
AN1010/D
Rev. 1, 5/2002

M68HC11 EEPROM 
Programming from 
a Personal Computer

Application Note
Introduction

This application note describes a simple and reliable method of programming 
either the M68HC11’s internal EEPROM or the EEPROM connected to the 
MCU’s external bus.

The data to be programmed is downloaded from any standard personal 
computer (PC) fitted with a serial communications port. In addition to the 
programming procedure, the software incorporates the facility to verify the 
contents of the MCU’s internal or external memory against code held on a PC 
disc. Both program and verify options use data supplied in S record format, 
which is downloaded from the PC to the M68HC11 using the RS232 protocol 
supported by the MCU’s SCI port. 

The minimum MCU configuration required to program the M68HC11’s internal 
EEPROM is shown in Figure 1. This consists only of the MCU, an RS232 level-
shifting circuit, plus an 8-MHz crystal and a few passive components. 

Figure 1. M68HC11 Bootstrap Mode Connection to RS232 Line

MAX232
MC68HC11A1
52-PIN PLCC

+

+

0 V

C4C3
2 6

RS232
CONNECTOR

RxD

TxD

0 V

+

+

C1

C2

CTS
DSR
DCD
DTR

GND

14

13

1

3

4

5

15

16

+5 V

11 21

12 20

PD1 (TX)

PD0 (RX)

+5 V

26

VDD

1

7

8

3

2

17

VSS

EXTAL

XTAL

MODA

MODB

RESET

10 M

22 pF

8 MHz

22 pF

4.7 k
1 µF 0 V

0.1 µF
CERAMIC

C1, C2, C3, C4 — 22 mF, 25-V aluminum or tantalum

Note: To improve reliability of the MCU, all its unused inputs should be connected to VSS or VDD.
© Motorola, Inc., 1988, 2000, 2002



AN1010/D
To initiate the download, the PC is connected to the M68HC11 SCI transmit 
and receive lines via a level shifter. The circuit in Figure 1 uses a Maxim 
MAX232 to eliminate the need for additional ±12-volt supplies. The MCU’s 
special bootstrap mode is invoked by applying a logic 0 to the MODA and 
MODB pins, followed by a hardware reset. 

Removing the reset condition causes the MCU to start execution of its 
bootloader program, located in internal ROM, between addresses $BF40 and 
$BFFF. In normal single-chip or expanded modes, the boot ROM is not 
accessible, and reads from these memory locations will result, respectively, in 
irrelevant data or external memory fetches. 

An additional consequence of bootstrap operation is that all vectors are 
relocated to the boot ROM area. With the exception of the reset vector, which 
points to the start of the boot ROM, the remaining interrupt vectors all point to 
an uninitialized jump table in RAM. Three bytes are reserved for each entry in 
the jump table to allow for an extended jump instruction. Table 1 and Table 2 
detail the memory map of the bootstrap vectors and an example RAM jump 
table. 

Table 1. Bootstrap Vector Assignments

Address Vector Description

BFFE BF40 Bootstrap reset

BFFC 00FD Clock monitor

BFFA 00FA COP fail

BFF8 00F7 Illegal opcode

BFF6 00F4 SWI

BFF4 00F1 XIRQ

BFF2 00EE IRQ

BFF0 00EB Real-time interrupt

BFEE 00E8 Timer output capture 1

BFEC 00E5 Timer output capture 2

BFEA 00E2 Timer output capture 3

BFE8 00DF Timer output compare 1

BFE6 00DC Timer output compare 2

BFE4 00D9 Timer output compare 3

BFE2 00D6 Timer output compare 4

BFE0 00D3 Timer output compare 5

BFDE 00D0 Timer overflow

BFDC 00CD Pulse accumulator overflow

BFDA 00CA Pulse accumulator input edge

BFD8 00C7 SPI

BFD6 00C4 SCI
2 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Introduction
NOTE: Before any interrupts are enabled in bootstrap mode, it is the software 
designer’s responsibility to initialize all appropriate entries in the jump table. 

As this application note does not make use of the M68HC11’s interrupt system, 
the jump table is not set up.

The bootstrap program continues by initializing the SCI transmitter and receiver 
to 7812 baud and proceeds to examine the state of the NOSEC bit in the 
CONFIG register. If this is at logic 0 (security enabled), the bootloader will 
erase the entire contents of internal EEPROM and also the CONFIG register.

This feature is particularly useful for security-conscious applications, where the 
internal EEPROM contains information of a proprietary or confidential nature. 
If the NOSEC bit is at logic 1, then the erasing sequence is not carried out. 

Note also that erasing the CONFIG register disables the security feature. 

The bootstrap program then issues a break condition on the SCI transmit line 
and waits for the reception of the first byte. In this application, no use is made 
of the break transmitted by the SCI.

At this point, it is necessary to initiate the PC S record downloader program, 
called EELOAD.BAS (written in BASIC). It will display a header message and 
prompt the user for the number of the COM channel (either one or two) which 
is connected to the M68HC11. A listing of EELOAD.BAS is given at the end of 
this application note.

The PC-resident program will now configure the appropriate COM channel to 
1200 baud, one stop bit, no parity, and download the binary file 
EEPROGIX.BOO from the PC to the M68HC11. 

The M68HC11’s bootloader automatically will detect the fact that the first 
incoming character is received at a different baud rate and change its SCI rate 
to 1200 baud. 

It will then proceed to load the binary file into all 256 RAM locations and then 
jump to address $0000 (for instance, the first RAM location).

Table 2. RAM Jump Table

Internal RAM

Address Typical Instruction

00FD JMP CLKMON

00FA JMP COPFL

. . . etc. 
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 3



AN1010/D
EEPROGIX.BOO consists of the M68HC11 executable code shown in the 
source listing at the end of this application note, with the addition of $FF at the 
head of the file, and $00 appended up to the 256th byte. This program is 
designed to receive S records from the PC and program the data fields into the 
appropriate EEPROM memory locations.

A point to note is that the initial $FF byte in EEPROGIX.BOO is only used to 
detect the baud rate of the PC and is not echoed back, while the remaining 256 
bytes are echoed by the M68HC11’s SCI transmitter. However, during 
download of EEPROGIX.BOO, the PC does not detect the echo, as this feature 
is unnecessary at this stage. 

Once the newly downloaded S record programmer starts execution in the 
M68HC11, it configures the SCI to 9600 baud, then waits for a control character 
from the PC. This character will determine the operating mode of the S record 
programmer. The options available are shown in Table 3. Note that these 
programming utilities can be used to load and verify external RAM as well as 
external EEPROM.

If the S record programmer has been downloaded successfully, the PC 
resident program will now:

1. Request whether the downloaded data must be echoed to the screen

2. Prompt the user for the required operating mode

3. Request the name of the S record file to be downloaded from the PC

Once the download starts, every character in the S record file is immediately 
echoed back to the PC. This ensures synchronism between the PC and the 
M68HC11, and at the same time it removes some of the overhead associated 
with the EEPROM programming delay time. It also removes the need for a 
hardware handshake. 

Verify Option

If a verify error occurs, the actual stored byte value is returned to the PC, where 
it is displayed with a preceding colon delimiter. In this way, EEPROM data and 
address faults can be quickly identified by inspection.

At the end of the verify download, the total number of errors is displayed. 

Table 3. S Record Downloader Operating Mode Options

Control Character Operating Mode

X Program external EEPROM/RAM

I Program internal EEPROM

V Verify internal or external EEPROM/RAM
4 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Internal or External Option
Internal or External Option

If a programming error occurs in either internal or external programming mode, 
for instance, if the read back data after programming does not correspond to 
the expected data, the M68HC11-resident software will hang up. This condition 
is detected by the PC-resident program, which will then abort the download and 
display an error message. This same error message is displayed if a fault or 
incorrect connection exists on the serial link between the PC and M68HC11.

The one exception to this operation stems from the fact that changes to the 
M68HC11’s CONFIG register can be detected only after a subsequent 
hardware reset. If the CONFIG register address ($103F) is detected, then the 
CONFIG register is not read directly after programming. This prevents 
premature termination of the download. 

To allow programming of the CONFIG register in all mask set versions of the 
M68HC11A series and to permit expanded mode operation, the MCU resident 
program switches from bootstrap mode to special test mode by setting the MDA 
bit (bit 5) in the HPRIO register (address $103C).

If the user wishes to maintain operation in bootstrap mode (to verify internal 
ROM code, for instance), then the BSET HPRIO,X,#MDA instruction on the 
eighth line of program code in EEPROGIX.ASC should be removed and the 
program reassembled. 

Programming Internal EEPROM

The techniques for programming internal and external EEPROM are quite 
different. 

With internal EEPROM, it is first generally necessary to erase the required byte 
(erased state is $FF) and follow with a write of data to the same address. 

The internal programming sequence involves accessing the PPROG register 
(address $103B) to latch the EEPROM address and data buses for the duration 
that the programming voltage is applied. Also, the programming time delay 
must be implemented or initiated by software. In this application, a software 
timing loop is used, but one of the internal M68HC11 timer functions could 
equally well be used to provide the time delay.

Figure 2 and Figure 3 show the flowcharts of the internal EEPROM erase and 
write sequences. 
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 5



AN1010/D
Figure 2. Internal EEPROM Erase Sequence

ENABLE ERASE MODE

ENABLE ADDRESS

AND DATA LATCHES

WRITE TO REQUIRED

MEMORY ADDRESS

(DATA IRRELEVANT)

SELECT BYTE
ERASE MODE

APPLY PROGRAMMING
VOLTAGE

WAIT 10 ms

REMOVE PROGRAMMING
VOLTAGE

DISABLE ERASE MODE

DISABLE ADDRESS 

AND DATA LATCHES

END

BEGIN

ERASE CONFIG
REGISTER

?

SELECT BULK
ERASE MODE

Y

N

6 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Programming Internal EEPROM
Figure 3. Internal EEPROM Write Sequence

ENABLE BYTE WRITE 

ENABLE ADDRESS
AND DATA LATCHES

WRITE REQUIRED DATA
TO REQUIRED ADDRESS

APPLY PROGRAMMING
VOLTAGE

WAIT 10 ms

REMOVE PROGRAMMING
VOLTAGE

DISABLE WRITE  MODE

DISABLE ADDRESS 

AND DATA LATCHES

END

BEGIN

MODE
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 7



AN1010/D
Programming External EEPROM

Figure 4 shows the hardware needed to interface the M68HC11 to an external 
2864 EEPROM, which provides a total of 8 Kbytes of reprogrammable 
memory. The addition of the MC68HC24 gives a minimal component count 
implementation of a circuit which accurately emulates the M68HC11A8 single-
chip MCU. The added benefit of using the 2864 is that the software designer’s 
program and/or data can be modified without removing the emulator from the 
target system. This can be particularly useful in applications where the 
emulator may be enclosed in a confined space or in an environmental chamber. 

To program the 2864 from the PC, the external operating mode option (X) must 
be selected from the EELOAD menu. 

Programming the 2864 involves fewer operations than are needed for internal 
EEPROM, as the former has no equivalent of the PPROG control register. In 
addition, the erase sequence and delay time are handled automatically by the 
2864 on-chip logic. 

A data polling technique is used to determine the end of the programming delay 
time. This involves examining the most significant bit of the data programmed 
by reading from the address just written to until the data becomes true. (During 
the programming delay time, the MS bit will read as the complement of the 
expected data.)

This means that the same software algorithm can be used to download code or 
data to external RAM as well as external EEPROM.

Emulator Address Decoding

The emulator circuit in Figure 4 shows the M68HC11’s address line A13 
connected to pin 26 of the 2864. Although this pin is actually unused by the 
2864, its inclusion permits the replacement of the 2864 with a 27128 16-Kbyte 
EEPROM memory. 

An important outcome of this is that, when a 2864 is used, the memory range 
$C000–$DFFF is mapped over the normally used 8-Kbyte range of 
$E000–$FFFF. In practice, this should never pose a problem. When a 27128 
memory is used, its full 16-Kbyte address range of $C000–$FFFF is available 
to the MCU.

Included in the S record programmer, irrespective of the selected programming 
mode, is a feature to force program execution at the address specified in the 
S9 S record address field, provided the address is not $0000.
8 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



M
O

T
O

AN
1010/D

Em
ulator Address D

ecoding

NC  NC NC  NC

1 12 23 34

FN

VDD

8 
9  
10 
11  
13 
14 
15  
16

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

}

27 
26  
25 
24  
22 
21 
20  
19

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

}

7  
18

STRA
STRB

P
O

R
T

 C
PO

R
T 

B

D0
D1
D2
D3
D4
D5
D6
D7

14

R2 10 k

R8 10 k
R7 10 k
R6 10 k
R5 10 k
R4 10 k
R3 10 k

R1 10 k

11
12
13
15
16
17
18
 19

VDD

IC5
2864A

VSS

VSS

29

1

VDD

C2
0.1 F

VDD

C3
0.1 F

VSS

VSS

VDD

28
R
O

L
A

M
68

H
C

11 E
E

P
R

O
M

 P
rog

ra
m

m
ing

 from
 a P

e
rson

al C
om

pute
r

9

Figure 4. MC68HC11A8 Emulator Using 2864 EEPROM

IRQ
RST

E
STRA
STRB

XIRQMODEA MODEB
19
17
5
4
6

PB4
PB5
PB6
PB7
PB3
PB2
PB1
PB0

PB4
PB5
PB6
PB7
PB3
PB2
PB1
PB0EXTAL XTAL E0  E1  E2 E3  E4  E5  E6  E7

43  45  47  49  44   46  48  50

PORT E

34 

PO
R

T 
A

33  
32 
31  
30 
29 
28  
27

PO
R

T 
D

20 
21  
22 
23 
24  
25

MODE VDDIRQ
RST
E
AS
R/W
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A12
A13
A14
A15
CS

VSS1743

IC1
MC68HC11A1FN

IC2
MC68HC24

3 2 18

9   A0/D0
10 A1/D1
11 A2/D2
12 A3/D3
13 A4/D4
14 A5/D5
15 A6/D6
16 A7/D7

38 A12
37 A13
36 A14
35 A15
39 A11
40 A10
41 A9
42 A8

VDD
VRL

VRH
VSS

26
51

VSS

52
1

C1 0.1 F

PD0
PD1
PD2
PD3
PD4
PD5

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

}

}

}

6
5
4
3

44

28
39
41
42
40
38
37
36
35
33
32
31
30

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13

D0
D1
D2
D3
D4
D5
D6
D7

00
01
02
03
04
05
06
07

CE
CE
WE

VSS

VSS

1C4
HC373

A0
A1
A2
A3
A4
A5
A6
A7

2
5
6
9
12
15
16
19

3
4
7
8

13
14
17
18

11
1

VDD

VSS

12
13

5
4

2VDD 14

7

1
2

20
22
27

6

11

9
10 8

IC3-B

10
9
8
7
6
5
4
3

25
24
21
23

2
26

20

IOTEST

3
1C3-A
HC00

IC3-D
HC00

HC00

7 8

IC3-C
HC00

OE
LE

10



AN1010/D
Figure 5 shows the general format of S record files. 

Figure 5. S-Record Format

RECORD TYPE: S0, S1, OR S9

S0 — HEADER RECORD: LOAD ADDRESS FIELD = $0000. CODE/DATA FIELD CONTAINS OPTIONAL
          DESCRIPTIVE INFORMATION.

S1 — CODE/DATA RECORD. CODE/DATA FIELD CONTAINS EXECUTABLE CODE OR DATA.

S9 — TERMINATION RECORD: LOAD ADDRESS FIELD CONTAINS OPTIONAL EXECUTION ADDRESS. 
         THERE IS NO CODE/DATA FIELD, JUST A CHECKSUM. 

NUMBER OF HEX CHARACTERS FOLLOWING. (Len) = $14

MEMORY LOAD ADDRESS FIELD. (Ldhi, Ldlo) = $C01E

S1
14

C01E0B29BDC02A 18386A3B6F3B391 80926FC39 DE}

APART FROM THE LETTER S AT THE START, ALL CHARACTERS IN THE RECORDS ARE HEXADECIMAL DIGITS 
REPRESENTED IN ASCII FORMAT.

CHECKSUM ALGORITHM: LSB OF

Note: The S record programmer in this application ignores the checksum byte.  

[ Len + Ldhi + Ldlo = ∑ bytek  
k = 0

n ] 

CHECKSUM BYTE
CODE/DATA FIELD
0 TO N BYTES OF CODE/DATA

10  ’ ******* EELOAD.BAS 20/3/87   Version 1.0 *******/

20  ’ Written by R.Soja, Motorola East Kilbride’

30  ’ Motorola Copyright 1987’

40  ’ This program downloads S record file to the M68HC11 through special’

50  ’ bootstrap program, designed to program either internal or external’

60  ’ EEPROM in the 68HC11’s memory map’

70  ’ The loader can also verify memory against an S record file.’

80  ’ Downloaded data is optionally echoed on terminal.’

90  ’ ===================================

100  CR$=CHR$(13)

110  MIN$=CHR$(32)

120  MAX$=CHR$(127)

130  ERM$="Can’t find "

140  LOADER$="EEPROGIX.BOO"

150  CLRLN$=SPACE$(80)

160  VER$="1.0": ’Version number of EELOAD’

170  ERRTOT%=0: ’Number of errors found by verify operation’

180  CLS
10 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Emulator Address Decoding
190  PRINT " <<<<<<<<              EELOAD Version ";VER$;"            >>>>>>>>"

200  PRINT " <<<<<<<< 68HC11 Internal/External EEPROM loader/verifier >>>>>>>>"

210  PRINT

220  PRINT "==>  Before continuing, ensure 68HC11 is in bootstrap mode,"

230  PRINT "        RESET is off, and COM1 or COM2 is connected to the SCI"

240  PRINT

250  ’ First make sure loader program is available’

260  ON ERROR GOTO  880

270  OPEN LOADER$ FOR INPUT AS #2

280  CLOSE #2

290  ON ERROR GOTO 0

300  CHAN$="0"

310  ROW=CSRLIN: ’Store current line number’

320  WHILE CHAN$<>"1" AND CHAN$<>"2"

330  GOSUB 1070 

340  LINE INPUT "Enter COM channel number (1/2):",CHAN$

350  WEND

360  CM$="COM"+CHAN$

370  ’ Now set baud rate to 1200 and load EEPROG through boot loader’

380  ’ by executing DOS MODE and COPY commands’

390  SHELL "MODE "+CM$+":1200,N,8,1"

400  SHELL "COPY "+LOADER$+" "+CM$

401  GOSUB 1070

402  FOR 1%=1 to 4:PRINT CLRLN$;:NEXT I%PRINT: ’Clear DOS commands from screen’

410  ECHO$=" "

420  WHILE ECHO$<>"Y" AND ECHO$<>"N"

430    GOSUB 1070

440    LINE INPUT "Do you want echo to screen (Y/N):",ECHO$

450 WEND

470 ROW=CSRLIN: ’Store current line number’

480 EEOPT$=" ": ’Initialise option char’

490 WHILE EEOPT$<>"X" AND EEOPT$<>"I" and EEOPT$<>"V"

500   GOSUB  1070

510   LINE INPUT "Select Internal, eXternal or Verify EEPROM option (I/X/V):",EEOPT$

520 WEND

530 OPT$="Verify"

540 IF EEOPT$="I" THEN OPT$="Internal"  

550 IF EEOPT$="X" THEN OPT$="External"

560 ROW=CSRLIN: ’Store current line position in case of file error’

570 RXERR=0:    ’Initialise number of RX errors allowed’

580 ON ERROR GOTO 910

590 GOSUB 1070
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 11



AN1010/D
600 IF OPT$="Verify" THEN INPUT "Enter filename to verify: ",F$ ELSE INPUT "Enter filename to           

download:",F$

610 CLOSE

620 OPEN F$ FOR INPUT as #2

630 ON ERROR GOTO 0

640 ’COM1 or 2 connected to SCI on HC11’

650 OPEN CM$+":9600,N,8,1" AS #1

660 ’Establish contact with HC11 by sending CR char & waiting for echo’

670 ON ERROR GOTO 860: ’Clear potential RX error’

680 PRINT #1,CR$;

690 GOSUB 990: ’Read char into B$’ 

700 ’Transmit Internal,External or Verify EEPROM option char to 68HC11’

710 PRINT #1,EEOPT$;:GOSUB 990:              ’No echo to screen’

720 ON ERROR GOTO 930

730 PRINT "Starting download of <";F$;"> to: ";OPT$;" Eeprom"

732 IF ECHO$="Y" THEN E%=1 ELSE E%=0

734 IF EOPT$="V" THEN V%=1 ELSE V%=0

740 WHILE NOT EOF(2)

750  INPUT #2,S$

751  L%=LEN(S$)

752  FOR I%=1 to L%

760      PRINT #1,MID$(S$,I%,1);:GOSUB 990:IF E% THEN PRINT B$;

770      IF V% THEN GOSUB 1030:IF C$<>"" THEN PRINT ":";HEX$(ASC(C$));

785 NEXT I%

787 IF E% THEN PRINT 

790 WEND

795 PRINT

800 PRINT "Download Complete"

810 IF V% THEN PRINT ERRTOT%;" error(s) found"

820 CLOSE #2

830 SYSTEM

840 END

850 ’ ------------------’

860 IF RXERR>5 THEN 940 ELSE RXERR=RXERR+1:RESUME 610

870 ’ ------------------’

880 PRINT:PRINT ERM$;LOADER$:PRINT "Program aborted"

890 GOTO 830

900 ’-------------------’

910 PRINT ERM$;F$;SPACE$(40)

920 RESUME 580

930  ’-------------------’

940 PRINT:PRINT "Communication breakdown: Download aborted"

950 GOTO 820
12 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Emulator Address Decoding
960  ’-------------------’

970 ’--SUB waits for received character, with time limit’

980 ’--    returns with char in B$, or aborts if time limit exceeded’

990 T0%=0:WHILE LOC(1)=0:IF T0%>100 THEN 940 ELSE T0%=T0%+1:WEND

1000 B$=INPUT$(1,#1):RETURN

1010  ’-------------------’

1020  ’--SUB waits for received character, with time limit’

1025  ’--    returns with char in C$, or null in C$ if time limit exceeded’

1030 T0%=0:C$="":WHILE LOC(1)=0 AND T0%<1:T0%=T0%+1:WEND

1040 IF LOC(1)>0 THEN C$=INPUT$(1,#1):ERRTOT%=ERRTOT%+1

1050 RETURN 

1060  ’-------------------’

1070  ’--SUB Clear line ’

1080 LOCATE ROW,1,1:PRINT CLRLN$

1090 LOCATE ROW,1,1:RETURN

1100  ’-------------------’

 1 A ************************************************************************************************************************

 2 A *      EEPROGIX.ASC 19/3/87     Revision 1.0 

 3 A * *

 4 A * Written by R.Soja, Motorola, East Kilbride  *

 5 A * Motorola Copyright 1987. *

 6 A * *

 7 A * This program loads S records from the host to *

 8 A * either a 2864 external EEPROM on the 68HC11 external bus, *

 9 A * or to the 68HC11’s internal EEPROM. It can also be used *

10 A * verify memory contents against an S record file or just       *

11 A * load RAM located on the 68HC11’s external bus. *

12 A * Each byte loaded is echoed back to the host. *

13 A * When programming a 2864, data polling is used to detect*

14 A * completion of the programming cycle. *

15 A * As the host software always waits for the echo before *

16 A * downloading the next byte, host transmission is suspended *

17 A * during the data polling period. *

18 A * Because the serial communication rate (~1mS/byte) is *

19 A * slower than the 2864 internal timer timeout rate (~300µs) *
20 A * page write mode cannot be used. This means that data *

21 A * polling is active on each byte written to the EEPROM, *

22 A * after an initial delay of approx 500µs. *

23 A * *

24 A * When the internal EEPROM is programmed, instead of data *

25 A * polling, each byte is verified after programming.  *

26 A * In this case, the 500µs delay is not required and is *

27 A * bypassed. *
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 13



AN1010/D
28 A * If a failure occurs, the program effectively hangs up. It *

29 A * is the responsibility of the host downloader program to *

30 A * detect this condition and take remedial action. *

31 A * The BASIC program EELOAD just displays a ’Communication  *

32 A * breakdown’ message, and terminates the program. *

33 A * *

34 A * When used in the verify mode, apart from the normal echo *

35 A * back of each character, all differences between memory *

36 A * and S record data are also sent back to the host. *

37 A * The host software must be capable of detecting this, and *

38 A * perform the action required. *

39 A * The BASIC loader program EELOAD simply displays the *

40 A * returned erroneous byte adjacent to the expected byte, *

41 A * separated by a colon. *

42 A * *

43 A * Before receiving the S records, a code byte is received *

44 A * from the host. i.e.: *

45 A ASCII ’X’ for external EEPROM   *

46 A ASCII ’I’ for internal EEPROM   *

47 A ASCII ’V’ for verify EEPROM     *

48 A * *

49 A * This program is designed to be used with the BASIC EELOAD              *

50 A * program. *

51 A * Data transfer is through the SCI, configured for 8 data      *

52 A * bits, 9600 baud. *

53 A * *

54 A PAGE

55 A * Constants

56 A      0080 TDRE EQU $80

57 A      0020 RDRF EQU $20

58 A      0020 MDA EQU $20

59 A      0040 SMOD EQU $40

60 A      0D05 ms10 EQU 10000/3    10ms delay with 8MHz xtal. 

61 A      00A6 us500 EQU 500/3      500us delay. 

62 A      *

63 A * Registers

64 A      002B BAUD EQU $2B

65 A      002C    SCCR1 EQU $2C

66 A      002D SCCR2 EQU $2D

67 A      002E SCSR EQU $2E

68 A      002F SCDR EQU $2F

69 A      003B PPROG EQU $3B

70 A      003C HPRIO EQU $3C
14 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Emulator Address Decoding
71 A      103F CONFIG EQU $103F

72 A *

73 A * Variables. Note: They overwrite initialisation code!!!!

74 A      0000 ORG $0

75 P 0000 0001 EEOPT RMB 1

76 P 0001 0001 MASK RMB 1

77 P 0002 0001 TEMP RMB 1

78 P 0003 0001 LASTBYTE RMB 1

79 A *

80 A * Program

81 A      0000 ORG $0

82 A 0000 8E00FF LDS #$FF

83 A 0003 CE1000 LDX #$1000 Offset for control registers.

84 A 0006 6F2C CLR SCCR1,X Initialise SCI for 8 data bits, 9600 baud

85 A 0008 CC300C LDD #$300C

86 A 000B A72B STAA BAUD,X

87 A 000D E72D STAB SCCR2,X

88 A 000F 1C3C20 BSET HPRIO,X,#MDA Force Special Test mode first,

89 A *=>> MAINTAIN SPECIAL TEST MODE TO ALLOW B96D CONFIG REGISTER PROGRAMMING <<==

90 A * BCLR HPRIO,X,#SMOD and then expanded mode. (From Bootstrap mode)

91 A 0012 9F00 ReadOpt STS <EEOPT Default to internal EEPROM: EEOPT=0; 

MASK=$FF;

92 A 0014 8D7C BSR READC Then check control byte for external or

93 A 0016 C149 CMPB #’I’ internal EEPROM selection.

94 A 0018 2714 BEQ LOAD

95 A 001A C158 CMPB #’X’ If external EEPROM requested

96 A 001C 2609 BNE OptVerf

97 A 001E 7C0000 INC EEOPT then change option to 1

98 A 0021 8680 LDAA #$80

99 A 0023 9701 STAA <MASK and select mask for data polling mode.

100 A 0025 2007 BRA LOAD

101 A *

102 A 0027 C156 OptVerf CMPB #’V’ If not verify then

103 A 0029 26E7  BNE ReadOpt get next character else

104 A 002B 7A0000 DEC EEOPT make EEOPT flag negative.

105 A *

106 A      002E LOAD EQU *

107 A 002E 8D62 BSR READC

108 A 0030 C153 CMPB #’S Wait until S1 or S9 received,

109 A 0032 26FA BNE LOAD discarding checksum of previous S1 

record.

110 A 0034 8D5C BSR READC

111 A 0036 C131 CMPB #’1

112 A 0038 2719 BEQ LOAD1
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 15



AN1010/D
113 A 003A C139 CMPB #’9

114 A 003C 26F0 BNE LOAD

115 A 003E 8D5F BSR RDBYTE Complete reading S9 record before 

terminating

116 A 0040 17 TBA

117 A 0041 8002 SUBA #2 # of bytes to read including checksum.

118 A 0043 8D6B BSR GETAD Get execution address in Y

119 A 0045 8D58 LOAD9 BSR RDBYTE Now discard remaining bytes,

120 A 0047 4A DECA including checksum.

121 A 0048 26FB BNE LOAD9

122 A 004A 188C0000 CPY #0 If execution address =0 then

123 A 004E 27FE BEQ * hang up else

124 A 0050 186E00 JMP ,Y jump to it!

125 A *

126 A      0053 LOAD1 EQU *

127 A 0053 8D4A BSR RDBYTE Read byte count of S1 record into ACCB

128 A 0055 17 TBA and store in ACCA

129 A 0056 8003 SUBA #3 Remove load address & checksum bytes 

from count

130 A 0058 8D56 BSR GETADR Get load address into X register.

131 A 005A 1809 DEY Adjust it for first time thru’ LOAD2 

loop.

132 A 005C 2017 BRA LOAD1B

133 A *

134 A 005E D600 LOAD1A LDAB EEOPT Update CC register

135 A 0060 2B25 BMI VERIFY If not verifying EEPROM then

136 A 0062 2705 BEQ DATAPOLL If programming external EEPROM

137 A 0064 C6A6 LDAB #us500

138 A 0066 5A WAIT1 DECB then wait 500us max.

139 A 0067 26FD BNE WAIT1

140 A 0069 18E600  DATAPOLL LDAB ,Y Now either wait for completion of 

programming

141 A 006C D803 EORB <LASTBYTE programming cycle by testing MS bit of 

last data written to

142 A 006E D401 ANDB <MASK last data written to memory or just 

143 A 0070 26F7 BNE DATAPOLL verify internal programmed data.

144 A 0072 4A LOAD1E DECA When all bytes done,

145 A 0073 27B9 BEQ LOAD get next S record (discarding checksum) 

146 A 0075 8D28 LOAD1B BSR RDBYTE else read next data byte into ACCB.

147 A 0077 1808 INY Advance to next load address

148 A 0079 7D0000 TST EEOPT

149 A 007C 2B05 BMI LOAD1D If verifying, then don’t program byte!

150 A 007E 2743 BEQ PROG If internal EEPROM option selected then 

program

151 A 0080 18E700 STAB ,Y else just store byte at address.
16 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Emulator Address Decoding
152 A 0083 D703 LOAD1D STAB <LASTBYTE Save it for DATA POLLING operation.

153 A 0085 20D7 BRA LOAD1A

154 A *

155 A 0087 18E600 VERIFY LDAB ,Y If programmed byte

156 A 008A D103 CMP8 <LASTBYTE is correct then

157 A 008C 27E4 BEQ LOAD1E read next byte

158 A 008E 8D08 BSR WRITEC else send bad byte back to host

159 A 0090 20E0 BRA LOAD1E before reading next byte.

160 A *

161 A      0092 READC EQU * ACCA, X, Y regs unchanged by this 

routine.

162 A 0092 1F2E20FC BRCLR SCSR,X,#RDRF,*

163 A 0096 E62F LDAB SCDR,X Read next char

164 A 0098 1F2E80FC WRITEC BRCLR SCSR,X,#TDRE,*

165 A 009C E72F STAB SCDR,X and echo it back to host.

166 A 009E 39 RTS Return with char in ACCB.

167 A *

168 A 009F 8DF1 RDBYTE BSR READAC 1st read MS nibble

169 A 00A1 8D17 BSR HEXBIN Convert to binary

170 A 00A3 58 LSLB and move to upper nibble

171 A 00A4 58 LSLB

172 A 00A5 58 LSLB

173 A 00A6 58 LSLB

174 A 00A7 D702 STAB <TEMP

175 A 00A9 8DE7 BSR READC Get ASCII char in ACCB

176 A 00AB 8D0D BSR HEXBIN

177 A 00AD DA02 ORAB <TEMP

178 A 00AF 39 RTS Return with byte in ACCB

179 A *

180 A      00B0 GETADR EQU *

181 A 00B0 36 PSHA Save byte counter

182 A 00B1 8DEC BSR RDBYTE Read MS byte of address

183 A 00B3 17 TBA and put it in MS byte of ACCD

184 A 00B4 8DE9 BSR RDBYTE Now read LS byte of address into LS 
byte of ACCD

185 A 00B6 188F XGDY Put load address in Y

186 A 00B8 32 PULA Restore byte counter

187 A 00B9 39 RTS and return.

188 A *

189 A      00BA HEXBIN EQU *

190 A 00BA C139 CMP8 #’9 If ACCB>9 then assume its A-F

191 A 00BC 2302 BLS HEXNUM

192 A 00BE CB09 ADDB #9

193 A 00C0 C40F HEXNUM ANDB #$F
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 17



AN1010/D
194 A 00C2 39 RTS

195 A *

196 A      00C3 PROG EQU *

197 A 00C3 36 PSHA Save ACCA.

198 A 00C4 8616 LDAA #$16 Default to byte erase mode

199 A 00C6 188C103F CPY #CONFIG If byte’s address is CONFIG then use

200 A 00CA 2602 BNE PROGA

201 A 00CC 8606 LDAA #$06 bulk erase, to allow for A1 &A8 as well 

as A2.

202 A 00CE 8D10  PROGA BSR PROGRAM Now byte erase or entire memory + CONFIG.

203 A 00D0 8602 LDAA #2

204 A 00D2 8D0C BSR PROGRAM Now program byte.

205 A 00D4 188C103F CPY #CONFIG If byte was CONFIG register then

206 A 00D8 2603 BNE PROGX

207 A 00DA 18E600 LDAB ,Y Load ACCB with old value, to prevent 

hangup later. 

208 A 00DD 32 PROGX PULA Restore ACCA

209 A 00DE 20A3 BRA LOAD1D and return to main bit.

210 A  *

211 A      00E0 PROGRAM EQU *

212 A 00E0 A73B STAA PPROG,X Enable internal addr/data latches.

213 A 00E2 18E700 STAB ,Y Write to required address

214 A 00E5 6C3B INC PPROG,X Enable internal programming voltage

215 A 00E7 3C PSHX

216 A 00E8 CE0D05 LDX #mS10 and wait 10mS

217 A 00EB 09 WAIT2 DEX

218 A 00EC 26FD BNE WAIT2

219 A 00EE 38 PULX

220 A 00EF 6A3B DEC PPROG,X Disable internal programming voltage

221 A 00F1 6F3B CLR PPROG,X Release internal addr/data latches

222 A 00F3 39 RTS and return

223 A *

224 A END
18 M68HC11 EEPROM Programming from a Personal Computer MOTOROLA



AN1010/D
Emulator Address Decoding
SYMBOL TABLE: Total Entries= 41

BAUD 002B PROGA 00CE

CONFIG 103F PROGRA
M

00E0

DATAPOLL 0069 PROGX 00DD

EEOPT 0000 RDBYTE 009F

GETADR 00B0 RDRF 0020

HEXBIN 00BA READC 0092

HEXNUM 00C0 ReadOp
t

0012

HPRIO 003C SCCR1 002C

LASTBYTE 0003 SCCR2 002D

LOAD 002E SCDR 002F

LOAD1 0053 SCSR 002E

LOAD1A 005E SMOD 0040

LOAD1B 0075 TDRE 0080

LOAD1D 0083 TEMP 0002

LOAD1E 0072 VERIFY 0087

LOAD9 0045 WAIT1 0066

MASK 0001 WAIT2 00EB

MDA 0020 WRITEC 0098

OptVerf 0027 mS10 0D05

PPROG 003B uS500 00A6

PROG 003C
MOTOROLA M68HC11 EEPROM Programming from a Personal Computer 19



AN1010/D
HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; 
P.O. Box 5405, Denver, Colorado 80217 
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; 
Silicon Harbour Centre, 2 Dai King Street, 
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE: 

http://www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software 

implementers to use Motorola products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits or 

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products 

herein. Motorola makes no warranty, representation or guarantee regarding the 

suitability of its products for any particular purpose, nor does Motorola assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters which may be provided in Motorola data sheets 

and/or specifications can and do vary in different applications and actual 

performance may vary over time. All operating parameters, including “Typicals” 

must be validated for each customer application by customer’s technical experts. 

Motorola does not convey any license under its patent rights nor the rights of 

others. Motorola products are not designed, intended, or authorized for use as 

components in systems intended for surgical implant into the body, or other 

applications intended to support or sustain life, or for any other application in which 

the failure of the Motorola product could create a situation where personal injury or 

death may occur. Should Buyer purchase or use Motorola products for any such 

unintended or unauthorized application, Buyer shall indemnify and hold Motorola 

and its officers, employees, subsidiaries, affiliates, and distributors harmless 

against all claims, costs, damages, and expenses, and reasonable attorney fees 

arising out of, directly or indirectly, any claim of personal injury or death associated 

with such unintended or unauthorized use, even if such claim alleges that Motorola 

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark 
Office. digital dna is a trademark of Motorola, Inc. All other product or service 
names are the property of their respective owners. Motorola, Inc. is an Equal 
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 1988, 2000, 2002
AN1010/D


	Introduction
	Verify Option
	Internal or External Option
	Programming Internal EEPROM
	Programming External EEPROM
	Emulator Address Decoding

