

(1) Program Flow Block Diagram. (Pls refer to the Driving example(v4.1).c file)

(3) Initialized Module

· ·		
1) Enable analog block	command	0xa3
-, c	command	0x1a
2) Enable Oscillator	command	0xf6
	command	0x40
3) Set the Driving Parameters	command	0x80
4) Set temperature value	command	0x00
Set VA clear hold time (for 18mS)	command	0x0 <i>C</i>
5) Set VA idle hold time (for 12mS)	command	0x0a
Set AA clear hold time (for 100mS)	command	0x15
6) Set AA idle hold time (for 12m5)	command	0x0a
Set Driving using time (for 18mS)	command	0x0c
7) Set clear voltage (for 24V)	command	0x40(24V)
Set drive voltage (for 24V)	command	0x40(24V)
O) Funkla Ding Laddan	command	0xe9
8) Enable Bias Ladder	command	0x84
9) Enable Booster and High Volt Buffer	command	0x2f
10) 6 1 11 2 12 1 2 1 (2 1 1 4 4)	command	0xa8
10) Set the multiplex ratio (set to 64)	command	0x40
11) C-+ M- d-l- hi-a (a-+ +- 1 / 7)	command	0xa2
11) Set Module bias (set to 1/7)	command	0x02
12) Set the normal or Reverse Display		0(
(set to normal)	command	0ха6
13) Set the Segment Re-map		0.450
(setting from S0>S127)	command	0ха0
14) Set the Common Re-map	,	0 - 0
(setting C63>C0)	command	0xc8
15) Set Display Start line (set to CO)	command	0×40
	command	0x93
16) VA clear repeat times(set to 0x00)	command	0x00
17) VA idle repeat times (set to 0x00)	command	0x94
17) VA Tale Lepeal Times (set to 0x00)	command	0x00
18) AA clear repeat times (set to 0×00)	command	0×95
	command	0x00
19) AA idle repeat times (set to 0x00)	command	0x96
, , , , , , , , , , , , , , , , , , , ,	command	0x00
20)Driving repeat times (set to 0x00)	command	0x97
	command	0x00
21)Driving update command	command	0x31 be disclosed to 3rd party

If you want to modify the parameter, pls refer to Figure 1.

If you want
to modify the
parameter,
pls refer to
Figure 2.

Note:

- 1) The reference codes are mix of single and double byte command operation.
- 2) Pls write the Driving update command after finishing all he command, otherwise, the commands that is wrote is invalid.
 - 3) All the above initialisation sequence must be followed before writing to graphic RAM.
 - 4) For 4 wire SPI Command and Data Timing characteristics-->pls refer to Figure 3.

Figure 1 Clear, idle & driving phase programmable time duration

$X_4X_3X_2X_1X_0$	Time for 1 pixel/ms
00000	0. 0 8
00001	0.2
00010	0.4
00011	0.8
00100	1
00101	2
00110	4
00111	6
01000	8
01001	10
01010	12
01011	14
01100	18
01101	20
01110	25
01111	30

$X_4X_3X_2X_1X_0$	Time for 1 pixel /ms
100 0 0	35
10001	40
10010	50
10011	60
101 0 0	80
101 0 1	1 0 0
10110	150
10111	20 0
110 0 0	250
11001	350
11010	500
11011	750
11100	1,000
11101	2,000
11110	4,000
11111	10,000

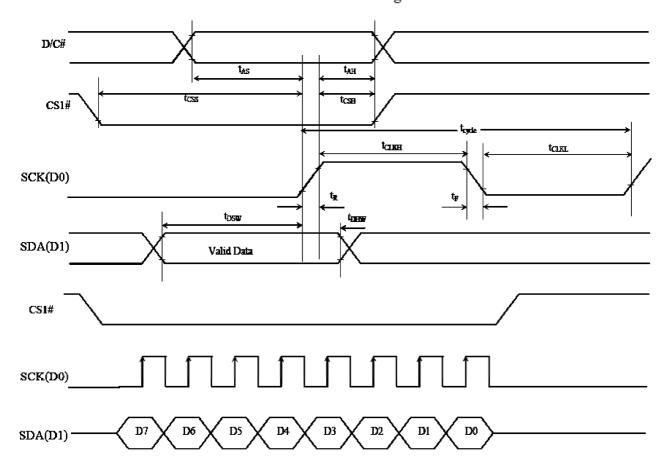
Figure 2 Voltage Setting Table (For Clear and Driving Voltage Setting)

X6X5X4X3X2X1X0	Vcp1/V	X6X5X4X3X2X1X0	Vcp1/V
0001000	10	0110000	20
0001001	10.25	0110001	20.25
0001010	10.5	0110010	20.5
0001011	10.75	0110011	20.75
0001100	11	0110100	21
0001101	11.25	0110101	21.25
0001110	11.5	0110110	21.5
0001111	11.75	0110111	21.75
0010000	12	0111000	22
0010001	12.25	0111001	22.25
0010010	12.5	0111010	22.5
0010011	12.75	0111011	22.75
0010100	13	0111100	23
0010101	13.25	0111101	23.25
0010110	13.5	0111110	23.5
0010111	13.75	0111111	23.75
0011000	14	1000000	24
0011001	14.25	1000001	24.25
0011010	14.5	1000010	24.5
0011011	14.75	1000011	24.75
0011100	15	1000100	25
0011101	15.25	1000101	25.25
0011110	15.5	1000110	25.5
0011111	15.75	1000111	25.75
0100000	16	1001000	26
0100001	16.25	1001001	26.25
0100010	16.5	1001010	26.5
0100011	16.75	1001011	26.75
0100100	17	1001100	27
0100101	17.25	1001101	27.25
0100110	17.5	1001110	27.5
0100111	17.75	1001111	27.75
0101000	18	1010000	28
0101001	18.25	1010001	28.25
0101010	18.5	1010010	28.5
0101011	18.75	1010011	28.75
0101100	19	1010100	29
0101101	19.25	1010101	29.25
0101110	19.5	1010110	29.5
0101111	19.75	1010111	29.75

X6X5X4X3X2X1X0	Vcp1/V
1011000	30
1011001	30.25
1011010	30.5
1011011	30.75
1011100	31
1011101	31.25
1011110	31.5
1011111	31.75
1100000	32
1100001	32.25
1100010	32.5
1100011	32.75
1100100	33
1100101	33.25
1100110	33.5
1100111	33.75
1101000	34
1101001	34.25
1101010	34.5
1101011	34.75
1101100	35

Figure 3 4-wires Serial Interface Timing Characteristics

Conditions:

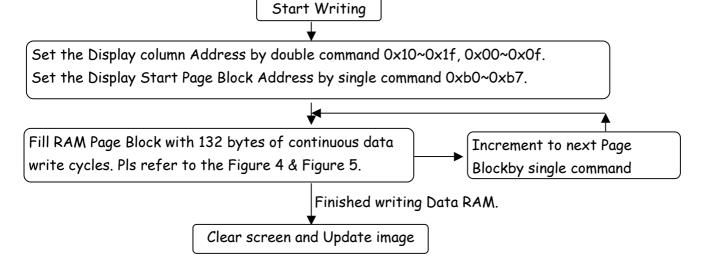

 $T_A = -35 \text{ to } 85^{\circ}\text{C}$

 $V_{DD} = V_{CI} = V_{DDIO} = 2.4V$ to 3.5V

4-wires Serial Interface Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
$t_{ m cycle}$	Clock Cycle Time	60	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t _{AH}	Address Hold Time	20	-	-	пs
t _{DSW}	Write Data Setup Time	30	-	-	ns
t _{DHW}	Write Data Hold Time	30	-	-	ns
T _{CLKL}	Clock Low Time	30	-	-	ns
T _{CLKH}	Clock High Time	30	-	-	ns
t _{CSS}	Chip Select Setup Time (for D7 input)	30	-	-	ns
t _{CSH}	Chip Select Hold Time (for D0 input)	30	-	-	ns
t _R	Rise Time	-	-	10	ns
t _F	Fall Time	-	-	10	ns

4-wires Serial Interface Timing Characteristics



(4) Clear Screen and Update image:

()			
1) VA clear repeat times	command	0x93	`
1) VA Clear repeat times	command	0x01	
3)\/4 :dla napast times	command	0x94	
2)VA idle repeat times	command	0x01	
2) A A alaga nangat timag	command	0x95	
3)AA clear repeat times	command	0x01	
1) 1 1 idle nancet times	command	0x96	Clear Screen
4)AA idle repeat times	command	0x01	
5) Driving ranget times	command	0x97	
5)Driving repeat times	command	0x00	
6)Set the Driving scheme	command	0x32	
b) Set the briving scheme	command	0x21	
7)Driving update command	command	0x31)
8) VA clear repeat times	command	0x93	
8) VA Clear repeat times	command	0x00	
9)VA idle repeat times	command	0x94	
9)VA Idle repeat Times	command	0x00	
10) 4.4 close report times	command	0x95	
10)AA clear repeat times	command	0x00	Update image
11)AA idle repeat times	command	0x96	opanie image
11)AA idie repeat times	command	0x00	
12)Driving repeat times	command	0x97	
	command	0x01	
13)Set the Driving scheme	command	0x32	
13)3et the briving scheme	command	0x20	J
	· · · · · · · · · · · · · · · · · · ·		=

(5) Write Data RAM:

Note:

- 1) Writing Data to Graphic Display Data RAM involves command and data writes --->pls refer to Fig. 3.
 - 2) Mapping to pixels of Graphic Display Data RAM(GDDRAM) ---->pls refer to Fig. 4, 5, & 6.
 - 3) Please note that Each byte of pixel data is mapped to a vertical column of 8 bits (Fig 4).
- 4) Please note that all 132 columns of data must be written before advancing to next page block (Fig 5).

Figure 4 Enlargement of GDDRAM (No COM re-mapping and column-remapping)

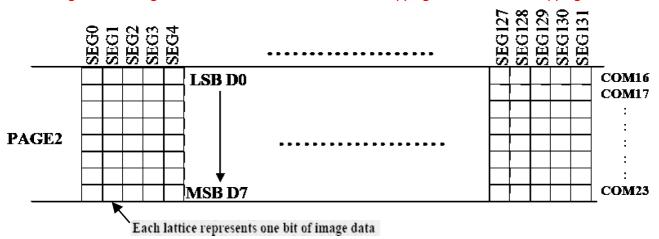


Figure 5 Address Pointer Movement of Horizontal addressing

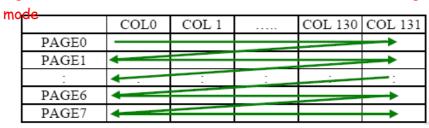
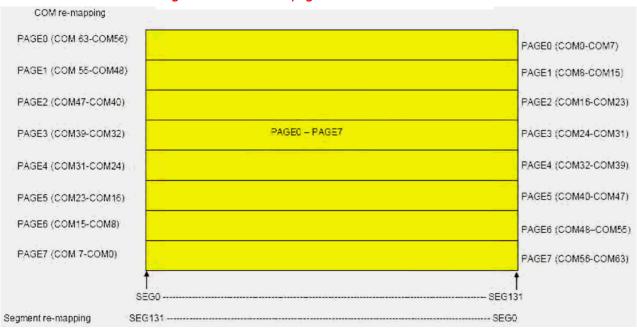



Figure 6 GDDRAM pages structure Module

(6) To enter Sleep Mode:

1) Disable Booster and High Volt Buffer	command	0×2a
2) Disable the Bias Driven	command	0xe9
2) Disuble the Blus Differi	command	0x00
3) Disable the OSC	command	0xf6
3) Disable the OSC	command	0x00
4) Disable the Analog Circuitry	command	0xa3
4) Disable the Analog Circuitry	command	0x00
5) Analog Control Auto OFF	command	0xa9
Analog Control Auto Of I	command	0x00
6) Driving update command	command	0x31

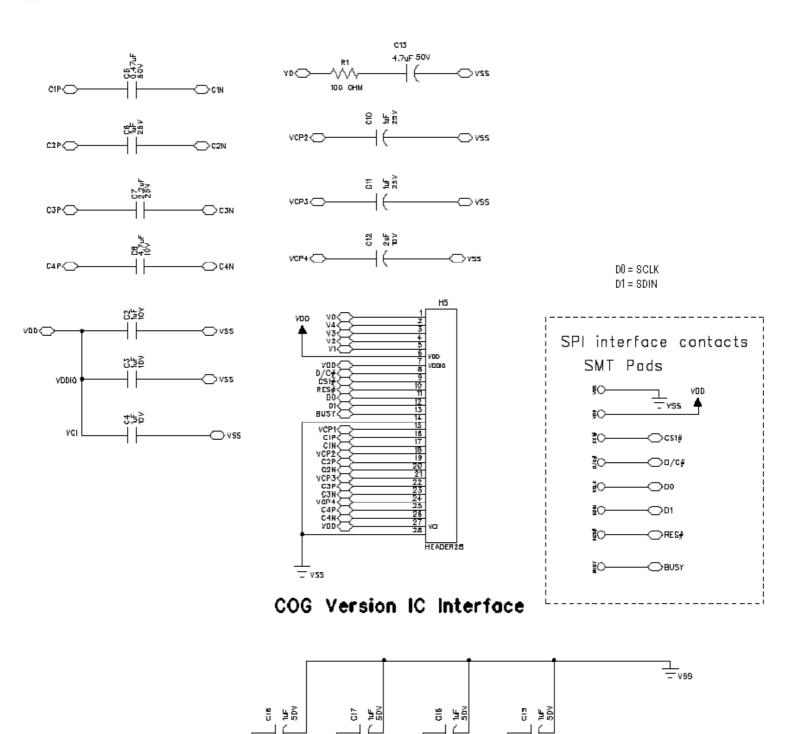
Remark:

Sleep Mode should be used if Vdd cannot be powered off.

For best power savings, Vdd should be "Powered off"

(7) Partial Scan

1) set the display offset	command	0xd3	
1) set the display of (set	command	(0x40-offset)	
3) Set the multiplex ratio(partial high)	command	0xa8	
3) Set the marriplex ratio(partial high)	command	partial high	
4) Set display startline	command	0x40 + startline(first line of the start page)	
5) Driving update command	command	0x31	


Example: Display a partial (from Com16 to Com36)

Define some partial scan parameter:

- 1) partial high = 0x14 (20 -->Com36-Com16)
- 2) scan_start page:--> the third page (Page 2) scan_end page: --> the fifth page (page 4)
- 3) offset = 0x1b (To move display from away Com0 by 27 Com_lines)
- 4) startline = 0x10 (C16-->the first line of the start page)

(8) Schematic:

The $\ensuremath{\mathsf{GD1001}}$ IC program flow chart

(9) Electronic character:

	Status	Min	Type	Max	Unit
Vdd:	Active	3.1	3.3	3.5	V
Idd:	Active	-	0.4	0.5	m <i>A</i>
Vci	Active	Vdd	-	3.5	V
Ici	Active	ı	2.1	3.0	m <i>A</i>
Vlcd:	Active	ı	24	-	٧
Idd	Sleep		-	5.0	u <i>A</i>
Ici	Sleep	ı	-	5.0	u <i>A</i>