3 Maschengleichungen hin. Das kann man sogar 
noch per Hand lösen.

Mein Ergebnis: Rges = 7/6 Rs. Richtig?

Autor: Z8 (Gast)
Datum:

Bewertung
0 lesenswert
nicht lesenswert
@ Gast

yes sir!

Ich hab länger gebraucht. :(

Gruß Z8

Antwort schreiben

Die Angabe einer E-Mail-Adresse ist freiwillig. Wenn Sie automatisch per E-Mail über Antworten auf Ihren Beitrag informiert werden möchten, melden Sie sich bitte an.

Wichtige Regeln - erst lesen, dann posten!

  • Groß- und Kleinschreibung verwenden
  • Längeren Sourcecode nicht im Text einfügen, sondern als Dateianhang

Formatierung (mehr Informationen...)

  • [c]C-Code[/c]
  • [avrasm]AVR-Assembler-Code[/avrasm]
  • [code]Code in anderen Sprachen, ASCII-Zeichnungen[/code]
  • [math]Formel in LaTeX-Syntax[/math]
  • [[Titel]] - Link zu Artikel
  • Verweis auf anderen Beitrag einfügen: Rechtsklick auf Beitragstitel,
    "Adresse kopieren", und in den Text einfügen




Bild automatisch verkleinern, falls nötig
Bitte das JPG-Format nur für Fotos und Scans verwenden!
Zeichnungen und Screenshots im PNG- oder
GIF-Format hochladen. Siehe Bildformate.
Hinweis: der ursprüngliche Beitrag ist mehr als 6 Monate alt.
Bitte hier nur auf die ursprüngliche Frage antworten,
für neue Fragen einen neuen Beitrag erstellen.

Mit dem Abschicken bestätigst du, die Nutzungsbedingungen anzuerkennen.