
AN3468
Rev 1, 05/2009

Freescale Semiconductor
Application Note
The MMA745xL Digital Accelerometer
by: Kimberly Tuck

Inertial Applications Engineer
Tempe, AZ

The MMA745xL digital accelerometer is a 3 x 5 x 1 mm product that can communicate using both I2C and SPI. This device
has both threshold and pulse detection interrupts. There are 2 sampling rates available at 125 Hz (using the 62.5 Hz digital filter)
and 250 Hz (using the 125 Hz digital filter). There is a self test function to verify the integrity of the MEMS sensor and the ASIC
signal path. Figure 1 shows the simple evaluation board for the MMA745xL which is available online. This board contains the
accelerometer with all pins mapped out to a 14 pin header. The image on the left shows the ground plane which ties the digital
and analog ground pins together. This is necessary to improve the noise performance based on internal trim and is the
recommendation for this part. The image in the center is the front view of the board which shows all the other connections. This
board can be wired to a Freescale MCU evaluation or demo board and programmed for various application functions which are
described in detail below.

Figure 1. MMA745xL Accelerometer Simple Evaluation Board

APPLICATIONS AND SENSING CAPABILITIES OF THE MMA745XL
The MMA745xL is the first family of digital 3-axis consumer accelerometers that Freescale has designed. There are several

sensing functions that accelerometers are capable of detecting. These are motion, freefall, shock, vibration, and tilt. The
advantage of a digital accelerometer is that the A/D converter is implemented within the sensor and an MCU can be used to
accompany the sensor that does not require the A/D converter. The sensor can connect directly to the SPI or I2C into the MCU.
The disadvantage is that there are selected digital filters within the sensor which limits the sampling rate for certain applications.

Motion Detection
Typically motion detection is used to identify if an object is in use or not based on change in acceleration output. The purpose

of power cycling is to try to minimize the power consumption for the application. By moving into a standby (low power) mode when
the device is not in use then switching to measurement mode (active mode) which is a full power mode, the overall power
consumption can be decreased. The power consumption is the same regardless of the two sampling rate options in the active
modes. The MMA745xL can be put into standby mode for a set period of time consuming only 5 μA. Then the device must be
programmed to switch over to measurement mode to monitor the X, Y, Z outputs to determine if a significant change in
acceleration has occurred. This can be done using a timer function in the MCU. The device will not auto wake from standby mode.
When in an active mode the device consumes 400-450 μA of current. The device can be power cycled between standby mode
and measurement mode minimizing the overall current consumption for the application. This is useful in a wide variety of
applications. It is particularly important in handheld devices which require batteries to operate.

Back View Front View Actual Image of the Board
© Freescale Semiconductor, Inc., 2008-2009. All rights reserved.

Hints for a Power Cycling Algorithm
During a power cycling routine the device will be set to standby mode until the MCU timer triggers. Then the MCU will switch

the sensor into measurement mode and take one reading from X, Y and Z. If the RMS value is a certain threshold greater than
1g or less than 1g then motion is detected and the device will stay in measurement mode. Otherwise the MCU will switch
accelerometer back into standby mode. The timing will be somewhat dependant on the circumstances of the application and the
tradeoff between the reaction time vs. the consumed current.

Motion Detection using the MMA745xL Logic Interrupts
The Level Detection mode can be used to detect motion with an interrupt. The threshold level can be set and the interrupt will

occur when a motion greater than the threshold occurs. There are no timers in the Level Detection mode and false readings are
possible. It is recommended to set the threshold level to 2g or greater for motion detection using the Level Detection to minimize
false readings. The Pulse Detection mode can detect motion as a single pulse or as a double pulse. The threshold and the time
of the pulse must be set. In pulse mode the detection occurs when X or Y or Z is greater than the set threshold within the set
time window (less than the time window). It is not able to detect motion for a time period greater than a set time window. Motion
detection can also be done in measurement mode sampling the X, Y and Z outputs with a set timer. This method would require
programming the algorithm with the MCU. This last method would be necessary to detect a motion for greater than a set time
period.

Freefall
Freefall is a sensing function that can be used to identify that a large impact is highly probable. This is useful in notebook

computers to park the drive heads before impact and for many types of electronic equipment to shut down before impact. Freefall
can also be used for warranty protection along with shock to identify how high an object has fallen to determine the approximate
resultant force. For a robust algorithm there are various different freefall conditions that should be considered; linear freefall,
projectile fall and rotational fall. Cheaper freefall solutions typically only consider linear freefall.

Linear Freefall using the MMA745xL Logic Interrupts
The MMA745xL has internal logic to detect linear freefall using either the Level Detection or the Pulse Detection modes. The

Level Detection is not as robust because it does not have any timers associated with it. It simply detects any resultant output of
X&&Y&&Z < Set Threshold. The Pulse Detection Freefall condition is more robust because it has a timer. The Pulse Detection
freefall algorithm looks at X&&Y&&Z < Threshold for > Latency Timer. The timer in the pulse detection helps avoid false readings.

Advanced Freefall Algorithm Hint
Using a microcontroller to store some of the past history and to analyze the outputs linear, projectile and rotational falls can

be detected using the MMA745xL to detect if any of these different conditions are occurring.

Shock
Shock is a sensing function of the accelerometer that is useful for warranty protection, shipping and handling and to detect the

end of a fall condition. It is also used to detect tapping. Shock is a sensing function that can be difficult to detect with the consumer
low-g accelerometers because shocks are typically high accelerations. The MMA745xL is capable of detecting up to 8g of
acceleration. In some cases freefall can be used to determine the height of a fall using the standard Newtonian equations of
motion and then back calculating for the distance.

Detecting Shock using the MMA745xL Logic Interrupts
The Level Detection interrupt can be used to detect shock in the same manner it is done for motion detection. The single and

double pulse interrupts are the most useful for shock.

Vibration
Vibration sensing is limited by the digital filtering in the accelerometer. The MMA745xL has a maximum sampling rate of

250 Hz. Therefore it is capable of detecting from DC to 125 Hz of vibration. The MMA745xL is suitable for these lower
frequencies.
AN3468

Sensors
Freescale Semiconductor 2

Tilt
Tilt is used for many different applications. The cell phone and PMP market has exploded with opportunities for accelerometers

to perform tilt functions. The most popular features are portrait/landscape orientation detection, scrolling, and menu selection.
The two main challenges of tilt are to determine the required resolution and accuracy for the application. The MMA745xL has a
maximum sensitivity of 64 counts/g. The resolution is the smallest detectable change in acceleration which is 16 mg per count.
This corresponds to approximately 1.5 degrees of resolution using two axes. The accuracy is how closely the true value is equal
to the measured value from the accelerometer. This is dependant on the sum of all errors from the accelerometer. Typically after
calibration the accuracy is about ±4 degrees.

SENSOR PLACEMENT
Sensor placement is very important and is often overlooked. The MEMS sensor inside the package is very sensitive to

stresses. Small deflections inside the MEMS sensor on the order of 10 nm correspond to a change in acceleration of 1g. Care
must be taken to ensure that the package is not stressed by holes or components on the PCB placed too closely to the
accelerometer. Please review the mounting guidelines in AN3484. It is important to not place the sensor near an edge where it
may be knocked around or touched by people’s hands. Also avoid bending the PCB as the PCB stress is transferred to the
accelerometer. Temperature can also be an issue. It is good to avoid placing the sensor far away from components that may have
large temperature variations, or that are constantly very hot as this will also affect the offset of the sensor. For optimal motion
detection, place the sensor away from the center of the device. This will ensure better acceleration readings and make them more
significant to detect smaller motions, from a higher moment of inertia than if placed right on the center of movement.

Connecting the MMA745xL to an MCU using I2C Communication
Connecting this evaluation board to an MCU using I2C communication is simple. Connect power and ground, SDA and the

SCL lines appropriately to the MCU. The 10 μF capacitors are added in case of a dirty input supply.

Figure 2. I2C Communication Sensor Connections
AN3468

Sensors
Freescale Semiconductor 3

Figure 3. IIC Read and Write Protocol Format

The MMA745xL IIC communication protocol follows the Philips Semiconductors (now NXP Semiconductors) standard. In this
interface only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit oriented bidirectional
data transfers can be made at up to 100 kbit/s in the Standard-mode and up to 400 kbit/s in the fast-mode. These modes are
adjustable by changing the clock frequency. The maximum allowable bus capacitance is 400 pF. Both SDA and SCL are
bidirectional lines, connected to a positive supply voltage via a pull-up resistor. The recommended value is between 2.2 kΩ -
4.7 kΩ The accelerometer is always considered the slave and the MCU is always considered the master. The accelerometer is
not capable of stretching the clock.

The benefits of the I2C Communication interface is that many ICs can be added to this bus. The only limitation is the bus
capacitance. The simple 2 wire serial I2C-bus minimizes interconnections so ICs have fewer pins and there are not as many PCB
traces, resulting in smaller and less expensive PCBs.

Each device is recognized by a unique address (whether it is a microcontroller, memory or an accelerometer). The MMA7455L
has an extra address bit to allow for two different addresses available but the address pin on this sensor has been disabled. This
device is addressed by $1D only. The IADDR0 pin is enabled on the MMA7458L, which will be available in Q4 2008.
AN3468

Sensors
Freescale Semiconductor 4

The following are four simple rules of the IIC bus to be aware of:
1. The SDA (data) and SCL (clock) cannot actively be driven high by any I2C device. I2C devices must use open-drain drivers.

The logic is high by using the recommended external pull-up resistors.
2. The information on the data line is only read on the high phase of the clock.
3. Changing the level of the data is only allowed in the low phase of the clock except during start or stop conditions and this

is how these events are signified.
4. When the bus is not busy SDA and SCL lines are pulled back to logic “1”.

For more detailed information on the I2C protocol please refer to the NXP Semiconductor IIC bus specification and user
manual available online.

BASIC START-UP PROCEDURE
The following are some simple steps to set up the accelerometer using IIC.

1. Set up the microcontroller hardware shown above for IIC communication.
2. Configure the clock speed and all the pins required. The speed is set by adjusting the baud rate.
3. Write simple single byte Read and Write command to communicate to the device. The example below was done using the

MC9S08QE hardware controller for the IIC.
4. Write to the MMA745xL Register $16, sending in a value of 0x05 to set up the device for measurement mode with ±2g

dynamic range.
5. Read the Control Register $16 to ensure that the value is correct (0x05).
6. Read the X, Y and Z registers and watch the outputs change.

Example Code for Start-up Using IIC
The following code has been written with a Freescale S08 MCU using the embedded IIC module. This software is for the host

side.

//---
// HW I2C driver embedded I2C module using FSL MC9S08QE K. Tuck
#define IIC_WriteAdr 0x1D // $1D shifted in with a 0 had been $3A
#define IIC_ReadAdr 0x1D // $1D shifted in with a 1 had been $3B

//Function Definitions
void MCU_init(void); // From Device initialization
void Delay(byte count);
void IIC_SingleByteWrite(unsigned char reg, unsigned char val);
char IIC_SingleByteRead(unsigned char reg);
// global variables
char Xdata=0;
char Ydata=0;
char Zdata=0;
char ControlRegVal=0;
unsigned char ACK, write1;
//--
//Main
void main(void) {
 MCU_init();
 IIC2C1_MST = 0;
 Delay(0xFF);
 IIC2C1_MST = 1; // create start
 Delay(0xFF);
 IIC2C1_MST = 0; // create stop
 Delay(0xFF);
 / //IIC_SingleByteWrite(0x16,0x05); // Put ION into Measurement Mode
 Delay(0xFF);
 ControlRegVal=0;
 Xdata=0;
 Ydata=0;
AN3468

Sensors
Freescale Semiconductor 5

 Zdata=0;
 ControlRegVal= IIC_SingleByteRead(0x16); //Read back out the value of Register 16, make sure
it is 5

 // Read X, Y, and Z forever
 for(;;) {
 Delay(0xFF);
 Xdata=IIC_SingleByteRead(0x06); // Read X Register
 Delay(0xFF);
 Ydata=IIC_SingleByteRead(0x07); // Read Y Register
 Delay(0xFF);
 Zdata=IIC_SingleByteRead(0x08); // Read Z Register
 }
 for(;;) {
 /* __RESET_WATCHDOG(); by default, COP is disabled with device init. When enabling, also
reset the watchdog. */
 } /* loop forever */
 /* please make sure that you never leave main */
}
//---
//---
//Simple Delay Function
void Delay(byte count)
{

byte i;
for (i=0; i<count; i++)
{

 }
}
//---
// This is the I2C byte write function
void IIC_SingleByteWrite(unsigned char reg, unsigned char val)
{
 IIC2C1_IICEN=1;
 IIC2C1_TX=1;
 IIC2C1_MST=1; //Sends Start;
 IIC2D = (IIC_WriteAdr<<1); // send the accelerometer address
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
 Delay(100);
 IIC2S_IICIF=1;
 Delay(100);
 if (IIC2S_RXAK==1){
 IIC2C_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
 ACK=1;
 }
 IIC2D = reg; //write in the register address
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
 IIC2S_IICIF=1;
 if (IIC2S_RXAK==1){
 IIC2C1_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
 ACK=1;
 }
 IIC2D = val; // send the data to be written
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
AN3468

Sensors
Freescale Semiconductor 6

 IIC2S_IICIF=1;
 if (IIC2S_RXAK==1){
 IIC2C_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
 ACK=1;
 }
 IIC2C1_MST=0;
 write1=1;
 }
//--
//--
// This is the I2C byte read function
char IIC_SingleByteRead(unsigned char reg)
{
 char data;
 IIC2C1_IICEN=1;
 IIC2C1_TX=1;
 IIC2C1_MST=1; //Sends Start;
 IIC2D = (IIC_WriteAdr<<1); // send the accelerometer address
 Delay(0x50);
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
 IIC2S_IICIF=1;
 if (IIC2S_RXAK==1){
 IIC2C_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
 ACK=1;
 }
 IIC2D = reg; //write in the register address
 Delay(0x50);
 //Check_ACK(); //check ACK
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
 IIC2S_IICIF=1;
 if (IIC2S_RXAK==1){
 IIC2C_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
 ACK=1;
 }
 //Sending a Restart, the device Address with a Read
 IIC2C1_TX=1;
 IIC2C1_RSTA=1; //Sends Start;
 IIC2D =(IIC_ReadAdr<<1)|0x01;
 // Send the accelerometer device address with the Read Bit
 //Delay(100);
 //Check_ACK(); //check ACK
 while (IIC2S_IICIF==0);//Waiting for transmission to complete
 IIC2S_IICIF=1;
 if (IIC2S_RXAK==1)
 {
 IIC2C_MST=0; //send stop
 ACK=0;
 while(1);
 }
 else{
AN3468

Sensors
Freescale Semiconductor 7

 ACK=1;
 }
 IIC2C1_TX=0; // Change over to Receiver Mode
 IIC2C_TXAK = 1; // send NACK in the next read
 data=IIC2D; //dummy read
 while (IIC2S_IICIF==0);
 IIC2S_IICIF=1; // wait until the transmission ends
 data = IIC2D; //This is the real Read command
 while (IIC2S_IICIF==0); // wait until the transmission ends
 IIC2S_IICIF=1; //Clear the interrupt flag
 IIC2C1_MST = 0; // send a stop, leave master mode
 return(data);
}
//---

General Pseudo Code Using IIC
The following is general IIC code based on work by V.Himpe1.

n, x = general BYTE

SIZE = max number

DATA(SIZE) = an array holding up to SIZE number of bytes. This will contain the data transmitted and store received data.

BUFFER = a byte value holding immediate received or transmit data.

/ $$$ / / **** I2C Driver
General I2C Pseudo Code Released as Public Domain **** / /
$$$ /
DECLARE N,SIZE,BUFFER,X Byte
DECLARE DATA() Array of SIZE elements
SUBroutine I2C_INIT / call this immediately after power-on /

SDA=1
SCK=0
FOR n = 0 to 3
CALL STOP
NEXT n

ENDsub
SUBroutine START

SCK=1
SDA=1
SDA=0
SCK=0
SDA=1

ENDsub
SUBroutine STOP

SDA=0
SCK=1
SDA=1

ENDsub
SUBroutine PUTBYTE(BUFFER)

FOR n = 7 TO 0
SDA= BIT(n) of BUFFER
SCK=1
SCK=0

NEXT n
SDA=1

ENDsub
SUBroutine GETBYTE

FOR n = 7 to 0
SCK=1
BIT(n) OF BUFFER = SDA

1. http://www.esacademy.com/faq/i2c/general/i2cpseud.htm
AN3468

Sensors
Freescale Semiconductor 8

SCK=0
NEXT n
SDA=1

ENDsub
SUBroutine GIVEACK

SDA=0
SCK=1
SCK=0
SDA=1

ENDsub
SUBroutine GETACK

SDA=1
SCK=1
WAITFOR SDA=0
SCK=0

ENDSUB
/ this concludes the low-level set of instructions for the I2C driver
The next functions will handle the telegram formatting on a higher level /
SUBroutine READ(Device_address,Number_of_bytes)

Device_adress=Device_adress OR (0000.0001)b /This sets the READ FLAG/
CALL START
CALL PUTBYTE(Device_adress)
CALL GETACK
FOR x = 0 to Number_of_bytes

CALL GETBYTE DATA(x)=BUFFER /Copy received BYTE to DATA array /
IF X< Number_of_bytes THEN /Not ack the last byte/

CALL GIVEACK
END IF

NEXT x
CALL STOP

ENDsub
SUBroutine WRITE(Device_address,Number_of_bytes)

Device_adress=Device_adress AND (1111.1110)b / This clears READ flag /
CALL START
CALL PUTBYTE(Device_adress)
CALL GETACK
FOR x = 0 to Number_of_bytes

CALL PUTBYTE (DATA(x))
CALL GETACK

NEXT x
CALL STOP

ENDsub
SUBroutine RANDOMREAD(Device_adress,Start_adress,Number_of_bytes)
Device_adress=Device_adress AND (1111.1110)b / This clears READ flag /

CALL START
CALL PUTBYTE(Device_adress)
CALL GETACK
CALL PUTBYTE(Start_adress)
CALL GETACK
CALL START /create a repeated start condition/
Device_adress=Device_adress OR (0000.0001)b /This sets the READ FLAG/
CALL PUTBYTE(Device_adress)
CALL GETACK
FOR x = 0 to Number_of_bytes

CALL GETBYTE
DATA(x)=BUFFER
CALL GIVEACK

NEXT x
CALL STOP

ENDsub
AN3468

Sensors
Freescale Semiconductor 9

For further information and examples using the QE128 Freescale S08 with the MMA745xL there is an example with a SW
implementation of the driver available in the following software application notes on-line.

• AN3479SW: shows the programming required to communicate to the device using the IIC bus.
• AN3468SW: has examples of using measurement mode, level mode and pulse detection.
• AN3571SW: shows different settings for using either the level or the pulse detection mode

Connecting the MMA745xL to an MCU using SPI Communication
When connecting the sensor to the MCU using SPI communications there are 6 connections into the MCU. These connections

are power, ground, the clock (SPSCK), MOSI (data), MISO (data) and CS which is the slave select line. The 10 μF caps are
added as an extra precaution in case of a dirty supply input.

Figure 4. SPI Communication Sensor Connections

Figure 5. SPI Timing Diagrams
AN3468

Sensors
Freescale Semiconductor 10

https://www.freescale.com/webapp/Download?colCode=AN3571SW_QE128&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation
https://www.freescale.com/webapp/Download?colCode=AN3468SW&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation
https://www.freescale.com/webapp/Download?colCode=AN3479SW&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation

SPI communication can be implemented using 4 lines: MOSI (master-output/slave-input), MISO (master-input/slave-output),
SS (slave select), and SPSCK (SPI serial clock). The master device initiates all SPI data transfers. During a transfer, the master
shifts data out (on the MOSI pin) to the slave while simultaneously shifting data in on the MISO pin from the slave (SDO). The
transfer effectively exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock
output from the master and an input to the slave. The slave device must be selected by a low level on the slave select input (CS
pin). The MMA745xL is in SPI 4 wire mode by default. Register $16 contains a bit labeled SPI3W, which is set to 0 by default for
4 wire mode. SPI communication can also be implemented using 3 lines: MIMO (master-in/master-out), SS (slave select),
SPSCK (SPI serial clock). The SDA/I/O line on the MMA745xL changes from being an input into the accelerometer and becomes
a bidirectional line. To set up the sensor for 3 wire SPI communication bit SPI3W in Register $16 (Control Register 1) must be
set to 1. For four wire SPI mode SPI3W is set to 0. The following example shows how to set up the register in either mode and
into 2g measurement mode.

WriteRegister (0x16, 0x25) to set the accelerometer into SPI 3 wire mode 2g measurement mode.

WriteRegister (0x15, 0x05) to set the accelerometer into SPI 4 wire mode 2g measurement mode.

When using the SPI bus the register value is sent with the first value being a 1 to indicate write or 0 to indicate a read command.
Note this is opposite from the IIC R/W bit. The address is 6 bits, followed by a “Don’t Care” bit, which has no meaning to the slave.
For example to send a read command the 6-bit register data is simply shifted left 1 bit. (SPI2D=((reg &0x3F)<<1);). For a write
command the first bit is a 1. SPI2D=(((reg &0x3F)<<1)|0x80);

The SPI clock speed of the sensor can go up to 4 MHz which is configured by the baud rate chosen in the MCU. This is the
maximum achievable speed when DVdd is less than 2.4 V. When DVdd is greater than 2.4 V up to 8 MHz is achievable.

BASIC START-UP PROCEDURE
The following are some simple steps to set up the accelerometer with an MCU for the SPI communication.

1. Set-up the microcontroller hardware shown in Figure 4 for SPI communication.
2. Configure the clock speed and all the pins required. The speed is set by adjusting the baud rate.
3. Write simple single byte Read and Write command to communicate to the device. The example below was done using the

hardware controller for the SPI.
4. Write to the MMA745xL Register $16, sending in a value of 0x05 to set up the device for measurement mode with ±2g

dynamic range.
5. Read the Control Register $16 to ensure that the value is correct (0x05).
6. Read the X, Y and Z registers and watch the outputs change.

Example Code for Start-up Using SPI
The following example code was developed with a Freescale S08 MCU using the embedded SPI module. This software is for

the host side. This example shows the code for both 4Wire Mode and 3Wire Mode. The MCU can be initialized for 3 Wire Mode
or for 4 Wire Mode and the following code will execute.

//---
// HW SPI driver embedded SPI module using FSL S08QE MCU K. Tuck
//---
#define CS PTDD_PTDD3
byte Xdata,Ydata,Zdata,CTLReg;
void MCU_init(void); /* Device initialization function declaration */
byte spi_read(byte reg);
void spi_write(byte reg, byte data);

void main(void) {
 MCU_init(); /* call Device Initialization */
 PTDD_PTDD3=1; //CS Pin description
 PTDDD_PTDDD3=1;
 Xdata=0;
 CTLReg=0;
 //Set up sensor for SPI 3 Wire Mode or 4 Wire Mode by writing to SPI3W in Register $16
 spi_write(0x16,0x25); //3 Wire Mode Set up in the Accelerometer
// spi_write(0x16,0x05); //4 Wire Mode Set up in the Accelerometer
CTLReg=spi_read(0x16); // Read back the value that has been set for the Mode
 for (;;){
 Xdata=spi_read(0x06); //Read X,Y,Z outputs from Sensor
 Ydata=spi_read(0x07);
AN3468

Sensors
Freescale Semiconductor 11

 Zdata=spi_read(0x08);
 }
 for(;;) {
 /* __RESET_WATCHDOG(); by default, COP is disabled with device init. When enabling, also
reset the watchdog. */
 } /* loop forever */
 /* please make sure that you never leave main */
}
//--
// Function Definitions for Read and Write
// Read function SPI 3 Wire Mode or 4 Wire Mode
byte spi_read(byte reg){
 byte x;
 CS=0;
 x=SPI2S;
 x=SPI2D;
 while (!SPI2S_SPTEF);
 SPI2D= ((reg &0x3F)<<1); // write in the register address with the read command
 while(!SPI2S_SPRF); //wait for transfer
 x=SPI2D;
 SPI2C2_BIDIROE = 0; // MOSI become input when 3 wire mode
 SPI2D = 0x00; // send 2nd byte
 while (!SPI2S_SPRF); // wait transfer done
 x = SPI2D;
 SPI2C2_BIDIROE = 1; //change direction back to output when in 3 wire mode
 CS=1;
 return (x);
 }
//--
//Write function SPI 3 Wire or SPI 4 Wire Mode
void spi_write(byte reg, byte data){
 byte x;
 CS=0;
 SPI2D=(((reg &0x3F)<<1)|0x80);
 while (!SPI2S_SPRF); //wait for transmission complete
 x=SPI2D; //dummy read
 SPI2D=data;
 while (!SPI2S_SPRF); //wait for transmission complete
 x=SPI2D;
 CS=1;
}
//--

General Pseudo Code using SPI
This is pseudo code for general communication.

1. SS = 0 Slave Select is cleared
2. Assert MOSI most significant bit
3. Toggle the clock
4. Shift the next data bit onto the MOSI pin
5. Repeat 3 and 4 until done
6. SS = 1 Slave Select is set

For further examples using the SPI SW protocol please refer to the following application notes which should be available on
the website. These examples use the basic evaluation board shown in Figure 1 with the MC9S08QE128, or with the HCS08GB60
MCU development boards.

• AN3468SW: has examples of using measurement mode, level mode and pulse detection.
• AN3480SW: shows the programming required to communicate to the device using the SPI bus.
• AN3571SW: shows different settings for using either the level or the pulse detection mode
AN3468

Sensors
Freescale Semiconductor 12

https://www.freescale.com/webapp/Download?colCode=AN3571SW_QE128&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation
https://www.freescale.com/webapp/Download?colCode=AN3480SW&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation
https://www.freescale.com/webapp/Download?colCode=AN3468SW&nodeId=0112691118&appType=license&location=overview&WT_TYPE=Application%20Notes%20Software&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=zip&WT_ASSET=Documentation

PROGRAMMING THE MMA745XL
This section focuses on explaining all the available features of the device which are all accessible by reading and writing to

the 32 registers of the MMA745xL. Figure 6 is a screen shot of an evaluation interface for this device. This GUI uses the
MMA745xL with the MC9S08QE8 microcontroller on a small 1” x 1” board which connects through SCI to USB to the computer.
This demo board and software is available as part of the Sensors Toolbox (LFSTBEB7456). It displays the 3-axis output on a
scope screen to view motion of the different axes. All the different settings and operation modes of the device are displayed on
the menu buttons or sliders. On the right hand side all the useful registers of the device are displayed. This allows the user to
view how the registers change when different settings are changed.

.

Figure 6. MMA745xL Evaluation Software Interface

OPERATION MODES OF THE MMA745XL ACCELEROMETER

Figure 7. Operation Modes of the MMA745xL

All modes of the device are controlled in the mode control register (MCTL). Figure 7 displays the different modes of the
MMA745xL. The following are the bits in the register and the different modes that the device can be set.

Standby mode is a low power mode consuming less than 5 μA. This mode is used when the sensor is not needed to take new
data. In standby mode the sensor can read and write to the registers and the other sensor detection modes are easily enabled.

$16 MCTL LPEN DRPD SPI3W STON GLVL[1] GLVL[0] MOD[1] MOD[0]
AN3468

Sensors
Freescale Semiconductor 13

Standby Mode: RegisterWrite (0x16, 0x00)
In measurement mode the device can be set up for 3 different dynamic ranges (2g, 4g and 8g). With the 8g dynamic range 8-

bit or 10-bit data is available. The 2g and 4g ranges are only 8-bit data. The 10-bit data is available by reading X: $00-01, Y$02-
03 and Z$04-05. In 2g mode and 4g mode the 10-bit data will match the 8-bit data. In 8g mode the 10-bit data is going to be 4
times that of the 8-bit data.

Measurement Mode: RegisterWrite (0x16,0x01)
Dynamic Range Settings: In Measurement Mode
2g: RegisterWrite(0x16, 0x05)
4g RegisterWrite (0x16,0x09)
8g RegisterWrite (0x16,0x01)

Level Detection Mode: RegisterWrite (0x16, 0x02)
Note: Dynamic range setting is automatically 8g.

Pulse Detection Mode: RegisterWrite (0x16, 0x03)
Note: Dynamic range setting is automatically 8g.

CALIBRATION OF THE MMA745XL
The offset can be calibrated by storing the offset values in the designated offset drift registers $10 to $15 in the accelerometer.

These values will be stored until the part loses power and therefore it is a good idea to store these values in the memory of a
microcontroller, used in conjunction with the sensor. This will provide automatic calibration of the sensor each time the sensor is
turned back on. In order to calibrate the MMA745xL 0g offset, the predetermined digital offset values should be subtracted from
the reading of the actual digital sensing values. The following procedure is a recommendation for how this can be accomplished:

Step 1. After power up, set up the “Mode Control Register”(Register $16) to be in “measurement mode” by writing $05 into
Register $16. Then read the X, Y and Z offset values from the Registers $00-$08. The first 6 registers of the 9 are 10-bit
XYZ output values: LSB, first; MSB, second. Please verify with the data sheet for detailed register information.

Step 2. In this step, the offset compensation is calculated to shift the offset to zero. For example, if the 0g offset is calibrated flat
(where X = 0g, Y = 0g and Z = +1g) in 2g mode (64 LSB/g sensitivity), the outputs from Registers $00-$08 might be the
following: X = +18,Y = -20, Z = +44. In this case,

• X must be shifted by -18 to get X back to zero
• Y must be shifted by +20 to get to zero
• Z must be shifted by (+64 - 44) = +20 to get to +64 (since Z is in the +1g orientation)

If the register values in the X = 0g, Y = 0g and Z = +1g orientation are the following:
Step 3. These compensation values can be written in hexadecimal into the “Offset Drift Registers” $10-$15.The Offset Drift

Registers require each value to be ½ LSB, therefore the calibration values calculated in Step 2. must be multiplied by
two. Note that there will still be a bit of offset shift, and you may need to multiply by a bit more than two to exactly subtract
the offset.

If the register values in the X = 0 g, Y = 0g and Z = +1g orientation are the following:
X = +18, Y = -20, Z = +44
Write -36 (DC Hex) into the X drift Register $10

Write +40 (28 Hex) into the Y drift Register $12

Write +40 (28 Hex) into the Z drift Register, $14

If the compensation requires negative values, remember that 2’s complement is always used in hexadecimal for storing the
signed value as was done for the X-axis above. If using 10-bit mode, and the calibrated values are greater than 8 bits, then there
is another register for up to 3 more bits:

• Register $10 and $11 are for X
• Register $12 and $13 are for Y
• Register $14 and $15 are for Z

These registers follow signed byte data using 2’s complement. Reading or writing low byte (X, Y or Z) OUTL latches high byte
data (X, Y, or Z) OUTH to allow coherent 10-bit reads or writes. (X, Y, or Z) OUTH should be read/written directly following (X, Y
or Z) OUTL.
AN3468

Sensors
Freescale Semiconductor 14

Step 4. After this compensation process is complete, you can continue to modify the values by overcompensating until you get
the final output to be right at 0 for X and Y and at 64 for Z. Note this is an iterative process.

Step 5. The calibrated values are stored in the “Offset Drift Registers”. To avoid the values being erased when the power is
turned off, it is recommended to store these values in flash or a nonvolatile memory in the main processor or external to
the processor. It is also recommended to include a short start-up sequence to write the compensation values stored in
flash or nonvolatile memory to the registers $10-$15 in the accelerometer on start-up. If a microcontroller is used, a
recursive program is available to auto-calibrate the device.

To set the 0g offset the following recursive program can be written as a routine in the software. Place the part flat in the X = 0g,
Y = 0g, Z = 1g orientation. The following is an example of the code to do an auto-calibration routine.
signed char Xdata,Ydata,Zdata;
signed short Xcal,Xcalp, Ycal, Ycalp, Zcal, Zcalp;
byte Xcal_L, Xcal_H, Ycal_L,Ycal_H, Zcal_L, Zcal_H;

void main (void){
//Initialization code for the MCU connections and accelerometer
MCU_and_MMA745xL_demo_Init();
//Put the device in 2g Measurement Mode
IIC_ByteWrite(0x16,0x05);
//Assure that the calibration registers are cleared (not necessary)
IIC_ByteWrite(0x10,0);
IIC_ByteWrite(0x11,0);
Xcal=0;
for (;;)
{
Xdata=IIC_ByteRead(0x06); //Read X, Y,Z
Ydata=IIC_ByteRead(0x07);
Zdata=IIC_ByteRead(0x08);
Xcal+= -2*Xdata; //Calculate out the calibration Value based on current Data
Ycal+= -2*Ydata;
if (Zdata>65){Zcal+=(Zdata-64)*2;}
else{Zcal+=(64-Zdata)*2;}
Xcalp=Xcal; //If calp is "positive" it is assigned to cal variable
if (Xcalp<0) Xcalp +=2048; //If Negative value then convert for 2's complement
Ycalp=Ycal;
if(Ycalp<0) Ycalp+=2048;
Zcalp=Zcal;
if(Zcalp<0) Zcalp+=2048;

Xcal_L= (byte)(Xcalp&0x00FF); //shift low byte to lower 8 bits
Xcal_H= (byte)((Xcalp&0xFF00)>>8); //shift high byte to upper 8 bits

Ycal_L= (byte)(Ycalp&0x00FF); //shift low byte to lower 8 bits
Ycal_H= (byte)((Ycalp&0xFF00)>>8); //shift high byte to upper 8 bits

Zcal_L= (byte)(Zcalp&0x00FF); //shift low byte to lower 8 bits
Zcal_H= (byte)((Zcalp&0xFF00)>>8); //shift high byte to upper 8 bits
Xcal += -2*Xdata;
Delay (0xFF);
Xdata=RegisterRead(0x00);
}
IIC_ByteWrite(0x10,Xcal_L); //Write low calibration value to the low calibration register
IC_ByteWrite(0x11,Xcal_H); //Write high calibration value to the high calibration register
IIC_ByteWrite(0x12,Ycal_L); //Write low calibration value to the low calibration register
IIC_ByteWrite(0x13,Ycal_H); //Write high calibration value to the high calibration register
IIC_ByteWrite(0x14,Zcal_L); //Write low calibration value to the low calibration register
IIC_ByteWrite(0x15,Zcal_H); //Write high calibration value to the high calibration register

 MCU_Delay100us(100); //Delay before rereading to ensure that values are written
 }

}

AN3468

Sensors
Freescale Semiconductor 15

SETTING UP THE SAMPLING FREQUENCY AND SELF TEST
To set the bandwidth filter to 62.5 Hz the sampling frequency will be 125 Hz. Clear DFBW in Control Register 1.

To set the bandwidth filter to 125 Hz the sampling frequency will be 62.5 Hz. Set DFBW in Control Register 1.

To verify the self test. Set STON in Mode Control Register $16. Clear STON to turn off self test.

SETTING UP INT1 AND INT2 INTERRUPT REGISTERS
This section explains how to set up the interrupt pins in all possible configurations.

The interrupt registers are set up in the Control 1 (CTL1) Register to determine which interrupt is assigned to Level detection
and which is assigned to Pulse detection. Figure 8 displays the different options for setting up the interrupt pins.

Figure 8. Setting up the Interrupt Registers for Level and Pulse Detection

INT1 reg = Level and INT2 reg = Pulse

INT1 reg = Pulse and INT2 reg = Level

RegisterWrite (0x18,regs[0x18] & 0xEF)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 1 1 1 1 1 1 1

$18 result 0 THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite (0x18,regs[0x18] | 0x80)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 0 0 0 0 0 0

$18 result 1 THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x16, regs[0x16] ^ 0x10)
$16 MCTL LPEN DRPD SPI3W STON GLVL[1] GLVL[0] MOD[1] MOD[0]

$16 mask 0 0 0 1 0 0 0 0

$16 result LPEN DRPD SPI3W ~STON GLVL[1] GLVL[0] MOD[1] MOD[0]

RegisterWrite(0x18, regs[0x18]&0xF9)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 1 1 1 1 0 0 1

$18 result DFBW THOPT ZDA YDA XDA 0 0 INTPIN

RegisterWrite(0x18,(regs[0x18]&0xFB)|0x02)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 1 1 1 1 0 1 1

$18 result DFBW THOPT ZDA YDA XDA 0 1 INTPIN
AN3468

Sensors
Freescale Semiconductor 16

INT1 reg = Single Pulse and INT2 reg = Pulse

INT1pin assigned to DRDY

This pin can be set to allow INT1 to be used to indicate when data is ready from the sensor.

INT1pin assigned to INT1 Reg (INT2pin = INT2 Reg)

INT1pin assigned to INT2 Reg (INT2pin = INT1 Reg)

LEVEL DETECTION MODE
Level detection mode is capable of detecting both motion and freefall. There are no timers associated with the level detection.

The OR logic is used for motion detection and the AND logic is used for freefall detection. Then there is signed threshold detection
(+ or -) or absolute (+ and -).

Figure 9. Level Detection Settings

RegisterWrite(0x18,(regs[0x18]&0xFD)|0x04)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 1 1 1 1 1 0 1

$18 result DFBW THOPT ZDA YDA XDA 1 0 INTPIN

RegisterWrite(0x16, reg[0x16]^0x40)
$16 MCTL LPEN DRPD SPI3W STON GLVL[1] GLVL[0] MOD[1] MOD[0]

$16 mask 0 1 0 0 0 0 0 0

$16 Result LPEN ~DRPD SPI3W STON GLVL[1] GLVL[0] MOD[1] MOD[0]

RegisterWrite(0x18, regs[0x18]&FE)

$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 1 1 1 1 1 1 0

$18 result DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] 0

RegisterWrite(0x18, regs[0x18] | 0x01)

$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 0 0 0 0 0 1

$18 result DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] 1
AN3468

Sensors
Freescale Semiconductor 17

These are the following available options for Level Detection Mode and how they can be enabled.

For motion or for freefall detection there is an absolute condition that can be used.

For motion detection there is a positive/negative detection condition that can be used.

For motion detection only there is an or logic condition that can be used. LDPL = 0

For freefall detection only there is an and logic condition that can be used. LDPL = 1

This is an example of how to toggle the XDA bit to enable or disable the X-axis.

This is an example of how to toggle the YDA bit to enable or disable the Y-axis.

This is an example of how to toggle the ZDA bit to enable or disable the Z-axis.

RegisterWrite(0x18,regs[0x18]&0xBF)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 1 1 1 1 1 1

$18 result DFBW 0 ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x18,regs[0x18]|0x40)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 1 0 0 0 0 0 0

$18 result DFBW 1 ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite (0x19,regs[0x19]&0xFE)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 1 1 1 1 1 1 1 0

$19 Result — — — — — DRVO PDPL 0

RegisterWrite1(0x19,regs[0x19]|0x01)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 0 0 0 0 0 0 0 1

$19 result — — — — — DRVO PDPL 1

RegisterWrite1(0x18,regs[0x18]^0x08)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 0 0 1 0 0 0

$18 result DFBW THOPT ZDA YDA ~XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite1(0x18,regs[0x18]^0x10)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 0 1 0 0 0 0

$18 result DFBW THOPT ZDA ~YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite1(0x18,regs[0x18]^0x20)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 1 0 0 0 0 0

$18 result DFBW THOPT ~ZDA YDA XDA INTRG[1] INTRG[0] INTPIN
AN3468

Sensors
Freescale Semiconductor 18

This is the register for setting the threshold value. Table 1 shows the hex values with the associated counts and g-values to
understand how to program in the level value that corresponds to the acceleration threshold desired.

In Threshold Detection Mode the sensitivity is 16 counts/g. The threshold is set in the LDTH $1A 8-bit Register.

$1A LDTH LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0]

Table 1. Setting Threshold Values

Binary Hex Decimal Counts g-value

0000 0000 0x00 0 0 0g

0001 0000 0x10 16 16 1g

0010 0000 0x20 32 32 2g

0011 0000 0x30 48 48 3g

0100 0000 0x40 64 64 4g

0101 0000 0x50 80 80 5g

0110 0000 0x60 96 96 6g

0111 0000 0x70 112 112 7g

0111 1111 0x7F 127 127 8g

1000 0000 0x80 -128 128 -8g

1001 0000 0x90 -112 144 -7g

1010 0000 0xA0 -96 160 -6g

1011 0000 0xB0 -80 176 -5g

1100 0000 0xC0 -64 192 -4g

1101 0000 0xD0 -48 208 -3g

1110 0000 0xE0 -32 224 -2g

1111 0000 0xF0 -16 240 -1g

1111 1111 0xFF -1 255 0g
AN3468

Sensors
Freescale Semiconductor 19

Optimal Settings for Freefall using Level Detection
For optimal settings for the freefall using Level Detection choose the following settings:

• Absolute Logic (THOPT)
• X, Y, and Z must be enabled (ZDA, YDA, XDA)
• Negative AND Logic (LDPL = 1)
• LDTH: Level Detection Threshold = 0x03 = 0.19g

1. THOPT = 0 Absolute Condition
2. ZDA = 0 Enable Z, YDA = 0 Enable Y, XDA = 0 Enable X

3. Negative AND Logic Set LDPL

4. Set Threshold = 0.19 g

Set the threshold to 3 counts (3/16 = 0.1875 g).

RegisterWrite(0x18,regs[0x18]&0x87)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 0 0 0 1 1 1

$18 result DFBW 0 ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x19,regs[0x19]|0x01)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 0 0 0 0 0 0 0 1

$19 Result — — — — — DRVO PDPL 1

RegisterWrite(0x1A,0x03)
$1A LDTH LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0]
AN3468

Sensors
Freescale Semiconductor 20

Optimal Settings for Motion using Level Detection
For optimal settings for the motion using Level Detection choose the following settings:

• Absolute Logic (THOPT)
• X, Y enabled (YDA, XDA) with Z disabled
• Positive OR Logic (LDPL = 0)
• LDTH: Level Detection Threshold = 0x20 (2g)

1. THOPT=0 Absolute Condition
2. ZDA=1 Disable Z, YDA=0 Enable Y, XDA=0 Enable X

3. Positive OR Logic Clear LDPL

4. Set Threshold to 2g

Set the threshold to 32 counts (32/16 = 2 g).

RegisterWrite(0x18,((regs[0x18]&0x87) | 0x20)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 1 0 0 1 1 1

$18 result DFBW 0 ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x19,regs[0x19]&0xFE)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 1 1 1 1 1 1 1 0

$19 result — — — — — DRVO PDPL 0

RegisterWrite(0x1A,0x20)
$1A LDTH LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0]
AN3468

Sensors
Freescale Semiconductor 21

PULSE DETECTION MODE
Pulse detection mode is capable of detecting both motion and freefall. There are timers associated with the pulse detection.

The OR logic is used for motion detection where either a single or a double pulse can be detected. For motion detection the logic
is set up to detect an event when a programmed “Threshold” has been reached for < Time Window. It is not possible to set up
motion detection for Threshold reached for > Time Window. The AND logic is used for freefall detection. In this case when below
the set “Threshold” for > Latency Timer the Pulse Detection flag is set.

Figure 10. Pulse Mode Settings

The following are all the available settings that can be used in the pulse detection mode.

For the OR logic used for single or double pulse detection, the following register should be set with PDPL = 0.

For the AND logic used for pulse freefall detection, the following register should be set with PDPL=1.

This is an example of how to toggle the XDA bit to enable or disable the X-axis.

This is an example of how to toggle the YDA bit to enable or disable the Y-axis.

RegisterWrite(0x19,regs[0x19]&0xFD)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 1 1 1 1 1 1 0 1

$19 result — — — — — DRVO 0 LDPL

RegisterWrite(0x19,regs[0x19]|0x02)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 0 0 0 0 0 0 1 0

$19 result — — — — — DRVO 1 LDPL

RegisterWrite(0x18,regs[0x18]^0x08)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 0 1 0 0 0 0

$18 result DFBW THOPT ZDA 1 XDA INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x18,regs[0x18]^0x10)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 0 1 0 0 0 0

$18 result DFBW THOPT ZDA 1 XDA INTRG[1] INTRG[0] INTPIN
AN3468

Sensors
Freescale Semiconductor 22

This is an example of how to toggle the ZDA bit to enable or disable the Z-axis.

This is the pulse detection threshold value that can be set according to Table 1.

This register defines the pulse width of the first pulse window. The pulse duration increments in ½ ms values, so every count is
½ ms. The total range is from 0 - 127.5 ms.

This register defines the latency time, which is the time in between pulses for double pulse, or the amount of time to trigger a
freefall condition. The scale increases from 0 ms - 255 ms 0x00-0xFF. Every count is equal to 1 ms.

This is the timing window for the second pulse when setting up the double pulse condition. The scale is in ms increments from
0 ms - 255 ms 0x00-0xFF.

Optimal Settings for Single Pulse Detection
• Positive OR logic: PDPL = 0
• X, Y, Z enabled
• PDTH = 0x40 (4g)
• PD = 0x10

1. Positive OR Logic PDPL = 0

2. X, Y, Z enabled

3. PDTH (Pulse Threshold) set to 4g

4. PD (Pulse Duration) set to 8 ms

RegisterWrite(0x18,regs[0x18]^0x20)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 0 0 1 0 0 0 0 0

$18 result DFBW THOPT 1 YDA XDA INTRG[1] INTRG[0] INTPIN

$1B PDTH PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]

$1C PW PD[7] PD [6] PD [5] PD [4] PD [3] PD [2] PD [1] PD [0]

$1D LT LT[7] LT [6] LT [5] LT [4] LT [3] LT [2] LT [1] LT [0]

$1E TW TW[7] TW [6] TW [5] TW [4] TW [3] TW [2] TW [1] TW [0]

RegisterWrite(0x19,regs[0x19]&0xFD)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 1 1 1 1 1 1 0 1

$19 result — — — — — DRVO 0 LDPL

RegisterWrite1(0x18,regs[0x18]&0x87)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 0 0 0 1 1 1

$18 result DFBW 0 0 0 0 INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x1B,0x40)
$1B PDTH PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]

$1B result 0 1 0 0 0 0 0 0

RegisterWrite(0x1C,10)
$1C PW PD[7] PD [6] PD [5] PD [4] PD [3] PD [2] PD [1] PD [0]

$1C result 0 0 0 1 0 0 0 0
AN3468

Sensors
Freescale Semiconductor 23

Optimal Settings for Double Pulse Detection
• Positive OR Logic PDPL = 0
• Z-axis enabled only
• Pulse Threshold set to 4 g
• Pulse Duration = $3C (60 counts) 30 ms
• Latency Time = 0x5A 90 ms
• 2nd Time Window 0x82 (130 ms)

1. Positive OR Logic Enabled PDPL = 0

2. Z only enabled

3. PDTH (Pulse Threshold) set to 4 g

4. Pulse Duration for first pulse 30 ms

5. Latency time between the pulses 90 ms

6. Time Window for Second Pulse = 130 ms

RegisterWrite(0x19,regs[0x19]&0xFD)
$19 CTL2 — — — — — DRVO PDPL LDPL

$19 mask 1 1 1 1 1 1 0 1

$19 result — — — — — DRVO 0 LDPL

RegisterWrite(0x18,(regs[0x18]&0x98)|0x18)
$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$18 mask 1 0 0 1 1 0 0 0

$18 result DFBW 0 0 1 1 INTRG[1] INTRG[0] INTPIN

RegisterWrite(0x1B,0x40)
$1B PDTH PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]

$1B result 0 1 0 0 0 0 0 0

RegisterWrite(0x1C,0x3C)
$1C PW PD[7] PD [6] PD [5] PD [4] PD [3] PD [2] PD [1] PD [0]

$1C result 0 0 1 1 1 1 0 0

RegisterWrite(0x1D,0x5A)
$1D LT LT[7] LT [6] LT [5] LT [4] LT [3] LT [2] LT [1] LT [0]

$1D result 0 1 0 1 1 0 1 0

RegisterWrite(0x1E,0x82)
$1E TW TW[7] TW [6] TW [5] TW [4] TW [3] TW [2] TW [1] TW [0]

$1E result 1 0 0 0 0 0 1 0
AN3468

Sensors
Freescale Semiconductor 24

Table 2. User Registers Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00 XOUTL XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0]

$01 XOUTH — — — — — — XOUT[9] XOUT[8]

$02 YOUTL YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0]

$03 YOUTH — — — — — — YOUT[9] YOUT[8]

$04 ZOUTL ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0]

$05 ZOUTH — — — — — — ZOUT[9] ZOUT[8]

$06 XOUT8 XOUT[7] XOUT[6] XOUT[5] XOUT[4] XOUT[3] XOUT[2] XOUT[1] XOUT[0]

$07 YOUT8 YOUT[7] YOUT[6] YOUT[5] YOUT[4] YOUT[3] YOUT[2] YOUT[1] YOUT[0]

$08 ZOUT8 ZOUT[7] ZOUT[6] ZOUT[5] ZOUT[4] ZOUT[3] ZOUT[2] ZOUT[1] ZOUT[0]

$09 STATUS — — — — — PERR DOVR DRDY

$0A DETSRC LDX LDY LDZ PDX PDY PDZ INT2 INT1

$0B TOUT TMP[7] TMP[6] TMP[5] TMP[4] TMP[3] TMP[2] TMP[1] TMP[0]

$0C — — — — — — — — —

$0D I2CAD I2CDIS DAD[6] DAD[5] DAD[4] DAD[3] DAD[2] DAD[1] DAD[0]

$0E USRINF UI[7] UI[6] UI[5] UI[4] UI[3] UI[2] UI[1] UI[0]

$0F WHOAM ID[7] ID[6] ID[5] ID[4] ID[3] ID[2] ID[1] ID[0]

$10 XOFFL XOFF[7] XOFF[6] XOFF[5] XOFF[4] XOFF[3] XOFF[2] XOFF[1] XOFF[0]

$11 XOFFH — — — — — XOFF[10] XOFF[9] XOFF[8]

$12 YOFFL YOFF[7] YOFF[6] YOFF[5] YOFF[4] YOFF[3] YOFF[2] YOFF[1] YOFF[0]

$13 YOFFH — — — — — YOFF[10] YOFF[9] YOFF[8]

$14 ZOFFL ZOFF[7] ZOFF[6] ZOFF[5] ZOFF[4] ZOFF[3] ZOFF[2] ZOFF[1] ZOFF[0]

$15 ZOFFH — — — — — ZOFF[10] ZOFF[9] ZOFF[8]

$16 MCTL LPEN DRPD SPI3W STON GLVL[1] GLVL[0] MOD[[1]]

NOTES:
1. http://www.esacademy.com/faq/i2c/general/i2cpseud.htm

MOD[0]

$17 INTRST — — — — — — CLRINT2 CLRINT1

$18 CTL1 DFBW THOPT ZDA YDA XDA INTRG[1] INTRG[0] INTPIN

$19 CTL2 — — — — — DRVO PDPL LDPL

$1A LDTH LDTH[7] LDTH[6] LDTH[5] LDTH[4] LDTH[3] LDTH[2] LDTH[1] LDTH[0]

$1B PDTH PDTH[7] PDTH[6] PDTH[5] PDTH[4] PDTH[3] PDTH[2] PDTH[1] PDTH[0]

$1C PW PD[7] PD [6] PD [5] PD [4] PD [3] PD [2] PD [1] PD [0]

$1D LT LT[7] LT [6] LT [5] LT [4] LT [3] LT [2] LT [1] LT [0]

$1E TW TW[7] TW [6] TW [5] TW [4] TW [3] TW [2] TW [1] TW [0]

$1F — — — — — — — — —
AN3468

Sensors
Freescale Semiconductor 25

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009. All rights reserved.

AN3468
Rev. 1
05/2009

	Applications and Sensing Capabilities of the MMA745xL
	Motion Detection
	Hints for a Power Cycling Algorithm
	Motion Detection using the MMA745xL Logic Interrupts

	Freefall
	Linear Freefall using the MMA745xL Logic Interrupts
	Advanced Freefall Algorithm Hint

	Shock
	Detecting Shock using the MMA745xL Logic Interrupts

	Vibration
	Tilt

	Sensor Placement
	Connecting the MMA745xL to an MCU using I2C Communication

	Basic Start-up Procedure
	Example Code for Start-up Using IIC
	General Pseudo Code Using IIC
	Connecting the MMA745xL to an MCU using SPI Communication

	Basic Start-up Procedure
	Example Code for Start-up Using SPI
	General Pseudo Code using SPI

	Programming the MMA745xL
	Operation Modes of the MMA745XL Accelerometer
	Standby Mode: RegisterWrite (0x16, 0x00)
	Measurement Mode: RegisterWrite (0x16,0x01)
	Level Detection Mode: RegisterWrite (0x16, 0x02)
	Pulse Detection Mode: RegisterWrite (0x16, 0x03)

	Calibration of the MMA745XL
	Setting up the Sampling Frequency and Self Test
	Setting up INT1 and INT2 Interrupt Registers
	Level Detection Mode
	Optimal Settings for Freefall using Level Detection
	Optimal Settings for Motion using Level Detection

	Pulse Detection Mode
	Optimal Settings for Single Pulse Detection
	Optimal Settings for Double Pulse Detection

