

Kurzfassung der Studie von Prof. Dr. - Ing. Wiesbeck

"Vereinfachtes Verfahren zur Bestimmung der Schutzabstände bei Amateurfunkanlagen im Frequenzbereich von 1,8 MHz bis 250 GHz"

Einführung

Herr Prof. Dr.-Ing. Werner Wiesbeck erstellte im Auftrag der Reg TP eine Studie zum Thema: "Entwicklung eines vereinfachten Verfahrens zur Bestimmung der Schutzabstände bei Amateurfunkanlagen im Frequenzbereich von 1,8 Megahertz (MHz) bis 250 Gigahertz (GHz)".

Prof. Dr.-Ing. Werner Wiesbeck

Ettlingerstr. 36, 75210 Ellmendingen, Tel.: (07236) 6217, Telefax: (07236) 980578

Studie

Entwicklung eines vereinfachten Verfahrens zur Bestimmung der Schutzabstände bei Amateurfunkanlagen im Frequenzbereich von 1,8 MHz bis 250 GHz

erstellt für die

Regulierungsbehörde für Telekommunikation und Post

Ellmendingen

nstitut für Höchstfrequenztechnik und Elektronik

Engesserstraße 5
Geb. 30.10

Telefon: +49 721 608 2522 Sekretariat: +49 721 608 2523

Mit dieser Studie wurden die beiden Vorgänger Studien von Prof. Wiesbeck, die die gleiche Themenstellung hatten und ebenfalls von der Reg TP bzw. dem ehemaligen BAPT beauftragt worden waren weiterentwickelt und an die Grenzwertanforderungen der Verordnung über das Nachweisverfahren zur Begrenzung von elektromagnetischen Feldern (BEMFV) angepasst.

Mit der jetzt vorliegenden Studie lassen sich für Amateurfunkanlagen (unter Berücksichtigung des jeweilig verwendeten Antennentyps) mit Hilfe einer wissenschaftlich belegten einfachen Methode die nach den Grenzwerten der BEMFV festzulegenden Sicherheitsabstände bestimmen.

Für Funkamateure ist das entwickelte vereinfachte Bewertungsverfahren eine verlässliche und einfach zu handhabende Hilfe zur Abgabe der nach BEMFV erforderlichen Anzeige zur Gewährleistung des Schutzes von Personen in den durch den Betrieb einer ortsfesten Amateurfunkanlage entstehenden elektromagnetischen Feldern.

Die hier vorliegende Kurzfassung der Studie enthält alle zur Bestimmung der Sicherheitsabstände erforderlichen Angaben.

Mit diesem vereinfachten Verfahren können durch die Anwendung von Korrekturfaktoren auch Situationen mitberücksichtigt werden, die typischerweise am Installationsort auftreten können.

1 Untersuchte Amateurfunkantennen

In der folgenden Tabelle sind die untersuchten Antennen mit den jeweils berechneten Frequenzbereichen dargestellt

Antennentypen	Frequenzbereiche in MHz										
	1,825	3,65	7,05	10,1	14,175	18,084	21,255	24,9	28,85	145	430
₩2-Dipole	х	х	х	Х	Х		Х	х	х	Х	Х
verkürzte Dipole		х	х								
inverted V		х	х								
asymetr. Dipol (FD4)		х	х		Х	х		х	Х		
Vertikalantenne (4-BTV)			х		Х		Х		Х		
Vertikalantenne (GPA50)		х	х		Х		Х		Х		
Quad				х	Х		Х	х	Х	Х	
Loop (D=1,7m)	х	х	х								
Loop (D=3,4m)	х	х	х								
Yagi (W3DZZ)					Х		Х		Х		
Yagi (FBDO505)					Х	Х	Х	х	Х		
Antennentypen	Frequenzbereiche in GHz										
	1	,3	2	2,45	10,45	24,05	47,2	76	144	2	:50
Reflektorantenne		X		Х	Х	Х	Х	Х	Х		Х

Tab. 2.1 Antennentypen und Frequenzbereiche

RegTP Kurzfassung Kap. 2 Grenzwerte 5

2 Grenzwerte

Nachfolgend sind die nach der BEMFV geltenden Grenzwerte aufgeführt.

2.1. Personenschutzgrenzwerte Empfehlung des Rates und 26. BlmSchV

	Grenzwerte der magnetischen Feldstärke				
	Empfehlung des Rates		26. B lmSchV		
Freq.	Referenzwert	H _{eff}	Referenzwert	H _{eff}	
MHz	A/m	A/m	A/m	A/m	
1,825	0,73/f	0,400			
3,650	0,73/f	0,200			
7,050	0,73/f	0,104			
14,175			0,073	0,073	
21,255			0,073	0,073	
28,850			0,073	0,073	
145,00			0,073	0,073	
430,00			0,0037*f ^{0,5}	0,077	
1275,00			0,0037*f ^{0,5}	0,132	
2320,00			0,160	0,160	

Tab. 3.5 Anzuwendende Grenzwerte (H-Feld)

	Grenzwerte der elektrischen Feldstärke				
	Empfehlung des	Rates	26. B lmSchV		
Freq.	Referenzwert	E _{eff}	Referenzwert	E _{eff}	
MHz	V/m	V/m	V/m	V/m	
1,825	87/f ^{0,5}	64,40			
3,650	87/f ^{0,5}	45,54			
7,050	87/f ^{0,5}	32,77			
14,175			27,5	27,5	
21,255			27,5	27,5	
28,850			27,5	27,5	
145,00			27,5	27,5	
430,00			1,375*f ^{0,5}	62,21	
1275,00			1,375*f ^{0,5}	107,12	
2320,00			0,160	61	

Tab. 3.5 Anzuwendende Grenzwerte (E-Feld)

2.2. Zulässige Werte für aktive Körperhilfen

Im Folgenden sind die zulässigen Feldstärken nicht verkoppelter Strahlungsquellen in Abhängigkeit der Störschwellenspannung U_{ss} und der Frequenz f aus der Norm VDE 0848 Teil3-1 (Juni 1999), Teil 3-1/A1 (Februar 2001) zusammenfassend aufgelistet:

Frequenzbereich	zulässige Feldstärken
0Hz < f < 25kHz	$\frac{\hat{E}}{1 \text{V/m}} = \frac{U_{SS}}{1 \text{V}} \cdot \frac{225 \cdot 10^6 \text{Hz}}{f}, \frac{\hat{H}}{1 \text{A/m}} = \frac{U_{SS}}{1 \text{V}} \cdot \frac{2,8 \cdot 10^6 \text{Hz}}{f}$
25kHz ≤ <i>f</i> < 300kHz	$\sqrt{\frac{\hat{H}}{0.52 \text{ A/m}}}^2 + \left(\frac{\hat{E}}{520 \text{ V/m}} \cdot \frac{300 \text{kHz}}{f}\right)^2} = \frac{U_{SS}}{1 \text{V}} \cdot \frac{5330 \text{kHz}}{f}$
0,3MHz ≤ <i>f</i> < 5,33MHz	$\sqrt{\frac{\hat{H}}{0,52} \frac{\hat{F}}{m}} + \left(\frac{\hat{E}}{520} \frac{\hat{F}}{m}\right)^2} = \frac{U_{SS}}{IV} \cdot \frac{5,33MHz}{f}$
	Für $Z = E/H < Z_0 = 377\Omega$ kann vereinfacht wie folgt gerechnet werden:
	$\left(\frac{\hat{H}}{0,48 \text{ A/m}}\right) = \frac{U_{SS}}{1 \text{ V}} \cdot \frac{5,33 \text{ MHz}}{f}$
5,33MHz ≤ <i>f</i> < 16,9MHz	$\sqrt{\left(\frac{\hat{H}}{0.52 \text{ A/m}}\right)^2 + \left(\frac{\hat{E}}{520 \text{ V/m}}\right)^2} = \frac{U_{SS}}{1\text{V}} \cdot \frac{5.33\text{MHz}}{f}$
	$\left \frac{\hat{H}}{0.52 \text{ M/m}} \le \frac{U_{SS}}{1 \text{ V}} \cdot \left(\frac{5,33 \text{MHz}}{f} \right)^2, \frac{\hat{E}}{520 \text{ V/m}} \le \frac{U_{SS}}{1 \text{ V}} \cdot \left(\frac{5,33 \text{MHz}}{f} \right)^{2,85} \right $
16,9MHz ≤ <i>f</i> < 200MHz	$\frac{\hat{H}}{1 \text{A/m}} = 0.052 \cdot \frac{U_{SS}}{1 \text{V}}, \ \frac{\hat{E}}{1 \text{V/m}} = 19.6 \cdot \frac{U_{SS}}{1 \text{V}}$
200MHz ≤ <i>f</i> < 400MHz	$\frac{\hat{H}}{1 \frac{A}{m}} = 0,052 \cdot \left(\frac{f}{200 \text{MHz}}\right)^{2,94} \cdot \frac{U_{SS}}{1 \text{V}}, \frac{\hat{E}}{1 \frac{V}{m}} = 19,6 \cdot \left(\frac{f}{200 \text{MHz}}\right)^{2,94} \cdot \frac{U_{SS}}{1 \text{V}}$
400MHz ≤ <i>f</i> < 1,5GHz	$\frac{\hat{H}}{1 \frac{A}{m}} = 0.4 \cdot \frac{U_{SS}}{1 \text{V}}, \frac{\hat{E}}{1 \frac{V}{m}} = 150 \cdot \frac{U_{SS}}{1 \text{V}}$
1,5GHz ≤ <i>f</i> < 2,5GHz	$\frac{\hat{H}}{1\text{A/m}} = 0.4 \cdot \left(\frac{f}{1,5\text{GHz}}\right)^3 \cdot \frac{U_{SS}}{1\text{V}}, \frac{\hat{E}}{1\text{V/m}} = 150 \cdot \left(\frac{f}{1,5\text{GHz}}\right)^3 \cdot \frac{U_{SS}}{1\text{V}}$
2,5GHz ≤ <i>f</i> < 300GHz	in Bearbeitung

Die Störfestigkeit von Herzschrittmachergeräten wird in der Norm durch Spitze-Spannungswerte als Störschwellen $U_{\it SS}$ beschrieben. Im Nachfolgenden werden die Störschwellen implantierter Herzschrittmacher für verschiedenen Frequenzbereiche und Modulationsarten wiedergegeben:

2.2.1 Störschwellen bei kontinuierlichen Schwingungen und Schwingungspaketen

Frequenzbereich	Störschwellen
$0Hz \le f < 16\frac{2}{3}Hz$	in Bearbeitung
16¾Hz	$U_{SS} = 1.8 \text{mV}$
$16\frac{2}{3}$ Hz < f < 50Hz	in Bearbeitung
50Hz	$U_{SS} = 1,1 \text{mV}$
50Hz < f < 30kHz	in Bearbeitung

2.2.2 Störschwellen bei Amplitudenmodulation

Frequenzbereich	Störschwellen
30kHz ≤ <i>f</i> < 630kHz	$\frac{U_{SS}}{1V} = 0.059$
630kHz ≤ <i>f</i> < 790kHz	$\frac{U_{ss}}{1V} = 0,059 \cdot \left(\frac{f}{630 \text{kHz}}\right)^{1,29}$
790kHz ≤ <i>f</i> < 1MHz	$\frac{U_{SS}}{1V} = 0.079$
1MHz ≤ <i>f</i> < 1,3MHz	$0.079 \cdot \left(\frac{f}{1\text{MHz}}\right)^{1.084}$
1,3MHz ≤ f < 1,7MHz	$\frac{U_{SS}}{1V} = 0.105$
1,7MHz ≤ <i>f</i> < 7MHz	$\frac{U_{SS}}{1\text{V}} = 0.105 \cdot \left(\frac{f}{1.7\text{MHz}}\right)^{1.51}$
7MHz ≤ <i>f</i> < 22MHz	$\frac{U_{SS}}{1V} = 0.89$
22MHz ≤ <i>f</i> < 79MHz	$\frac{U_{SS}}{1\text{V}} = 0.89 \cdot \left(\frac{22\text{MHz}}{f}\right)^{1.71}$
79MHz ≤ f ≤ $100MHz$	$\frac{U_{SS}}{1\text{V}} = 0.1$
$100MHz < f \le 2,5GHz$	In Bearbeitung

2.2.3 Störschwellen bei Fernsehmodulation

Frequenzbereich	Störschwellen
30kHz ≤ f < 79MHz	in Bearbeitung
79MHz ≤ <i>f</i> < 144MHz	$\frac{U_{SS}}{1\text{V}} = 0.130 \cdot \left(\frac{f}{79\text{MHz}}\right)^{0.6}$
144MHz ≤ <i>f</i> < 172MHz	$\frac{U_{SS}}{1V} = 0.186 \cdot \left(\frac{f}{144\text{MHz}}\right)^{4.4}$
172MHz ≤ <i>f</i> < 200MHz	$\frac{U_{SS}}{1V} = 0.186 \cdot \left(\frac{f}{144\text{MHz}}\right)^{4.4}$
200MHz ≤ f < 240MHz	$\frac{U_{SS}}{1V} = 0,789 \cdot \left(\frac{200 \text{MHz}}{f}\right)^{4,7}$
240MHz ≤ f < 500MHz	$\frac{U_{SS}}{1V} = 0.335$
500MHz ≤ <i>f</i> < 600MHz	$\frac{U_{SS}}{1V} = 0.335 \cdot \left(\frac{500\text{MHz}}{f}\right)^{3.8}$
600MHz ≤ f ≤ 1,1GHz	$\frac{U_{SS}}{1V} = 0.168 \cdot \left(\frac{f}{600\text{MHz}}\right)^{0.6}$
1,1GHz < f ≤ 2,5GHz	in Bearbeitung

2.2.4 Störschwellen für ein Einzelsignal mit GSM-Modulation

Frequenzbereich	Störschwellen
$30kHz \le f < 850MHz$	in Bearbeitung
850MHz ≤ <i>f</i> < 1,2GHz	$\frac{U_{SS}}{1V} = 0.358$
$1,2GHz \le f < 1,8GHz$	$\frac{U_{SS}}{1V} = 0.358 \cdot \left(\frac{f}{1.2\text{GHz}}\right)^{5.7}$
1,8GHz ≤ <i>f</i> < 2GHz	$\frac{U_{SS}}{1V} = 3,61$
2GHz ≤ f ≤ $2,5GHz$	$\frac{U_{SS}}{1V} = 3,61 \cdot \left(\frac{2GHz}{f}\right)^3$

2.2.5 DTX-Modus

Frequenzbereich	Störschwellen
$30kHz \le f < 850MHz$	in Bearbeitung
850MHz ≤ f ≤ 1,0GHz	$\frac{U_{SS}}{1V} = 0,299$
1,0GHz < f ≤ 2,5GHz	in Bearbeitung

2.2.6 Störschwellen für unmodulierte Träger und bei Frequenzmodulation

Frequenzbereich	Störschwellen
30kHz ≤ <i>f</i> < 29MHz	in Bearbeitung
29MHz ≤ <i>f</i> < 88MHz	$\frac{U_{SS}}{1V} = 7.1 \cdot \left(\frac{29MHz}{f}\right)^{0.052}$
88MHz ≤ <i>f</i> < 108MHz	$\frac{U_{SS}}{1V} = 6,7$
108MHz ≤ <i>f</i> ≤ 146MHz	$\frac{U_{SS}}{1V} = 6.7 \cdot \left(\frac{108\text{MHz}}{f}\right)^{0.97}$
146MHz < f ≤ 2,5GHz	in Bearbeitung

2.2.7 Störschwellen bei CW-Morsezeichen

Frequenzbereich	Störschwellen
30 kHz $\leq f < 1,85$ MHz	in Bearbeitung
1,85MHz ≤ <i>f</i> < 14MHz	$\frac{U_{SS}}{1V} = 0.3 \cdot \left(\frac{f}{1,85 \text{MHz}}\right)^{0.94}$
14MHz ≤ f ≤ 29MHz	$\frac{U_{SS}}{1V} = 2 \cdot \left(\frac{14MHz}{f}\right)^{0.95}$
29MHz < f ≤ 2,5GHz	in Bearbeitung

2.2.8 Störschwellen für SSB-Amateurfunk

Frequenzbereich	Störschwellen
1,85MHz ≤ <i>f</i> < 3,65MHz	$\frac{U_{SS}}{1V} = 0.4 \cdot \left(\frac{f}{1.85 \text{MHz}}\right)^{1.19}$
3,65MHz ≤ <i>f</i> < 14MHz	$\frac{U_{SS}}{1V} = 0.9 \cdot \left(\frac{f}{3,65MHz}\right)^{0.66}$
14MHz ≤ <i>f</i> < 18MHz	$\frac{U_{SS}}{1V} = 2.2$
18MHz ≤ <i>f</i> < 25MHz	$\frac{U_{SS}}{1V} = 2.2 \cdot \left(\frac{18MHz}{f}\right)^{1.6}$
25MHz ≤ <i>f</i> ≤ 29MHz	$\frac{U_{SS}}{1V} = 1,3$
29MHz < f < 144MHz	in Bearbeitung
144MHz ≤ f ≤ 145MHz	$\frac{U_{SS}}{1V} = 0.8$
145MHz < f ≤ 2,5GHz	in Bearbeitung

3 Vereinfachtes Berechnungsverfahren für Nahfeld-Schutzabstände

3.1. Idee und grundsätzliche Überlegungen

Die genaue Berechnung der Schutzabstände ist sehr aufwendig. Sie erfordert die dreidimensionale, feldtheoretische Berechnung der räumlichen Feldstärken für die elektrischen (\underline{E}_x , \underline{E}_y \underline{E}_z) und magnetischen (\underline{H}_x , \underline{H}_y \underline{H}_z) Felder. In diesen räumlichen Feldstärkegebieten ist für die jeweiligen Leistungen der Grenzwert bei der größten Entfernung zu suchen. Dies ist für die verschiedenen Grenzwerte, wie sie durch die BEMFV gegeben sind, durchzuführen. Für die Nutzer, die Funkamateure, sind diese Verfahren schwer zugänglich. Sie sind auf die resultierenden Grenzwerte und Grafiken angewiesen. Auch diese sind noch kompliziert. Vor diesem Hintergrund entstand die Aufgabe, ein sehr einfaches, aber dennoch verlässliches Verfahren zu entwickeln und den Funkamateuren an die Hand zu geben.

Die grundlegende Idee lässt sich wie folgt skizzieren: Es wird ein einfaches Verfahren zur Ermittlung des Schutzabstandes entwickelt, mit Größen die dem Funkamateur zugänglich sind. Es soll folgendes beinhalten:

- > Typ der Antenne
- > Frequenz f
- die der Antenne zugeführte Leistung Pa
- Richtwirkung (Directivity) der Antenne D
- Wirkungsgrad der h Antenne
- ➤ Korrekturfaktor für die Bodenleitfähigkeit k_{Boden}
- ➤ Korrekturfaktor für die Höhenabhängigkeit k_{Höhe}
- Kurven Fittingparameter k_{fitt}
- Sicherheitsfaktor F_{Si}

Die Beiträge sind im Folgenden begründet.

3.1.1 Typ der Antenne

Der Typ der Antenne bestimmt wie weit das Nahfeld mit seinen starken Feldstärkeüberhöhungen reicht. Weiter folgt aus der Art der Antenne ob das Nahfeld primär elektrisch oder magnetisch ist $(Z_{FO}?E/H!!)$. Auch der Bereich der größten Feldstärken wird damit festgelegt.

3.1.2 Abhängigkeit von der Antennen Leistung P_a

Ein wesentliches Problem für eine vereinfachte Lösung ist, dass die Feldstärke im Nahfeld komplex vom Abstand zur Antenne abhängt (E~1/r+1/r²+1/r³). Der Schutzabstand wandert wie in einem Gebirge im Feldraum. Dadurch ändert sich die Neigung der Schutzabstandskurven mit der Leistung örtlich manchmal stark. Dieser Effekt ist bei Antennen mit höherem Gewinn (z.B. Yagi Antennen) stärker als bei einfachen Antennen (Dipole). Bei der hier vorgeschlagenen vereinfachten Lösung wird dies durch Parameterfitting berücksichtigt.

3.1.3 Richtwirkung (Directivity) der Antenne D

Die Richtwirkung einer Antenne bestimmt die Bündelung der abgestrahlten Leistung im Fernfeld. Bei kleinen Leistungen werden die Schutzabstände im Nahfeld, bei großen Leistungen im Fernfeld erreicht. Dies wird durch die Nutzung des Gewinns beim vereinfachten Verfahren berücksichtigt.

3.1.4 Wirkungsgrad h der Antenne

Der Wirkungsgrad h ist ein Maß für die Effizienz der Antenne. Zwischen Gewinn G und Richtwirkung D der Antenne gilt folgende Beziehung:

$$G = \mathbf{h} \cdot D \tag{11.1}$$

3.1.5 Korrekturfaktoren für die Bodenleitfähigkeit $k_{\rm Boden}$ und die Höhenabhängigkeit $k_{\rm H\"{o}he}$

Die Bodenleitfähigkeit bestimmt die Eindringung der Felder und die Reflexionen. Bei einem ideal leitenden Boden wird die einfallende Welle vollständig reflektiert. Damit kann sich die Feldstärke im ungünstigsten Fall verdoppeln. Die Korrekturfaktoren k_{Boden} sind frequenzabhängig.

Im Nahfeld wird die Funktion einer Antenne wesentlich durch Gegenstände in ihrer Umgebung beeinflusst. Der Boden zählt hier dazu. Dies wird in dem Korrekturfaktor für die Höhenabhängigkeit $k_{\text{H\"{o}he}}$ berücksichtigt.

Im Folgenden werden diese beiden Faktoren k_{Boden} und $k_{\text{H\"o}he}$ zu $k_{\text{Boden, H\"o}he}$ zusammengefasst und tabellarisch dargestellt.

3.1.6 Kurven Fittingparameter k_{fitt}

Aus den numerischen Feldberechnungen ergeben sich genaue Schutzabstände. Auch können damit aus E- und H-Feld verkoppelte Schutzabstände berechnet werden. Durch Fitten an diese Kurven mit dem Fittingparameter k_{fitt} werden diese Ergebnisse genutzt. Der Fittingparameter $k_{fitt}(f, P_a)$ ist dabei sowohl von der Frequenz f als auch von der Leistung P_a abhängig.

3.1.7 Sicherheitsfaktor F_{Si}

In der Praxis beeinflussen viele Dinge die Feldkonfigurationen. Dies können z. B. metallische Gegenstände wie Masten, Dachrinnen, Geländer usw. sein oder aber auch dielektrische Teile wie Gebäude, Bäume usw. oder Reflexionen an Gebäuden usw. Um hierdurch auftretende Feldstärkeüberhöhungen zu berücksichtigen, kann mit dem Sicherheitsfaktor F_{Si} multipliziert werden.

3.2. Formulierung der Schutzabstandsberechnung

Für ein sinnvolles vereinfachtes Verfahren ergibt sich damit folgende vorteilhafte Darstellung: Schutzabstand r_S :

$$r_{S} = \frac{\sqrt{\mathbf{h} \cdot D \bullet 60}}{E_{GW}} \cdot F_{Si} \cdot k_{fitt}(f, P_{a}) \cdot k_{\text{BodenH\"{o}he}}$$
(11.2)

Der Wirkungsgrad *h* der Antenne ist in dieser Gleichung berücksichtigt. Weiter bedeuten:

➤ E_{GW}: Grenzwert (Spitzenwert) der elektrischen Feldstärke,

wobei hier grundsätzlich von den Personenschutzgrenzwerten bzw. den Grenzwerten der VDE 0848-3-1 für die allgemeine Bevölkerung ausgegangen wird.

Für die Fälle, in denen die magnetische Feldstärke relevant ist gilt eine sinngemäße Gleichung, ebenso für gekoppelte Grenzwerte (siehe VDE 0848 Teil 3-1).

3.3. Parameter für das vereinfachte Verfahren

3.3.1 Tabelle für die Korrekturfaktoren $k_{\text{Boden, H\"{o}he}}$

In der nachstehenden Tabelle sind die Korrekturfaktoren für die Bodenleitfähigkeit und die Höhenabhängigkeit verkoppelt dargestellt. Alle Werte für höhere Frequenzen als 28 MHz und größere Höhen als 9 m sind zu eins zu setzen. Mit diesen Korrekturfaktoren $k_{\text{Boden, H\"{o}he}}$ wird in der Regel der "worst case" beschrieben, d.h. es werden auch solche Fälle wie Aluminiumfolie in der Dachisolation berücksichtigt.

	Höhe/m						
Frequenz/MHz	3,00	4,00	5,00	6,00	7,00	8,00	9,00
1,825	4,00	3,67	3,33	3,00	2,67	2,33	2,00
3,650	3,71	3,32	2,96	2,61	2,27	1,94	1,60
7,050	3,43	3,01	2,62	2,25	1,90	1,55	1,21
10,100	3,14	2,71	2,30	1,91	1,53	1,18	1,00
14,180	2,86	2,42	1,99	1,58	1,19	1,00	1,00
18,084	2,70	2,26	1,83	1,41	1,09	1,00	1,00
21,260	2,57	2,13	1,69	1,27	1,00	1,00	1,00
24,900	2,29	1,84	1,40	1,00	1,00	1,00	1,00
28,850	2,00	1,55	1,11	1,00	1,00	1,00	1,00

Tab. 11.1 Korrekturfaktoren $k_{\mathsf{Boden.\; H\"ohe}}$ als Funktion der Antennenhöhe und der Frequenz

3.3.2 Sicherheitsfaktor F_{Si}

Um umgebungsbedingte Feldstärkeüberhöhungen die nicht in die Modellierung eingeflossen sind, zu berücksichtigen, wird empfohlen, mit dem Sicherheitsfaktor F_{Si} zu multiplizieren:

$$F_{Si} = \sqrt{2} = 1,4 \tag{11.3}$$

3.3.3 Isotrope Direktivität *D* der Antennen

Die nominale Direktivität *D* (bezogen auf den isotropen Kugelstrahler) ist für einige Antennen in der folgenden Tabelle aufgelistet. Falls der Gewinn einer Antenne nicht bekannt ist, ist auf diese Werte

zurückzugreifen. Es wird empfohlen mit dem Wirkungsgrad h=1 d.h. G=D zu rechnen um auf der sicheren Seite zu sein. Dadurch werden die Schutzabstände überschätzt, weil die Verluste der Antenne nicht berücksichtigt werden.

Antennentypen	Frequ	uenzb	ereich	e in M	Hz						
	1,825	3,65	7,05	10,1	14,175	18,084	21,255	24,9	28,85	145	430
λ/2-Dipole	2,15	2,15	2,15	2,15	2,15	-	2,15	2,15	2,15	2,15	2,15
verkürzte Dipole	-	2,15	2,15	-	-	-	-	-	-	-	-
inverted V	-	3,35	3,42	-	-	-	-	-	-	-	-
asymmetr. Dipol (FD4)	-	3,01	4,01		5,13	6,33	-	6,71	7,79	-	-
Vertikalantenne (4-BTV)	-		4,84	-	5,31	-	6,73	-	6,88	-	-
Vertikalant. (GPA50)	-	1,57	2,65	-	1,54	-	1,38	-	1,89	-	-
Quad	-	-	-	3,29	3,3	-	3,3	3,31	3,31	3,3	-
Loop (D=1,7m)	1,76	1,75	1,72	-	-	-	-	-	-	-	-
Loop (D=3,4m)	1,75	1,72	1,6	-	-	-	-	-	-	-	-
Yagi (W3DZZ)	-	-	-	-	6,36	-	6,67	_	9,16	-	-
Yagi (FBDO505)	-	-	-	-	6,34	5,64	7,29	4,61	7,79	-	-

Tab. 11.2 Richtwerte für die Antennendirektivität D logarithmisch in dBi

Antennentypen	Frequ	uenzbereiche in MHz									
	1,825	3,65	7,05	10,1	14,175	18,084	21,255	24,9	28,85	145	430
λ⁄2-Dipole	1,64	1,64	1,64	1,64	1,64	-	1,64	1,64	1,64	1,64	1,64
verkürzte Dipole	-	1,64	1,64	-	-	-	-	-	-	-	-
inverted V	-	2,16	2,2	-	-	-	-	-	-	-	-
asymmetr. Dipol (FD4)	-	2,0	2,52	-	3,26	4,3	-	4,69	6,01	-	-
Vertikalantenne (4-BTV)	-	-	3,05	-	3,4	-	4,71	-	4,88	-	-
Vertikalant. (GPA50)	-	1,44	1,84	-	1,43	-	1,37	-	1,55	-	-
Quad	-	-	-	2,13	2,14	-	2,14	2,14	2,14	2,14	-
Loop (D=1,7m)	1,5	1,5	1,49	-	-	-	-	-	-	-	-
Loop (D=3,4m)	1,5	1,49	1,45	-	-	-	-	-	-	-	-
Yagi (W3DZZ)	-	-	-	-	4,33	-	4,65	-	8,24	-	-

Yagi (FBDO505)	-	-	-	-	4,31	3,66	5,36	2,89	6,01	-	-	
----------------	---	---	---	---	------	------	------	------	------	---	---	--

Tab. 11.3 Richtwerte für die Antennendirektivität D linear

In die jeweiligen Gleichungen sind die linearen, nicht die logarithmischen, Werte von *D* einzusetzen. Die logarithmischen Werte dienen zum Vergleich.

3.3.4 Grenzwerte

Die Grenzwerte sind bei den folgenden gefitteten Schutzabständen bereits berücksichtigt und nicht mehr einzusetzen. Dies erfolgt insbesondere deshalb, weil für die VDE 0848-3-1 keine einfachen Werte für die Grenzwerte existieren.

3.3.5 Berechnung der Schutzabstände

Im Folgenden wird die Gleichung 11.3 tabellarisch vorausgewertet wobei nachstehende Größen beim Fitting berücksichtigt sind:

- Grenzwert E_{GW} H_{GW} bzw. HSM_{GWxv}
- Fittingparameter *k_{fitt}*(*f*, *P_a*) aus Kurvenfitting
- ➤ Korrekturfaktor k_{Boden, Höhe} = 1
- \triangleright Sicherheitsfaktor $F_{Si} = 1$
- > Antennen Direktivität D
- Antennenwirkungsgrad h

Damit vereinfachen sich die Gleichungen für die Schutzabstände r_S zu:

Schutzabstand PERS(BEMFV):

$$r_{S \text{ Pers(BEMFV)}} = k_{fitt \text{ xy}}(f, D, P_a, Grenzwert) \cdot k_{Boden, H\"{o}he} \cdot F_{Si}$$
 (11.4)

Für die Bestimmung des Schutzabstandes der Personenschutzgrenzwerte wird jeweils an den größten Wert für E_{GW} oder H_{GW} oder auch beide, wenn sie sich überschneiden, gefittet.

Schutzabstand HSM-AM:

$$r_{S HSM-AM} = k_{fitt HSM-AM} (f, D, P_a, Grenzwert) \cdot k_{Boden, H\"{o}he} \cdot F_{Si}$$
 (11.5)

Schutzabstand HSM-SSB:

$$r_{S HSM-SSB} = k_{fitt HSM-SSB}(f, D, P_a, Grenzwert) \cdot k_{Boden, Höhe} \cdot F_{Si}$$
 (11.6)

Schutzabst. HSM-CW Morse:

$$r_{S HSM-CWM} = k_{fitt HSM-CWM} (f, D, P_a, Grenzwert) \cdot k_{Boden, Höhe} \cdot F_{Si}$$
 (11.7)

Schutzabst. HSM-Fernsehmodulation:

$$r_{S HSM-FSM} = k_{fitt HSM-FSM} (f, D, P_a, Grenzwert) \cdot k_{Boden, Höhe} \cdot F_{Si}$$
 (11.8)

Für die Schutzabstände der VDE 0848-3-1 (abgekürzt HSM-xy) ist der jeweils zutreffende Modulationsfall zu wählen.

Durch diese Gleichungen mit den parametrisierten Fittingparametern werden die Probleme der Grenzwertsuche im Nahbereich vermieden und auf einfache Weise Schutzabstände mit hoher Genauigkeit berechnet.

3.3.6 Beispiel für die Berechnung der Schutzabstände

An einem Beispiel wird die Berechnung des Schutzabstandes $r_{S \text{ PERS}(BEMFV)}$ gezeigt. Hierzu werden die Schutzabstandskurven der Groundplane 4-BTV in dem folgenden Bild verwendet.

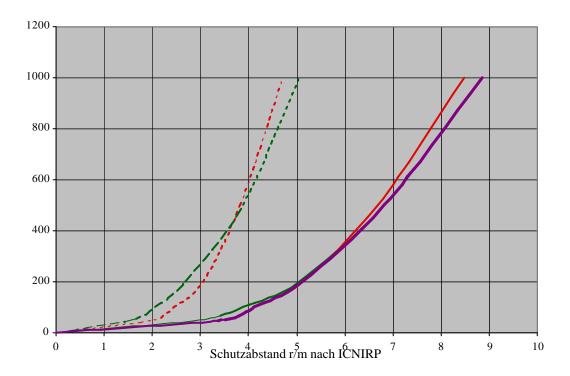


Bild 11.1 Gefittetete Schutzabstandskurve r_S PERS(BEMFV) (rechte dicke Kurve) für die Groundplane 4-BTV bei 7,05 MHz.

In Bild 11.1 ist zu sehen, dass der Schutzabstand im niedrigen Leistungsbereich (bis ca. $200 \,\mathrm{W}$) durch das elektrische Feld und darüber durch das magnetische Feld bestimmt wird. Die beiden inneren, gestichelten Kurven sind für die berufsbedingte Exposition und hier nicht relevant. In der nachfolgenden Tabelle sind die Stützstellen der gefitteten Schutzabstandskurve für verschiedene Leistungen P_a angebeben:

Gefittete Schutzabstände in m für Groundplane 4-BTV bei 7,05 MHz									
Sendeleistung P _a [W]	0	50	100	200	500	1000			
r _{S PERS(BEMFV)} [m]	0	3,5	4,1	5,1	6,8	8,9			

Tab. 11.4 Stützstellen der gefitteten Schutzabstandskurve 4-BTV bei 7,05 MHz

Mit Hilfe dieser Stützstellen wird der aktuelle Schutzabstand durch lineares Interpolieren wie folgt berechnet:

Antenne: Groundplane 4-BTV; f = 7,05 MHz; Höhe 6 m;

Aktuelle Sendeleistung: P_{aa} = 150 W

Bestimmen der Stützstellen: $P_{au} < P_{aa} < P_{ao}$

Untere Stützstelle aus Tabelle bei P_{au} = 100 W: $r_{S \text{ Pers(BEMFV)} u}$ = 4,1 m

Obere Stützstelle aus Tabelle bei P_{ao} = 200 W: $r_{S \text{ Pers}(BEMFV)}$ o = 5,1 m

Schutzabstand:

$$r_{S \text{ Pers(BEMFV)}} = r_{S \text{ Pers(BEMFV)} u} + \frac{P_{aa} - P_{au}}{P_{ao} - P_{au}} \cdot \left(r_{S \text{ Pers(BEMFV)}o} - r_{S \text{ Pers(BEMFV)}u}\right)$$
(11.8)

obige Werte in die Gleichung (11.8) eingesetzt ergibt:

$$r_{S \text{ Pers(BEMFV)}} = 4.1\text{m} + \frac{150\text{W} - 100\text{W}}{200\text{W} - 100\text{W}} \cdot (5.1\text{m} - 4.1\text{m}) = 4.6\text{m}$$
 (11.9)

Der unkorrigierte Schutzabstand beträgt 4,6 m ohne k_{Boden} , k_{Boden} , und k_{Si} . Der unkorrigierte Schutzabstand (hier 4,6 m) berücksichtigt nicht Umgebungseinflüsse. Für die Korrekturfaktoren ergibt sich:

aus Tab. 11.1 folgt: k_{Boden, Höhe} = 2,25

- aus Gl. (11.3) folgt: $F_{Si} = 1.4$

Der korrigierte Schutzabstand folgt zu:

$$r_{S \text{ Pers(BEMFV)}} = 4.6 \cdot k_{Boden, H\"{o}he} \cdot F_{Si} [m] = 4.6 \cdot 2.25 \cdot 1.4 = 14.49 m$$
 (11.10)

Der korrigierte Schutzabstand beträgt 14,49 m.

Auf diese Weise sind mit den gefitteten Stützstellen für alle untersuchten Antennen und Frequenzen bei den aktuellen Leistungen die Schutzabstände auf einfache Weise aus nachfolgenden Stützwerttabellen zu berechnen.

Tabellen für die gefitteten Schutzabstände 3.4.

] **/2-Dipol** 3.4.1

Gefittete Schutzabstände in m für \mathcal{N} 2-Dipol bei 1,825 MHz										
Sendeleistung <i>Pa</i> [W] 0 50 100 200 500 1000										
rs pers(Bemfv) [m] 0 0,9 1,2 1,7 2,5 3,5										
rs HSM [m]	0	1,1	1,5	2,2	3,4	4,8				

Gefittete Schutzabstände in m für λ /2-Dipol bei 3,65 MHz										
Sendeleistung P_a [W]	0	50	100	200	500	1000				
rs pers(bemfv) [m]	0	1,2	1,6	2,2	3,2	4,3				
rs HSM-AM [m]	0	0,8	1,1	1,5	2,4	3,4				
r _{S HSM-SSB} [m]	0	0,3	0,4	0,6	0,9	1,3				
rs HSM-CWM [m]	0	0.5	0.7	0.9	1,4	2				

Gefittete Schutzabstände in m für λ /2-Dipol bei 7,05 MHz									
Sendeleistung Pa [W] 0 50 100 200 500 1000									
rs pers(bemfv) [m]	0	1,5	2	2,6	4,1	5,8			
rs HSM-AM [m]	0	0,8	1,1	1,5	2,3	3,2			
rs HSM-SSB [m]	0	0,5	0,7	1,0	1,5	2,1			
rs HSM-CWM [m]	0	0,6	0,9	1,2	1,9	2,7			

Gefittete Schutzabstände in m für λ /2-Dipol bei 10,1 MHz										
Sendeleistung Pa [W] 0 50 100 200 500 1000										
rs pers(bemfv) [m]	0	1,9	2,6	3,7	5,8	8,1				
rs HSM-AM [m]	0	1,5	2,1	2,9	4,6	6,5				
rs HSM-SSB [m]	0	0,8	1,1	1,501	2,4	3,3				
rs HSM-CWM [m]	0	0,9	1,3	1,8	2,8	3,9				

Gefittete Schutzabstände in m für $\mathcal{V}2$ -Dipol bei 14,175 MHz										
Sendeleistung <i>P_a</i> [W] 0 50 100 200 500 1000										
rs pers(bemfv) [m]	0	1,9	2,6	3,7	5,7	8,1				
rs hsm-am [m]	0	2,9	4,0	5,7	8,9	12,6				
rs HSM-SSB [m]	0	1,2	1,7	2,3	3,7	5,1				
rs HSM-CWM [m]	0	1,3	1,8	2,6	4,0	5,7				

Gefittete Schutzabstände in m für №2-Dipol bei 21,255MHz										
Sendeleistung Pa [W] 0 50 100 200 500 1000										
rs pers(bemfv) [m]	0	1,9	2,6	3,7	5,7	8,1				
rs HSM-AM [m]	0	4,1	5,7	8,1	12,7	18,0				
rs HSM-SSB [m]	0	2,2	3,1	4,3	6,8	9,5				
rs HSM-CWM [m]	0	2,7	3,8	5,4	8,4	11,9				

Gefittete Schutzabstände in m für λ /2-Dipol bei 24,9 MHz										
Sendeleistung Pa [W]	0	50	100	200	500	1000				
rs pers(bemfv) [m]	0	1,9	2,6	3,7	5,7	8,1				
rs HSM-AM [m]	0	5,0	7,1	10,0	15,8	22,3				
rs HSM-SSB [m]	0	2,8	3,9	5,5	8,7	12,3				
rs HSM-CWM [m]	0	3,1	4,4	6,2	9,8	13,9				

Gefittete Schutzabstände in m $ für \lambda 2$ -Dipol bei 28,85 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	1,9	2,6	3,7	5,7	8,1	
rs HSM-AM [m]	0	6,5	9,1	12,9	20,3	28,7	
rs HSM-SSB [m]	0	2,8	3,9	5,5	8,7	12,3	
rs HSM-CWM [m]	0	3,6	5,1	7,2	11,3	16,0	

Gefittete Schutzabstände in m für λ 2-Dipol bei 145 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs pers(bemfv) [m]	0	2,0	3,0	4,0	6,0	8,5		
rs HSM-FSM [m]	0	19,0	26,6	37,6	59,1	83,6		
rs HSM-SSB [m]	0	4,5	6,5	9,1	14,5	20,1		
rs HSM-unmod [m]	0	1,0	1,5	1,5	2,5	3,5		

Gefittete Schutzabstände in m $ f$ ür $\lambda /2 - D$ ipol bei 430 MHz								
Sendeleistung <i>P_a</i> [W] 0 50 100 200 500 1000								
rs pers(bemfv) [m]	0	1,8	2,5	3,5	5,5	7,8		
rs HSM-FSM [m]	0	1,4	2,0	2,8	4,4	6,3		

Elektrisch verkürzte, horizontale 1/2-Dipole (Trap) 3.4.2

Gefittete Schutzabstände in m für verkürzte $\lambda/2$ Dipole (Trap) bei 3,65 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,8	2,4	3,1	4,3	5,4	
rs HSM-AM [m]	0	0,9	1,2	1,7	2,6	3,7	
rs HSM-SSB [m]	0	0,3	0,5	0,7	1,0	1,4	
rs HSM-CWM [m]	0	0.5	0.7	1.0	1.6	2.2	

Gefittete Schutzabstände in m für verkürzte $\lambda/2$ Dipole (Trap) bei 7,05 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,5	1,9	2,6	4	5,6	
rs HSM-AM [m]	0	0,7	1,0	1,4	2,2	3,2	
rs HSM-SSB [m]	0	0,5	0,7	0,9	1,5	2,0	
rs HSM-CWM [m]	0	0,6	0,9	1,2	1,9	2,7	

Inverted V Antenne 3.4.3

Gefittete Schutzabstände in m für Inverted V Antenne bei 3,65 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs pers(bemfv) [m]	0	2,3	3,0	3,8	5,3	6,6		
rs HSM-AM [m]	0	1,6	2,3	3,2	4,9	6,7		
rs HSM-SSB [m]	0	0,7	0,9	1,3	1,9	2,7		
rs HSM-CWM [m]	0	1,0	1,4	1,9	3,0	4,1		

Gefittete Schutzabstände in m für Inverted V Antenne bei 7,05 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,4	3,3	4,5	6,6	8,7	
rs Hsm-Am [m]	0	1,4	2,0	2,7	4,0	5,4	
rs HSM-SSB [m]	0	0,9	1,3	1,8	2,7	3,7	
rs HSM-CWM [m]	0	1,2	1,6	2,3	3,5	4,7	

3.4.4 Asymmetrischer Dipol, Mehrband-Windom FD4

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4?								
bei 3,65 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs Pers(BEMFV) [m]	0	1,3	1,7	2,3	3,5	4,6		
rs HSM-AM [m]	0	0,9	1,2	1,7	2,7	3,8		
rs _{HSM-SSB} [m]	0	0,4	0,5	0,7	1,0	1,4		
rs HSM-CWM [m]	0	0,5	0,7	1,0	1,6	2,2		

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4? bei 7,05 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs Pers(BEMFV) [m]	0	1,5	2,1	3,0	4,6	6,4		
rs HSM-AM [m]	0	0,8	1,0	1,5	2,3	3,2		
rs _{HSM-SSB} [m]	0	0,5	0,7	0,9	1,5	2,1		
rs _{HSM-CWM} [m]	0	0,6	0,9	1,2	1,9	2,7		

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4?							
bei 14,175 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,7	2,3	3,3	5,2	7,5	
rs HSM-AM [m]	0	2,6	3,7	5,3	8,6	12,2	
rs HSM-SSB [m]	0	1,1	1,5	2,1	3,4	4,8	
rs HSM-CWM [m]	0	1,2	1,7	2,4	3,8	5,4	

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4? bei 18,084 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,6	2,3	3,2	5,0	7,2	
rs HSM-AM [m]	0	3,6	5,0	7,1	11,8	18,4	
rs HSM-SSB [m]	0	1,5	2,0	2,9	4,5	6,4	
rs hsm-cwm [m]	0	2,0	2,8	4,0	6,3	9,1	

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4?								
bei 24,9 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs Pers(BEMFV) [m]	0	1,9	2,6	3,7	5,7	8,1		
rs HSM-AM [m]	0	5,0	7,1	10,0	15,8	22,3		
rs HSM-SSB [m]	0	2,8	3,9	5,5	8,7	12,3		
rs hsm-cwm [m]	0	3,1	4,4	6,2	9,8	13,9		

Gefittete Schutzabstände in m für asymmetrischen Dipol, Mehrband-Windom FD4?								
bei 28,85 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs Pers(BEMFV) [m]	0	1,5	2,2	3,0	4,8	7,2		
rs hsm-am [m]	0	5,3	8,3	13,4	25,3	39,9		
rs HSM-SSB [m]	0	2,3	3,3	4,6	7,9	12,8		
rs hsm-cwm [m]								

3.4.5 Vertikalantenne mit Groundplane 4-BTV

Gefittete Schutzabstände in m für Vertikalant. mit Groundplane 4-BTV bei 7,05 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	3,5	4,1	5,1	6,8	8,9	
rs HSM-AM [m]	0	2,0	2,5	3,2	4,6	6,0	
rs HSM-SSB [m]	0	1,4	1,6	2,2	3,2	4,1	
rs HSM-CWM [m]	0	1,6	2,1	2,8	4,0	5,2	

Gefittete Schutzabstände in m für Vertikalant. mit Groundplane 4-BTV bei 14,175 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	3,6	4,6	5,9	8,3	11,1	
rs HSM-AM [m]	0	4,7	6,1	8,1	11,7	15,9	
rs HSM-SSB [m]	0	2,5	3,2	4,1	5,9	7,5	
rs hsm-cwm [m]	0	2,7	3,5	4,4	6,3	8,1	

Gefittete Schutzabstände in m für Vertikalant. mit Groundplane 4-BTV bei 21,255 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	3,6	4,6	5,9	8,4	11,2	
rs HSM-AM [m]	0	6,4	8,4	11,2	16,9	24,3	
rs hsm-ssb [m]	0	3,6	4,9	6,3	8,9	12,2	
rs HSM-CWM [m]	0	4,6	5,9	7,7	11,2	15,3	

Gefittete Schutzabstände in m für Vertikalant. mit Groundplane 4-BTV bei 28,85 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	3,2	4,1	5,5	8,6	11,9	
rs HSM-AM [m]	0	9,6	13,4	18,8	32,0	46,8	
rs HSM-SSB [m]	0	4,5	5,9	8,4	12,9	17,9	
rs hsm-cwm [m]	0	5,4	7,4	10,7	16,4	24,3	

3.4.6 Vertikalantenne mit Groundplane GPA50

Gefittete Schutzabstände in m für Vertik.ant. mit Groundplane GPA50 bei 3,65 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	5,6	6,5	7,7	9,4	11,0	
rs HSM-AM [m]	0	3,6	4,3	5,1	6,2	7,3	
rs HSM-SSB [m]	0	2,2	2,7	3,2	4,1	4,6	
rs HSM-CWM [m]	0	2,7	3,4	4,1	4,9	5,7	

Gefittete Schutzabstände in m für Vertik.ant. mit Groundplane GPA50 bei 7,05 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	3,8	4,6	5,4	6,9	8,3	
rs HSM-AM [m]	0	2,1	2,5	3,2	4,1	5,2	
rs HSM-SSB [m]	0	1,6	2,1	2,2	3,2	3,8	
rs HSM-CWM [m]	0	2,1	2,2	2,8	3,6	4,6	

Gefittete Schutzabstände in m für Vertik.ant. mit Groundplane GPA50 bei 14,175 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,9	3,6	4,5	6,4	8,2	
rs HSM-AM [m]	0	3,8	4,8	6,1	8,8	11,9	
rs HSM-SSB [m]	0	2,1	2,6	3,2	4,5	5,8	
rs HSM-CWM [m]	0	2,2	2,7	3,6	4,8	6,1	

Gefittete Schutzabstände in m für Vertik.ant. mit Groundplane GPA50 bei 21,255 MHz								
Sendeleistung Pa [W]	0	50	100	200	500	1000		
rs pers(bemfv) [m]	0	2,5	3,2	3,9	5,7	7,5		
rs HSM-AM [m]	0	4,2	5,7	7,5	11,9	16,7		
rs HSM-SSB [m]	0	2,8	3,4	4,2	6,2	8,9		
rs HSM-CWM [m]	0	3,2	4,2	5,3	7,8	11,0		

Gefittete Schutzabstände in m für Vertik.ant. mit Groundplane GPA50 bei 28,85 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,5	3,2	4,2	6,0	8,1	
rs HSM-AM [m]	0	6,6	9,0	12,3	19,4	27,8	
rs HSM-SSB [m]	0	3,5	4,5	6,0	8,8	12,0	
rs HSM-CWM [m]	0	4,0	5,5	7,4	11,0	15,2	

3.4.7 Quad Antenne

Gefittete Schutzabstände in m für Quad Antenne bei 10,1 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,5	2,1	3,3	5,2	8,9	
rs HSM-AM [m]	0	1,2	1,7	2,3	3,7	6,5	
rs HSM-SSB [m]	0	0,7	0,9	1,2	1,9	2,6	
rs HSM-CWM [m]	0	0,8	1,0	1,4	2,2	3,1	

Gefittete Schutzabstände in m für Quad Antenne bei 14,175 MHz								
Sendeleistung P_a [W]	0	50	100	200	500	1000		
rs Pers(BEMFV) [m]	0	1,5	2,3	3,4	6,2	9,1		
rs HSM-AM [m]	0	2,3	3,5	6,2	10,2	14,5		
rs hsm-ssb [m]	0	1,0	1,3	1,9	3,1	5,5		
rs hsm-cwm [m]	0	1,1	1,5	2,1	3,5	6,3		

Gefittete Schutzabstände in m für Quad Antenne bei 21,255MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs _{Pers(BEMFV)} [m]	0	1,9	2,4	3,9	6,5	9,2	
rs HSM-AM [m]	0	3,9	6,5	9,2	14,6	20,7	
rs HSM-SSB [m]	0	2,1	3,1	4,8	7,7	11,0	
rs HSM-CWM [m]	0	2,5	4,1	6,1	9,6	13,6	

Gefittete Schutzabstände in m für Quad Antenne bei 24,9 MHz							
Sendeleistung P_a [W]	0	50	100	200	500	1000	
rs _{Pers(BEMFV)} [m]	0	1,8	2,6	4,2	6,6	9,2	
rs HSM-AM [m]	0	5,7	8,0	11,4	18,1	25,5	
rs HSM-SSB [m]	0	2,9	4,4	6,3	10,0	14,1	
rs HSM-CWM [m]	0	3,4	4,9	7,0	11,2	15,9	

Gefittete Schutzabstände in m für Quad Antenne bei 28,85 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs Pers(BEMFV) [m]	0	1,7	2,8	4,1	6,6	9,4	
rs HSM-AM [m]	0	7,4	10,3	14,7	23,3	32,9	
rs HSM-SSB [m]	0	3,0	4,5	6,4	9,9	14,1	
rs hsm-cwm [m]	0	4,1	5,8	8,2	12,9	18,3	

Gefittete Schutzabstände in m für Quad Antenne bei 145 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs _{Pers(BEMFV)} [m]	0	2,6	3,1	4,6	7,1	9,6	
rs HSM-FSM [m]	0	21,8	30,8	43,3	68,3	96,7	
rs HSM-SSB [m]	0	5,6	7,6	10,6	16,6	23,3	
rs HSM-unmod [m]	0	1,1	1,6	2,1	3,1	4,1	

1,7 m Loop Antenne 3.4.8

Gefittete Schutzabstände in m für 1,7 m Loop Antenne bei 3,65 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	6,2	7,0	8,0	9,5	10,8	
rs HSM-AM [m]	0	6,5	7,3	8,3	9,9	11,3	
rs HSM-SSB [m]	0	4,6	5,1	5,8	6,9	7,8	
rs HSM-CWM [m]	0	5,4	6,1	6,9	8,1	9,2	

Gefittete Schutzabstände in m für 1,7 m Loop Antenne bei 7,05 MHz							
Sendeleistung P_a [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	5,2	5,9	6,8	8,2	9,5	
rs HSM-AM [m]	0	4,1	4,7	5,4	6,4	7,4	
rs HSM-SSB [m]	0	3,6	4,0	4,5	5,4	6,2	
rs HSM-CWM [m]	0	3,9	4,4	5,0	6,0	6,9	

3.4.9 3,4 m Loop Antenne

Gefittete Schutzabstände in m für 3,4 m Loop Antenne bei 1,825 MHz							
Sendeleistung <i>P_a</i> [W] 0 50 100 200 500 1000							
rs pers(bemfv) [m]	0	7,6	8,6	9,7	11,4	12,9	
rs HSM-AM [m]	0	11,5	13,0	14,6	17,3	19,7	

Gefittete Schutzabstände in m für 3,4 m Loop Antenne bei 3,65 MHz							
Sendeleistung P_a [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	6,2	7,0	7,9	9,4	10,7	
rs HSM-AM [m]	0	6,5	7,3	8,2	9,8	11,2	
rs HSM-SSB [m]	0	4,6	5,1	5,8	6,8	7,7	
rs HSM-CWM [m]	0	5,3	6,0	6,8	8,0	9,1	

Gefittete Schutzabstände in m für 3,4 m Loop Antenne bei 7,05 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	5,0	5,8	6,7	8,0	9,3	
rs hsm-am [m]	0	4,0	4,6	5,2	6,3	7,3	
rs HSM-SSB [m]	0	3,5	3,9	4,4	5,2	6,0	
rs hsm-cwm [m]	0	3,8	4,3	4,9	5,9	6,8	

Yagi W3DZZ 3.4.10

Gefittete Schutzabstände in m für Yagi W3DZZ bei 14,175 MHz							
Sendeleistung P_a [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,5	3,2	4,4	6,1	9,1	
rs HSM-AM [m]	0	3,4	4,6	5,9	9,9	15,7	
rs HSM-SSB [m]	0	1,7	2,2	3,0	4,2	5,5	
rs HSM-CWM [m]	0	1,8	2,4	3,2	4,6	5,9	

Gefittete Schutzabstände in m für Yagi W3DZZ bei 21,255MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,3	3,0	3,8	6,0	9,9	
rs HSM-AM [m]	0	4,2	6,0	9,8	17,6	23,5	
rs HSM-SSB [m]	0	2,6	3,4	4,4	7,8	12,5	
rs HSM-CWM [m]	0	3,0	4,0	5,4	10,6	16,4	

Gefittete Schutzabstände in m für Yagi W3DZZ bei 28,85 MHz							
Sendeleistung Pa [W]	0	50	100	200	500	1000	
rs pers(bemfv) [m]	0	2,6	3,6	6,0	10,8	16,0	
rs HSM-AM [m]	0	12,0	17,9	26,1	42,4	60,8	
rs HSM-SSB [m]	0	4,0	6,7	10,3	17,5	25,6	
rs HSM-CWM [m]	0	5,9	9,1	13,7	23,1	33,3	

Yagi FBDO-505 3.4.11

Gefittete Schutzabstände in m für Yagi FBDO-505 bei 14,175 MHz						
Sendeleistung P_a [W]	0	50	100	200	500	1000
rs pers(bemfv) [m]	0	2,5	3,4	4,3	6,9	10,7
rs HSM-AM [m]	0	3,6	4,7	6,8	12,1	18,0
rs HSM-SSB [m]	0	1,7	2,3	3,1	4,3	6,0
rs HSM-CWM [m]	0	1,9	2,5	3,4	4,7	6,8

Gefittete Schutzabstände in m für Yagi FBDO-505 bei 18,084 MHz						
Sendeleistung Pa [W]	0	50	100	200	500	1000
rs pers(bemfv) [m]	0	2,3	3,1	4,1	6,3	8,9
rs HSM-AM [m]	0	4,5	6,3	8,9	15,3	23,1
rs HSM-SSB [m]	0	2,1	2,9	3,9	5,9	8,3
rs HSM-CWM [m]	0	2,8	3,7	5,3	8,1	11,7

Gefittete Schutzabstände in m für Yagi FBDO-505 bei 21,255 MHz						
Sendeleistung Pa [W]	0	50	100	200	500	1000
rs pers(bemfv) [m]	0	2,4	3,0	4,8	8,6	12,9
rs HSM-AM [m]	0	5,6	8,6	12,9	21,4	30,9
rs HSM-SSB [m]	0	2,6	3,8	6,0	10,5	15,5
rs HSM-CWM [m]	0	3,2	5,1	7,9	13,6	19,9

Gefittete Schutzabstände in m für Yagi FBDO-505 bei 24,9 MHz						
Sendeleistung Pa [W]	0	50	100	200	500	1000
rs pers(bemfv) [m]	0	2,5	3,3	4,9	7,3	10,5
rs HSM-AM [m]	0	6,5	8,9	12,5	19,4	27,2
rs HSM-SSB [m]	0	3,7	4,9	6,9	10,9	15,3
rs HSM-CWM [m]	0	4,1	5,7	8,1	12,5	17,3

Gefittete Schutzabstände in m für Yagi FBDO-505 bei 28,85 MHz						
Sendeleistung Pa [W]	0	50	100	200	500	1000
rs pers(bemfv) [m]	0	2,6	3,4	5,4	9,5	14,1
rs HSM-AM [m]	0	10,9	15,9	23,0	37,3	53,3
rs HSM-SSB [m]	0	3,9	6,1	9,1	15,4	22,2
rs HSM-CWM [m]	0	5,4	8,2	12,2	20,2	29,0

3.5. Fragen zu Berechnung der aktuellen Schutzabstände

Sind die Höhenabhängigkeit und die Bodenleitfähigkeit zu berücksichtigen?

Ja, die Schutzabstände $r_{SPERS(BEMFV)}$ und r_{HSMxy} sind mit $k_{Boden, H\"{o}he}$ zu multiplizieren.

Ist ein Sicherheitszuschlag F_{Si} zu berücksichtigen?

Es wird empfohlen, den Schutzabstand mit dem Sicherheitszuschlag F_{Si} (Faktor 1,4) zu multiplizieren.

Ist der Antennenwirkungsgrad h zu berücksichtigen?

Nur wenn der Wirkungsgrad sehr schlecht ist. Dann sind $r_{S \text{ PERS}(BEMFV)}$ und r_{HSM-xy} mit \sqrt{h} ?zu multiplizieren.

Was tun, wenn meine Antenne nicht in den Tabellen ist?

Die ähnlichste Antenne suchen. Eventuell die Direktivität korrigieren.

Näherung multiplizieren mit $:\sqrt{\frac{D_{\scriptscriptstyle neu}}{D_{\scriptscriptstyle {\rm Re}f.}}}$
