

32-bit
Microcontrollers

Application Note

Rev. 32086C-AVR32-04/08

AVR32015: AVR32 Studio getting started

Features
• Installing AVR32 Studio
• Upgrading from AVR32 Studio 1.0 to 2.x
• Creating a AVR32 standalone application
• Using examples from the SW framework
• Creating a AVR32 Linux application

1 Introduction
This application note is a quick start guide for the AVR®32 Studio. It documents on
a step by step basis how a simple program can be created as standalone or Linux®
application. All these steps and much more, are also described in the AVR32
Studio help system.

2 AVR32015
32086C-AVR32-04/08

2 AVR32 Studio introduction
AVR32 Studio is an integrated development environment (IDE) for developing AVR32
applications. AVR32 Studio provides a complete set of features including project
management and version control integration (CVS); a C/C++ editor with syntax
highlighting and code completion; a debugger supporting run control including source
and instruction-level stepping and breakpoints; registers, memory and I/O views; and
target configuration and management. AVR32 Studio is Built on Eclipse, enabling
easy integration with third party plugins for increased functionality.

AVR32 Studio supports all of Atmel's AVR32 32-bit processors. AVR32 Studio
supports development and debugging of both standalone (without an operating
system) applications and Linux applications (for the AT32AP7 device family).

All Atmel tools that support the AVR32 architecture, including the JTAGICE mkII,
AVR®ONE! and STK®600, are supported by AVR32 Studio.

AVR32 Studio supports also all Atmel Linux boards like the STK1000 and the
NGW100. To be able to debug Linux applications on the target system a network
connection is necessary.

AVR32 Studio integrates with the GNU Toolchain for AVR32. The GNU C Compiler
(GCC) is used for compiling C/C++ programs, while the GNU debugger (GDB) is
used for debugging the application on target. Atmel's AVR32 utilities, avr32program
and avr32gdbproxy, are used for deployment and debugging of standalone
applications as well as target voltage and clock generator adjustments.

2.1 Software requirements
In order to run AVR32 Studio following software requirements have to be met:

• Windows 2000 or Windows XP
• Fedora Core 4, 5 or 6, Ubuntu Linux 6.06 (Dapper) or SUSE Linux 10.2
• Sun Java 2 Platform version 1.5 or later
• Internet Explorer, Mozilla, or Firefox

AVR32 Studio has not been tested on Windows Vista or 64-bit operating systems and
is thus not supported on these. AVR32 Studio does not support Windows 98, NT or
ME. The Sun Java 2 Platform is installed automatically, if not already installed, on
Windows platforms. On a Linux distribution this must be done by the user.

More software may be needed to be able to debug Linux applications on the target
system by using AVR32 Studio on the host. In that case the GNU Debugger (GDB)
server is needed on the target. The software is installed by default on all Atmel
development boards and is included in the Buildroot build system. More information
about the Buildroot build system can be found here: http://www.atmel.no/buildroot/

2.2 Hardware requirements¨
Following list shows the minimum requirements that have to be met to run AVR32
Studio:

• Minimum processor Pentium 4, 1GHz
• Minimum 512 MB RAM
• Minimum 300 MB free disk space

 AVR32015

 3

32086C-AVR32-04/08

• Minimum screen resolution of 1024x768
AVR32 Studio has not been tested on computers with fewer resources, but may run
satisfactorily depending on the number and size of projects and the user's patience.

For the deployment of a standalone AVR32 application a Flash programmer or even
better a JTAG device that supports the on-chip debug system is needed. The
JTAGICE mkII or the AVR ONE! are such a devices that are supported within the
AVR32 studio.

To transfer a Linux application to the target many possibilities are available.
Depending on your deployment solution a SD-card, network connection or a Flash
programmer may be needed.

AVR32 Studio needs a network connection to be able to debug a Linux application on
the target system. If you intend to use a chip without network capabilities in your
application use a chip with that interface for development and gain from the
debugging capabilities. Because for instance the AP700x series is completely
compatible you can switch the devices later in the development cycle.

2.3 Downloading and Installing
The software can be found on the AVR32 Technical Library DVD, or on the Atmel
website at http://www.atmel.com/products/avr32/ under the "Tools & Software" menu
entry.

2.3.1 Windows

Note to users of 1.0: The Development Tools installer is no longer supported. This
means that AVR32 Studio and the AVR32 Toolchain must be installed separately.

The AVR32 Studio installer can be downloaded from the website as noted above.
After downloading, double-click the AVR32Studio-2.0-Setup.exe file to install. If you
wish to specify the location where the AVR32 Studio software is installed, choose
"Custom Installation". The installation software will install a Sun Java Runtime
Environment on your computer if it is missing.

2.3.2 Linux

On Linux, the AVR32 Studio IDE is distributed separately from the AVR32 GNU
Toolchain which can be installed as RPM or Debian packages depending on the
distribution. AVR32 Studio is available as a ZIP archive which can be extracted using
the unzip utility.

IMPORTANT! The Java runtime environments shipped with many Linux distributions
are not compatible with AVR32 Studio. A Java Runtime (or JDK) 1.5 or 1.6 is
required. Consult your distribution's documentation for instructions on installing Sun
Java, or download it from Sun's website at http://java.sun.com/.

We recommend installing AVR32 Studio into a directory which is writable for the
user(s). This simplifies the process of adding or updating the product using the
update manager. On a single-user machine, you can typically extract the AVR32
Studio ZIP file into your home directory. This creates an avr32studio directory
containing the product files.

To run AVR32 Studio, execute the avr32studio program from the avr32studio
directory. If you experience problems, make sure the correct java is being used by
running java -version which should give output similarly to this:

java version "1.6.0_03"

http://www.atmel.com/products/avr32/
http://java.sun.com/

4 AVR32015
32086C-AVR32-04/08

Java(TM) SE Runtime Environment (build 1.6.0_03-b05)
Java HotSpot(TM) Client VM (build 1.6.0_03-b05, mixed mode,
sharing)

Note that you may need to set the environment variable MOZILLA_FIVE_HOME to
the folder containing your Firefox install. e.g.

export MOZILLA_FIVE_HOME=/usr/lib/firefox-1.0.4
or, if using a tcsh:
setenv MOZILLA_FIVE_HOME /usr/lib/firefox-1.0.4
in order for the welcome page to work.

2.4 Upgrading from version 1.0 to 2.0

2.4.1 AVR32 Studio

AVR32 Studio 1.0 and 2.0 as well as the GNU Toolchain 1.0 and 2.0 can co-exist.
Therefore you may wait and uninstall the older versions when you are ready. This
upgrade procedure is also described in the help system of the AVR32 Studio
installation.

Simply install the AVR32 GNU Toolchain 2.0 first, then install AVR32 Studio 2.0 and
start it. Every time AVR32 Studio starts it will test it's environment and report errors if
some required applications are missing. If you do not get any error messages you
should be ready to go.

2.4.2 Workspace

When upgrading AVR32 Studio from version 1.0 to 2.0 you have two choices with
regards to your workspace. You can either upgrade your existing 1.0 workspace or
you can create a new workspace and import your 1.0 projects.

If upgrading the workspace you should use a copy of your existing workspace.
Changes will be made that causes the upgraded workspace to be incompatible with
the 1.0 workspace.

AVR32 Studio 2.0 projects have quite different metadata compared to AVR32 Studio
1.0 projects and must thus be upgraded. Note that only projects that use the internal
builder or the managed build system must be upgraded. Standard make projects will
be left as they are.

1. Start by a pointing AVR32 Studio to a copy of your old workspace.

2. For each of the managed build projects the following will happen:

a. A dialog named 'Update Managed Build Project' will pop up and ask
to update the project from version 3.1.0 to 4.0.0. Answer Yes on this
question.

b. A new dialog named Backup File Already Exists pops up indicating
that a file named .project_initial already exists and asks whether or
not the project should be updated. Answer Yes on this question.

3. If your projects settings also require updates; a dialog will pop up requesting
you to select projects that will be upgraded. Select all projects and press OK.

If you later on decide project settings shall be updated you may find the same dialog
in the main menu by selecting Help > AVR32 Studio > Update project settings.

http://127.0.0.1:58883/help/topic/com.atmel.avr32.doc.guide/html/importing_1.0_projects.html

 AVR32015

3 Creating a new AVR32 project
All information in this “getting started guide” is also available in more detail in the
AVR32 Studio user guide. The AVR32 user guide is included, among other related
documentation, in the AVR32 studio and is available under the menu “Help -> Help
Contents”. Use this integrated help system intensively in order to learn about all the
available features and tools. The help documents can be updated with the update
manager to get the latest versions.

3.1 Creating a workspace
When you start AVR32 Studio for the first time following dialog will appear and ask
you for a workspace folder. The workspace is the directory where your work will be
stored.

Figure 1 Workspace selection/creation

If you already have a workspace that you want to use set the path to it. If not, type the
path to a folder where you want your workspace. If the folder doesn’t exist it is
created by AVR32 Studio.

3.2 Creating a new project
The first thing you need to do is to create a new project. Go to the "File" menu, select
"New..." and the type of project you want to make. If the project type is not in the list
go to “New -> Project”.

AVR32 Studio offers two build systems. One is known the MBS or Managed Build
System. This has two operation modes; internal build and managed make. The
managed make mode will automatically create a Makefile for your project using the
build settings you specify and execute Make using this Makefile. This requires that
the Make utility is in your path. The latter will also use your build settings, but does
not require Make. All toolchain commands are executed directly. This is the preferred
method and the one offered per default. Creating a project using this method is done
through the C Project Wizard or the C ++Project Wizard. All available project types
are described in the AVR32 Studio help files in detail.

It is not possible to use a wizard to create a managed make project directly. This has
to be done through the project properties dialogue.

 5

32086C-AVR32-04/08

6 AVR32015

Figure 2 Creating a new project.

Fill out the information required in the wizard, such as the project name, the MCU and
the type of project you want to start on.

Figure 3 New project creation mask

32086C-AVR32-04/08

 AVR32015

4 Importing AVR32 Studio 1.0 projects
AVR32 Studio 1.0 projects imported to a AVR32 Studio 2.0 workspace must be
upgraded before they can be used. The managed build system updates will be
handled automatically while some AVR32 Studio settings must be done manually.
The procedure is as follows:

1. Import of the project is initiated by selecting File > Import from the main
menu then selecting the Existing Projects Into Workspace wizard.

2. Select the projects you wish to import and make sure that the Copy projects
into workspace option is selected.

3. A dialog named 'Update Managed Build Project' will pop up and ask to
update the project from version 3.1.0 to 4.0.0. Answer Yes on this question.

4. A new dialog named Backup File Already Exists pops up indicating that a file
named .project_initial already exists and asks whether or not the project
should be updated. Answer Yes on this question.

5. Start the AVR32 Studio project update by selecting Help > AVR32 Studio >
Update project settings from the main menu and select the project that
you've just imported. Press OK to upgrade the project.

5 Using examples from the Software Framework
All examples that are available in the software framework are included in the AVR32
Studio. To open an example project go to the "File" menu, select "New..." and then
the “Example” entry. The same entry is also available “File->New -> Project”.

Figure 4: Selecting an example project from the SW framework

 7

32086C-AVR32-04/08

8 AVR32015

Select an example for a specific board and add it to the workspace as new project.

Figure 5 Adding an example project to the workspace

After the project has been added it can be build and debugged on the target system.

Figure 6 SW framework example in the AVR32 Studio

32086C-AVR32-04/08

 AVR32015

6 Adding files to the project

6.1 Creating a new file
To add a new file to the project go to “File -> New” in the top menu and select the file
type. If the desired file is not available there go to “File -> New -> other”. This file is
then added to the current active project. A file extension (.c or .h) must be added to
the file name. Also make sure that the correct project is chosen. If you add a file it is
created/added to your project directory in the current workspace.

Figure 7 Adding a new source file

Another possible way to add a new file is to right-click on the project folder in the
“Project Explorer” window and to select “File -> New”. The rest of the procedure is the
same as above. Depending on the folder you select, the file is created/added in the
corresponding directory in the workspace.

6.2 Adding existing files
If you want to add existing files to your project for instance a driver or a whole
directory you can use the import functionality. This menu item is located in “File ->
Import “. Select “File System” as import source as shown in the picture.

 9

32086C-AVR32-04/08

10 AVR32015

Figure 8 Importing files/directories

The next step is to select all directories or files you want to import into your project.
These files/folders are copied to your project folder in the workspace directory upon
import. Especially for existing projects or other software components is it very often
useful to import the whole directory structure to keep all the source file relations
intact.

32086C-AVR32-04/08

 AVR32015

Figure 9 Selecting import files/directories

Make sure the “Into folder” contains the project name into which you want to import
the sources.

6.3 Adding drivers and components from the software framework
To be able to add drivers and components from the software framework to a project
the MCU settings must match a supported device of the framework. If this is not the
case the menu entries of the “Framework” menu are not available. If the project type
matches the requirements of the software framework a “Drivers” and a “Components”
menu entry are available.

 11

32086C-AVR32-04/08

12 AVR32015

Figure 10 Menu entry for the drivers/components/services wizard

The selection of the Framework menu entry will start a wizard that leads through the
selection of drivers, components and services

Figure 11 Wizard start window

In the driver selection window more information about the drivers are available by
clicking on the “View context help link”. Earlier selections can also be removed by un-
selecting the items in the list.

32086C-AVR32-04/08

 AVR32015

Figure 12 Adding drivers from the SW framework

If only drivers should be added, the wizard can be stopped at this stage by clicking on
the “Finish” button.

The next stage in the wizard is the component selection. A detailed description is
available by clicking on the “View context help” link.

Figure 13 Components selection window

The next step is the services selection.

 13

32086C-AVR32-04/08

14 AVR32015

Figure 14 Services selection window

The last window lists all operations that are executed in order to add the selected
drivers. Basically are needed files copied from the SW framework to the selected
project.

Figure 15 Scheduled operations when adding a driver/component/service

7 Compiling the project
To build your project go to “Project -> Build Project” or right-click on your project
folder and select “Build Project” (or CTRL-B to build all open projects). The building

32086C-AVR32-04/08

 AVR32015

process is displayed in the bottom window labeled “Console” and could look like the
following picture on a successful build.

Figure 16 Console build output

The “Problems” tab in the same window displays all compiling or other errors and is
therefore the best place next to the console output to find the cause.

All settings for the building of a project (linker/compiler switches) are defined in a
“build configuration”. By default two configurations are available, “Debug” and
“Release”. To view which configuration is currently active go to “Project -> Build
Configuration -> Manage”. Here you can set the currently active build configuration
and add new ones.

Figure 17 Configuration managing and creating

To edit a build configuration go to “Project -> Properties”. Here you can change many
project settings.

Note: Many of these settings are only available for a project that is managed by
AVR32 Studio. In a “make” project (AVR32 handles the build by using a Makefile)
many settings have to be specified in the related Makefiles.

Most of the parameters are build configuration specific. Select “Debug” or “Release”
configuration in the “Configuration” box and modify parameters.

 15

32086C-AVR32-04/08

16 AVR32015

Figure 18 Setting build configuration properties

By default is the “Debug” configuration active because it provides the debugging
information needed for a debugger. The “Release” configuration is without debugging
overhead and has therefore performance and code size improvements.

8 Project deployment and debugging

8.1 Standalone AVR32 application
A standalone application needs to be transferred to the target Flash or RAM. AVR32
studio automates this process. Take a look at the AVR32 Studio documentation to
see which tools are supported for this purpose.

To download the compiled source code a target needs to be added to AVR32 Studio.
The easiest way of adding a target is to use the "Scan Targets" action. Open the
"AVR32 Targets view" and right-click in it. This will bring up the view context menu.
Select the action and let it discover whatever devices you have plugged into the USB
port. If you have a JTAGICE mkII it will be shown here as in Figure 19. As long as you
have not specified a target board a red sign with a white line across (one-way sign)
will be visible for the target (as shown in Figure 19).

32086C-AVR32-04/08

 AVR32015

Figure 19 Creating/Scanning targets

If no target was discovered you can manually add a new one by pressing the "Add
target" tool button in the upper right corner in the view.

The Target view contains the list of targets, and allows the user to perform actions on
the targets as well as set up the targets. A target consists of three main components:
adapter, board and microcontroller unit (MCU). The adapter role, is often performed
by a JTAGICE mkII that communicates with the MCU and is responsible for executing
the programming and/or debugging commands. The board is the hardware where the
MCU is mounted, and may contain external memory which can be used by the MCU.

Now open the "Properties" view (if not visible in the main window by default go to
“Window -> Show View -> Properties) and select the target that was just discovered.
Because the “Properties view” is shared by other functions or values of AVR32 Studio
another click on the target may be needed to display its properties in the pane. If the
target was added manually you must select the "Adapter" tab and set the correct
adapter. Otherwise the adapter should be correct.

Go to the "Board" tab and select the board you have. The MCU will be automatically
selected if there is only one MCU available for that board. Otherwise you must also
select the correct MCU.

 17

32086C-AVR32-04/08

18 AVR32015

Figure 20 Editing target properies

After selecting the board and the MCU the target window is updated with the related
data selected in the properties view.

To test the new settings you can right-click on the target and select the “Read MCU
Info” option. If the configuration was correct a window pops up and displays
information about the MCU.

8.1.1 Running applications on the target

When you build your application you can select different build configurations as
described in chapter 7. For downloading and running your application also different
configurations are possible. To manage and edit configurations open “Run -> Open
Run Dialog”. If there is no configuration available under “AVR32 Application” create
one for your project either by double-clicking on “AVR32 Application” or by clicking on
the menu item “New Launch Configuration”. Depending on the load address of your
application you have to edit the “Run from …” field with the correct start address. A
normal configuration is to use the default “Run from reset vector” setting. Take a look
at the device datasheet or the board documentation for valid start addresses if
needed. After configuring a valid launch configuration it can be started by clicking the
“Run” button (green sign with white arrow) or by selecting “Run -> Run” form the
menu. Before AVR32 Studio starts downloading the binary it checks if this file exists
on the target. If it exists AVR32 Studio will offer to run it instead of downloading it
again. After the download AVR32 Studio starts the application and disconnects from
the target.

32086C-AVR32-04/08

 AVR32015

Figure 21 Creating/editing a launch configuration

8.1.2 Debugging applications on the target

A similar window as displayed in Figure 21 appears if you want to configure a debug
configuration. To manage and edit configurations open “Debug -> Open Debug
Dialog”. If there is no configuration available under “AVR32 Application” create one
for your project either by double-clicking on “AVR32 Application” or by clicking on the
menu item “New Launch Configuration”. Depending on the load address of your
application you have to edit the “Run from …” field with the correct start address.
After configuring a valid launch configuration it can be started by clicking the “Debug”
button (little bug) or by selecting “Run -> Debug” form the menu. Before AVR32
Studio starts downloading the binary it checks if this file exists on the target. If it exists
AVR32 Studio will offer to run it instead of downloading it again. After the download
AVR32 Studio starts the debugger and offers the user to switch to a debugging
perspective.

AVR32 Studio provides different perspectives for different needs. In the debugging
perspective you can arrange all windows and panes to fit your debugging
preferences. When you are finished with debugging you can switch back to the
“Standard view”, which is suited best for editing code and project management. To
switch between views use the buttons in Figure 22.

 19

32086C-AVR32-04/08

20 AVR32015

Figure 22 Open/change a perspective

8.2 Linux application
A Linux application can be transferred to the target by using different methods like:
• Network File System (NFS): The compiled file is copied to a NFS file system on

the host which the target has mounted.
• File Transfer Protocol (FTP): The binary is transferred to the target by using a FTP

client/server.
• SD-Card: A SD-Card can be used if such an interface is available on the

hardware.
Many other methods are also possible, but the above ones are the most often used.
After transferring the application to the target it can be executed there.

The binaries of the compiled project are in the directory
“Workspace/Project/BuildConfiguration”. “Workspace” is the directory you selected at
the startup of AVR32 Studio. “Project” is the project you have created and
“BuildConfiguration” is the build configuration you used to build the project.

8.2.1 Debugging a Linux application with AVR32 Studio

To debug the application on the target form the host a gdb-server (GNU debugger)
can be used on the target.

AVR32 Studio needs FTP and SSH services on the target to transfer an application
automatically. Before you can use these services they have to be configured
correctly. On the NGW100 and the STK1000 boards are they already enabled and
configured properly.

The first thing to do is to create a new target in the “Taget” window. Do this by either
right-clicking in the target window or by using the button above the window (little chip
with a plus above it; take a look at Figure 23).

32086C-AVR32-04/08

 AVR32015

Figure 23 Creating a new target

The Target view contains the list of targets, and allows the user to perform actions on
the targets as well as set up the targets. A target consists of three main components:
adapter, board and microcontroller unit (MCU). The adapter role, is often performed
by a JTAGICE mkII that communicates with the MCU and is responsible for executing
the programming and/or debugging commands. The board is the hardware where the
MCU is mounted, and may contain external memory which can be used by the MCU.

Now open the "Properties" view (if not visible in the main window by default go to
“Window -> Show View -> Properties) and select the target that was just discovered.
Because the “Properties view” is shared by other functions or values of AVR32 Studio
another click on the target may be needed to display its properties in the pane.

Figure 24 Target properties

Next step is to edit the “Target” pane of the “Properties” pane. To configure a target
which runs Linux, the operating system must be set to “AVR32 Linux”. In addition, a
default user account must be specified. This user account must exist on the target
system and it must be possible to login via SSH and FTP with this user. The Network
address field should contain the target system's IP address.

When you build your application you can select different build configurations as
described in chapter 7. For downloading and running your application also different
configurations are possible. To manage and edit configurations open “Run -> Open
Run Dialog”. If there is no configuration available under “AVR32 Linux Application”

 21

32086C-AVR32-04/08

22 AVR32015

create one for your project either by double-clicking on “AVR32 Linux Application” or
by clicking on the menu item “New Launch Configuration”. Fill the out the
configuration similar to Figure 25. Change “Project”, “File” and “Target” to your
settings. Leave the “Remote path” as is if you want to use the standard settings on
the Atmel boards. This path reflects the path on the target where the binary is located.
After configuring a valid launch configuration it can be started by clicking the “Run”
button (green sign with white arrow) or by selecting “Run -> Run” form the menu.

Figure 25 Linux application Run/Debug configuration.

You will be prompted to enter a login and a password. The latest Buildroot release
image for the Atmel boards use following settings.

Login: avr32

Password: avr32!

A similar window as displayed in Figure 25 appears if you want to configure a debug
configuration. To manage and edit configurations open “Debug -> Open Debug
Dialog”. If there is no configuration available under “AVR32 Linux Application” create
one for your project either by double-clicking on “AVR32 Linux Application” or by
clicking on the menu item “New Launch Configuration”. After configuring a valid
launch configuration it can be started by clicking the “Debug” button (little bug) or by
selecting “Run -> Debug” form the menu. After the transfer of the binary to the target
AVR32 Studio starts the debugger and offers the user to switch to a debugging
perspective. Take a look at chapter 8.1.2 on how to handle different perspectives.

9 References
AVR32 Studio, Software Framework, Tools: http://www.atmel.com/avr32

32086C-AVR32-04/08

http://www.atmel.com/avr32

 AVR32015

 23

32086C-AVR32-04/08

AVR32 Forum: http://www.avrfreaks.net

http://www.avrfreaks.net/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32086C-AVR32-04/08

	1 Introduction
	2 AVR32 Studio introduction
	2.1 Software requirements
	2.2 Hardware requirements¨
	2.3 Downloading and Installing
	2.3.1 Windows
	2.3.2 Linux

	2.4 Upgrading from version 1.0 to 2.0
	2.4.1 AVR32 Studio
	2.4.2 Workspace

	3 Creating a new AVR32 project
	3.1 Creating a workspace
	3.2 Creating a new project

	4 Importing AVR32 Studio 1.0 projects
	5 Using examples from the Software Framework
	6 Adding files to the project
	6.1 Creating a new file
	6.2 Adding existing files
	6.3 Adding drivers and components from the software framework

	7 Compiling the project
	8 Project deployment and debugging
	8.1 Standalone AVR32 application
	8.1.1 Running applications on the target
	8.1.2 Debugging applications on the target

	8.2 Linux application
	8.2.1 Debugging a Linux application with AVR32 Studio

	9 References

