miniLA Communication Protocol & Specification

Timeanalysis

Firmware version 1.7

Communication protocol

miniLA Interface

The miniLA communicates via parallel port in standard EPP mode. EPP mode is not described here. More information can be found for example on page <u>http://www.beyondlogic.org/epp/epp.htm</u>.

EPP Memory map

There are several registers for control of the miniLA mapped in the EPP address range. Mapping is shown in the table below:

Address	Write	Read
0	Control Register	Data Register
1	Trigger Ev. Counter Register	Status & Version Reg.
2	Trigger Length Counter Reg.	unused
3	Timebase Register	Status Register 2
4	Pre/postrigger Register	unused
5	Trigger Value Reg. (X7:X0)	unused
6	Trigger Value Reg. (X15:X8)	unused
7	Trigger Edge Reg. (E7:E0)	unused
8	Trigger Edge Reg. (E15:E8)	unused
9	Trigger Mask Reg. (M7:M0)	unused
10	Trigger Mask Reg. (M15:M8)	unused
11	unused	unused
12	unused	unused
13	Trigger Control Register	unused

*) when reading from unused entry, the outputs are in high impedance

Description of EPP registers

Control Register

7	6	5	4	3	2	1	0
RUN	CLR	PCLK	AINC	STOP	-	BS1	BS0

BS1:BS0 Byte selector, defines byte order when reading data from data register. After every read from data register the byte selector is automatically incremented.

Bytesel BS1:BS0	Data at data register
00	data (7:0)
01	data (15:8)
10	data (23:16)
11	data (31:24)

STOP Writing of logic 1 interrupts the sampling.

AINC Writing of logic 1 enables the auto increment of memory address. The memory address is incremented when bit is 1, data from data register are read and current bytesel has value "11".

PCLK Writing of logic 1 increments the memory address. Bit is cleared automatically. Active only when bit DONE active or timebase set to "11111".

CLR Writing of logic 1 resets the miniLA. It doesn't affect the EPP registers.

RUN Writing of logic 1 starts the sampling.

Trigger Events Counter Register

7	6	5	4	3	2	1	0
-	-	-	-	J3	J2	J1	JO

J3:J0 Bits J3:J0 define number of trigger hits before the postrigger data are stored. Value J3:J0="0000" is not valid.

Trigger Length Counter Register

7	6	5	4	3	2	1	0
-	-	-	-	K3	K2	K1	K0

K3:K0 Bits define the minimal number of clocks for which the input signal must be stable to be considered as trigger hit. Value K3:K0 = "0000" is not valid.

Timebase Register

7	6	5	4	3	2	1	0
-	-	FE	B4	B3	B2	B1	B0

B4:B0

Bits define the clock source and the timebase divider.

B4:B0	Output frequency for	Division ratio
	100MHz input	
00000	100 MHz	1
00001	50 MHz	2
00010	20 MHz	5
00011	10 MHz	10
00100	5 MHz	20
00101	2 MHz	50
00110	1 MHz	100
00111	500 kHz	200
01000	200 kHz	500
01001	100 kHz	1000
01010	50 kHz	2000
01011	20 kHz	5000
01100	10 kHz	10000
01101	5 kHz	20000
01110	2 kHz	50000
01111	1 kHz	100000
10000	500 Hz	200000

B4:B0	Output frequency for	Division ratio
	100MHz input	
10001	200 Hz	500000
10010	100 Hz	1000000
11110	external input	1
11111	memory read clk*	1
other	50 MHz	2

*) clock pulse is generated by writing a logic 1 to bit PCLK in control register or by memory auto increment. It consists of 1 pulse of input clock (main clock for miniLA)

FE Falling Edge - When written logic 1, the samples are taken on falling edge of the clock. Bit is ignored when B4:B0="11111".

Pre/Post trigger Register

7	6	5	4	3	2	1	0
-	-	-	PRD	P3	P1	P1	P0

P3:P0

Bits P3:P0 define length of the pretrigger/postrigger in 8K steps.

PRD

Pretrigger Disable - Writing of logic 1 disables the pretrigger.

PRD	P3:P0	Pretrigger length	Postrigger length	Trigger position
0	0000	8K	120K	8K
0	0001	16K	112K	16K
0	0010	24K	116K	24K
0	1110	120K	8K	120K
0	1111*	128K-1	1	1
1	0000	0	8K	1
1	0001	0	16K	1
1	0010	0	24K	1
1	1111	0	128K	1

*) in this case the first byte (position 1) of pretrigger is overwritten with trigger value. Settings PRD=0 and P3:P0="1111" is not therefore recommended.

• Trigger Value Registers

adr 5:

7	6	5	4	3	2	1	0
X7	X6	X5	X4	X3	X2	X1	X0
adr 6:	1	I	I	1	1	I	
7	6	5	4	3	2	1	0
X15	X14	X13	X12	X11	X10	X9	X8

X15:X0 Bits X15:X0 are compared with input data D15:D0. The trigger hit occurs if the result of comparison is true.

• Trigger Edge Registers

adr 7:

7	6	5	4	3	2	1	0
E7	E6	E5	E4	E3	E2	E1	E0
adr 8:							
7	6	5	4	3	2	1	0
E15	E14	E13	E12	E11	E10	E9	E8

E15:E0 Bits E15:E0 defines whether input bits D15:D0 are checked for edge (1) or for value (0). In cooperation with trigger value register it defines rising edge (bit in value reg 1) or falling edge (bit in value reg 0) sensitivity.

Note1: Only unmasked bits can be set to 1. In control software this can be accommodated by command like edge_reg=edge_reg&mask_reg.

Note2: When edge detection is used, trigger length register should be set to 1.

• Trigger Mask Registers

adr 9:

7	6	5	4	3	2	1	0
M7	M6	M5	M4	M3	M2	M1	MO
adr 10:							
7	6	5	4	3	2	1	0
M15	M14	M13	M12	M11	M10	M9	M8

M15:M0 Bits M15:M0 defines which bits in Trigger Value Registers (X15:X0) are tested or ignored. When at logic 1, the bit is tested, otherwise ignored.

Trigger Control Register

7	6	5	4	3	2	1	0
IIT	-	-	-	-	-	ETS	ETV

ETV Value for comparison with external trigger input.

ETS Writing of logic 1 enables external trigger input and disables internal trigger. Conditions defined by Trigger Events Counter and Trigger Length Counter applies then for external trigger.

IIT Writing of logic 1 inverts the result of internal trigger (trigger event occurs when result of comparation between data bus and Trigger Value Reg (masked) is FALSE).

Data Register

Depending on the current state of the miniLA, this register provides access either to input data or to data stored in memory during sampling. Selection of byte order is defined by bits BS1 and BS0 in control register.

RUN	Data available at Data Register
0	Input data (delayed by 1 clock)
1	Data from memory

Status and Version Register

7	6	5	4	3	2	1	0
DONE	HW2	HW1	HW0	FW3	FW2	FW1	FW0

FW3:FW0 Bits FW3:FW0 defines the CPLD firmware version.

HW2:HW0 Bits HW2:HW0 defines the hardware version.

DONE Status bit, logic 1 when sampling completed or interrupted.

Status Register 2

7	6	5	4	3	2	1	0
DONE	RUN	CLR	TRIG	SCT	-	-	-

SCT Sample Counter Top - Logic 1 indicates 128K of samples were taken or read. See section Recommended Command Sequence.

TRIG Logic 1 indicates successful detection of trigger condition during sampling.

CLR Copy of bit CLR in control register. Logic 1 indicates the miniLA is in reset state.

RUN Copy of bit RUN in control register. Logic 1 indicates the start of sampling was enabled. Bit is not cleared when sampling is completed or interrupted.

DONE Logic 1 indicates that the sampling was completed or interrupted and the data can be read from the memory.

Recommended command sequence

Initialization

- 1. Write a value 0x40 into Control Register. This puts the miniLA in reset state.
- 2. Write appropriate values in all remaining registers otherwise their content would be undefined (registers are not affected by miniLA reset, all registers are set to 0x00 at power-up)
- 3. At this stage the input data of the miniLA can be accessed by reading the data register.
- 4. Sampling starts by writing a value 0x80 into Control Register.

Data sampling

- 1. During the sampling period, the input data can be accessed in the same way as in the initialization phase.
- 2. Read Status Register (or Status Register 2) and wait until the bit DONE is at logic 1.
- 3. If it is necessary to interrupt the sampling, write value 0x08 into Control Register.

Data retrieving

- 1. Data can be retrieved from the memory only when the status bit DONE is at logic 1.
- 2. Read Status Register 2.
- 3. If bit SCT is at logic 1, 128K of data were stored and are ready for transfer. Write 0x10 (enable auto increment) and then read whole memory by successive reading of the Data Register.
- 4. If bit SCT is at logic 0, the sampling was interrupted or the sampling mode with disabled pretrigger was used. It is necessary to skip all blank area of memory until the memory wraps to the beginning of written data. Write 0x20 into control register so many times (*n* times) until bit SCT is at logic 1 and then again 3 times. Remaining 128K-(*n*+3) longwords can be then retrieved as described at point 3.

Specification

Number of channels	32
Sample rate	up to 100 MHz (timebase in 1-2-5 sequence)
Sample memory	128 Kb of memory for each channel
Input current	±10μΑ
Input capacitance	10pF
Min/max input voltage	0 to 5V
Input threshold log0 / log1	<0.8V / >2.4V
Setup/Hold time	6ns (±2ns) / 0ns for internal clock (clk_o) -1ns (±2ns) / 4.4ns for external clock (eclk)
Trigger channels	16 channels (0,1,X, rising/falling edge)
Number of trigger events	selectable 1-16
Min. length of trigger event	selectable 1-16
Pretrigger/posttrigger size	selectable in 8K steps
Communication interface	LPT (in EPP mode)