.-.....l.', Consumer Scanner Products 32-Bit DLL for

"...-

About This Manual

Table of Contents

Chapter 1

Chapter 2

Index

¥ M n AL TG e ol LR

Windows 95, 98, and NT

TR

User Guide

72E-39354-01
Revision A
September 1999

b o il |

Document Title Variable
Manual

Document Part Number
Revision A
September 1999

.-_..l.',

"..."

0 1998 by Symbol Technologies, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or
mechanical means, without permission in writing from Symbol. This includes electronic or
mechanical means, such as photocopying, recording, or information storage and retrieval
systems. The material in this manual is subject to change without notice.

The software is provided strictly on an “as is” basis. All software, including firmware,
furnished to the user is on a licensed basis. Symbol grants to the user a non-transferable and
non-exclusive license to use each software or firmware program delivered hereunder (licensed
program). Except as noted below, such license may not be assigned, sublicensed, or otherwise
transferred by the user without prior written consent of Symbol. No right to copy a licensed
program in whole or in part is granted, except as permitted under copyright law. The user
shall not modify, merge, or incorporate any form or portion of a licensed program with other
program material, create a derivative work from a licensed program, or use a licensed
program in a network without written permission from Symbol. The user agrees to maintain
Symbol’s copyright notice on the licensed programs delivered hereunder, and to include the
same on any authorized copies it makes, in whole or in part. The user agrees not to
decompile, disassemble, decode, or reverse engineer any licensed program delivered to the
user or any portion thereof.

Symbol reserves the right to make changes to any software or product to improve reliability,
function, or design.

Symbol does not assume any product liability arising out of, or in connection with, the
application or use of any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any
Symbol Technologies, Inc., intellectual property rights. An implied license only exists for
equipment, circuits, and subsystems contained in Symbol products.

Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol Technologies,
Inc. Other product names mentioned in this manual may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Symbol Technologies, Inc.

One Symbol Plaza

Holtsville, New York 11742-1300
http://www.symbol.com

2 3

Contents

About This Guide

INtrOdUCTION . . .o o e vii
DLL IMPrOVEMENTS. oot ot e vii
Debug ENhanCementsot e viii
Notational CoONVENTIONSot e e X
Service INTOrMAtioN X
SYmMbOl SUPPOIt CeNTEISottt e e Xi
WAt . . e Xili
Warranty Coverage and Proceduret e Xiv
GeNeral . . Xiv

Chapter 1. Installing the CSP32.DLL

INErOdUCHION . . . o 1-1
Installing CSP32.DLL e 1-2

Chapter 2. Function Definitions

INErOdUCTION . . . o e 2-1
Returned Status Definitions e 2-1
COmMMUNICAtIONS . . .ottt e e e e 2-3
Initialize Communications POrt. 2-3
Restore Communications Port. i e 2-5
Basic FUNCLION ComMMaNnasottt e e e 2-6
Read Data.ot e 2-6
Clear BarCOOBSttt 2-8
POWEE DOWN . . oo e e e 2-9
CSP Data Gl . . .ottt e 2-10
Gt BarCodeo e 2-10
Get DeVvICE ID . . .o e 2-12
Get Protocolo e 2-14

& \ 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

~7

Get SYSTEM SEAtUS o et 2-16
Gt USEr 1D . .o 2-18
Get SOftware VerSIONo e 2-20
CSP Configuration Set.ttt e 2-22
St T BItS . o .ttt 2-22
Set VOIUME . . o e 2-24
Set Barcode RedUNTANCY oot e 2-25
S USE 1D . . . 2-26
Set CoNtiNUOUS SCANNING . . o ottt et e e e e e e 2-28
CSP Configuration Geto e 2-29
Gt T BitS. . . ot 2-29
Get VolUME . . e 2-31
Get Barcode RedUNTaNnCYot i e 2-32
Get CoNtinUOUS SCANNINGttt e e e et e e e e e e e e e e e 2-33
DLL Configuration e 2-34
St RELrY COUNT . o 2-34
Get Retry COUNT. . .. e e 2-35
MISCEIIANBOUS e 2-36
Gt DLL VerSiON ... e 2-36
DEbUg . . o 2-37
Set Debug MoOde. . ..o 2-37
Get Communications Port Information 2-38
Advanced Function Commands.ttt 2-40
Read Raw Datao e e 2-40
Set DeVICE Parameters. . . .ottt e 2-42
Get DeVICE Parametersottt 2-44
Interrogate the DeViCe.ot 2-47

Vi

2 3

About This Guide

Introduction

The Consumer Scanning Products 32-Bit Dynamic Link Library for Windows 95, 98, and
Windows NT User Guide provides the Application Programming Interface (API) definition
for the Consumer Scanning Products (CSP) Dynamic Link Library (DLL). Current Symbol
offerings in consumer scanning products are the CyberPen and the CS 2000.

Application developers supporting Symbol’s Consumer Scanning Products will use the DLL.
As a 32-bit DLL, it will function on Windows "95, Windows "98, and Windows NT platforms
in applications written in Visual Basic as well as Visual C/C++.

The documentation and demo programs included in this package will provide developers
with all of the resources necessary to create full-featured applications.

The CSP DLL runs under Windows 95 / ‘98 and NT 4.0 operating systems. The DLL was
created using MS Visual C/C++ V 5.0 compiler. The DLL has been tested with MS Visual C
and Visual Basic applications. All of the source code required to modify the demo programs
or the DLL are included.

DLL Improvements

The new DLL for the CSP device has been structured so it can be easily used by the Visual ‘C’
and Visual Basic application programmer.

¢ The DLL eliminates the use of structures or pointer to structures. This provides a
very simple and straightforward interface to the DLL.

+ New functions have been added which eliminate the need for complex structures.

vii

e

=

J 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

e

+ Simple data types are now used to pass information between the application and
the DLL. Data is passed to the DLL as a call by value. Data is retrieved from the
DLL as a returned value for single value results or call by reference for character
strings.

DLL functions hide the complex details of the CSP device operation.
+ All functions that talk to the CSP device automatically interrogate the device first.

+ The communications are set to 2400 baud, 8 data bits, and odd parity. The
application programmer only has to set the active RS-232 communications port.

When compiled in DEBUG mode, the DLL provides all the functions of the regular
DLL plus debug features. This provides additional help for first time users so that
they can get their application debugged and running in a timely manner. These
functions include a logging function that writes to a file all commands and responses
issued and received from the CSP device and a serial port test. The DEBUG version
of the DLL is provided to assist users. When its features are no longer required,
simply use the RELEASE version of the DLL to reduce the size of the DLL and
increase its speed.

A “.BAS’ file is provided with the DLL that defines all the function prototypes and
constants that the Visual Basic programmer will need to use the DLL.

A “.H’ file is provided with the DLL that defines all the function prototypes and
constants that the Visual C/C++ programmer will need to use the DLL.

The function prototypes are documented for both the Visual Basic and the Visual ‘C’
user. Two separate documents are provided so that programmers familiar with Visual
Basic are not confused by the ‘C’ prototyping convention and vice versa. Each
application programmer can review the function calls and associated documentation
in the form with which they are most familiar.

Code example snippets in the documentation show a developer how to use the
function correctly. The examples will be tailored to match the Visual Basic and Visual
‘C’ prototypes.

Debug Enhancements

Debug capabilities within the DLL provide the user with the assurance that the DLL is
functioning correctly. Two forms of DLL functions are provided specifically for the purpose
of testing the DLL with an application.

The first function group allows an application to create a log file of all transactions between
the CSP device and the serial port. Commands and responses are written to the log file as they
occur when the log file is enabled. Each command/response group is time stamped in the log

viii

About This Guide

file. Each time the log file is enabled, the contents of the previous log file is overwritten. The
availability of a log file feature can be a great asset in tracking down protocol issues and
verifying CSP device operations when a developer is getting unexpected results. For the
release version of the DLL, all log file functions and features are conditionally compiled out
to keep the size of the deliverable DLL to a minimum and execution speed reasonable. To
minimize any impact on the application developer, the log file functions are stubbed out so
that the application code does not need to be changed.

The second function group gives the application developer some much needed information
about the serial port availability on the host PC. The user can query the PC about a specific
serial port, which might be available for use. The results of the function call tell the
application programmer the specified COM port is:

an RS-232 device

a modem

not valid for the current system

is currently in use by another program (thus rendering it unusable for the CSP
application) or

¢ reports some other form of system error related to the device.

Using this information, an application can narrow down the selection of appropriate COM
ports for use with the CSP device or provide feedback to a user regarding the availability of
the specified port. While listed as part of the debug function group, this function is fully
functional in both the debug and release forms of the DLL.

* & o o

A stand alone debug program is provided to support CSP device application developers and
users. The debug program, CommTest.exe, consists of a Windows dialog interface to interact
with the developer/user. It provides information about each of the serial ports commonly
available on a PC (namely COML1 through COM4). To insure that the CSP device is
connected properly, the program can run an “interrogation” test to check for the presence of
a CSP device. If the interrogation succeeds, the program updates the display with the current
CSP device data obtained during the interrogation.

To resolve any hardware problems that might exist, the debug program is able to test the
specified RS-232 serial port through the use of a loop back connector. The loop back
connector should connect TX/RX, DTR/DSR, and RTS/CTS signals for testing. An external
loop back is required for CSP device port verification because the CyberWell requires the
DTR signal to be asserted for communications. The CSP device Protocol does not document
this fact, while common knowledge. By using the loop back connector and the debug
program, numerous problems can be detected and corrected which are not related to the DLL
or the CSP device.

& \ J 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

=

An automated wrap around test verifies the ability of the serial port to send and receive data
and verify that the DTR/DSR and RTS/CTS signals are functioning properly.

A function is provided to return the version information about the DLL. The version
information for the DLL will be stored in the VERSIONINFO resource statement when the
DLL is created. By using the VERSIONINFO resource statement, any Windows program can
access the version information associated with a particular DLL or executable. Whenever a
new version of the DLL is released, the "File Version" field in the resource file must be
manually edited to reflect the correct revision level of the code. The information returned is
exactly the information that the user would see on the “Version™ tab if they selected the file
in the Windows File View and selected Properties.

Since the version information is string based, the returned string can conform to any
company’s version naming convention. Debug versions of the DLL will automatically
prepend “Debug” to the returned version string so that developers can determine which
version of the DLL is being used.

Notational Conventions

The following conventions are used in this document:

¢ Italics are used to highlight specific items in the general text, and to identify chapters
and sections in this and related documents.

¢ Bullets (=) indicate:
+ action items
+ lists of alternatives
+ lists of required steps that are not necessarily sequential

¢ Sequential lists (e.g., those that describe step-by-step procedures) appear as
numbered lists.

Service Information

If you have a problem with your equipment, contact the Symbol Support Centers. Before
calling, have the model number, serial number, and several of your bar code symbols at hand.

Call the Support Center from a phone near the scanning equipment so that the service person
can try to talk you through your problem. If the equipment is found to be working properly
and the problem is symbol readability, the Support Center will request samples of your bar
codes for analysis at our plant.

About This Guide

If your problem cannot be solved over the phone, you may need to return your equipment for
servicing. If that is necessary, you will be given specific directions.

Note: Symbol Technologies is not responsible for any damages incurred
during shipment if the approved shipping container is not used.
Shipping the units improperly can possibly void the warranty. If the
original shipping container was not kept, contact Symbol to have

another sent to you.

Symbol Support Centers

For service information, warranty information or technical assistance contact or call the

Symbol Support Center in:

United States
Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
1-800-653-5350

United Kingdom
Symbol Technologies
Symbol Place
Winnersh Triangle, Berkshire RG41 5TP
United Kingdom
0800 328 2424 (Inside UK)
+44 118 945 7529 (Outside UK)

Australia
Symbol Technologies Pty. Ltd.
432 St. Kilda Road
Melbourne, Victoria 3004
1-800-672-906 (Inside Australia)
+61-3-9866-6044 (Outside Australia)

Canada
Symbol Technologies Canada, Inc.
2540 Matheson Boulevard East
Mississauga, Ontario, Canada L4W 472
905-629-7226

Asia/Pacific
Symbol Technologies Asia, Inc.
230 Victoria Street #04-05
Bugis Junction Office Tower
Singapore 188024
337-6588 (Inside Singapore)
+65-337-6588 (Outside Singapore)

Austria
Symbol Technologies Austria GmbH
Prinz-Eugen Strasse 70
Suite 3
2.Haus, 5.Stock
1040 Vienna, Austria
1-505-5794 (Inside Austria)
+43-1-505-5794 (Outside Austria)

Xi

=

Denmark
Symbol Technologies AS
Gydevang 2,
DK-3450 Allerod, Denmark
7020-1718 (Inside Denmark)
+45-7020-1718 (Outside Denmark)

Finland
Oy Symbol Technologies
Kaupintie 8 A 6
FIN-00440 Helsinki, Finland
9 5407 580 (Inside Finland)
+358 9 5407 580 (Outside Finland)

Germany
Symbol Technologies GmbH
Waldstrasse 68
D-63128 Dietzenbach, Germany
6074-49020 (Inside Germany)
+49-6074-49020 (Outside Germany)

Latin America Sales Support
7900 Glades Road
Suite 340
Boca Raton, Florida 33434 USA
1-800-347-0178 (Inside United States)
+1-561-483-1275 (Outside United States)

Netherlands
Symbol Technologies
Kerkplein 2, 7051 CX
Postbus 24 7050 AA
Varsseveld, Netherlands
315-271700 (Inside Netherlands)
+31-315-271700 (Outside Netherlands)

Xii

& \ ‘ 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

Europe/Mid-East Distributor Operations

Contact your local distributor or call
+44 118 945 7360

France
Symbol Technologies France
Centre d'Affaire d'Antony
3 Rue de la Renaissance
92184 Antony Cedex, France
01-40-96-52-21 (Inside France)
+33-1-40-96-52-50 (Outside France)

Italy
Symbol Technologies Italia S.R.L.
Via Cristoforo Columbo, 49
20090 Trezzano S/N Navigilo
Milano, Italy
2-484441 (Inside Italy)
+39-02-484441 (Outside Italy)

Mexico
Symbol Technologies Mexico Ltd.
Torre Picasso
Boulevard Manuel Avila Camacho No 88
Lomas de Chapultepec CP 11000
Mexico City, DF, Mexico
5-520-1835 (Inside Mexico)
+52-5-520-1835 (Outside Mexico)

Norway
Symbol Technologies
Trollasveien 36
Postboks 72
1414 Trollasen, Norway
66810600 (Inside Norway)
+47-66810600 (Outside Norway)

About This Guide

South Africa Spain
Symbol Technologies Africa Inc. Symbol Technologies S.A.
Block B2 Edificioi la Piovera Azul
Rutherford Estate C. Peonias, No. 2 - Sexta Planta
1 Scott Street 28042 Madrid, Spain
Waverly 2090 Johannesburg 9-1-320-39-09 (Inside Spain)
Republic of South Africa +34-9-1-320-39-09 (Outside Spain)

11-4405668 (Inside South Africa)
+27-11-4405668 (Outside South Africa)

Sweden
Symbol Technologies AB
Albygatan 109D
Solna
Sweden
84452900 (Inside Sweden)
+46 84452900 (Outside Sweden)

If you purchased your Symbol product from a Symbol Business Partner, contact that Business
Partner for service.

Warranty

Symbol Technologies, Inc (“Symbol’”) manufactures its hardware products in accordance with industry-
standard practices. Symbol warrants that for a period of twelve (12) months from date of shipment,
products will be free from defects in materials and workmanship.

This warranty is provided to the original owner only and is not transferable to any third party. It shall
not apply to any product (i) which has been repaired or altered unless done or approved by Symbol, (ii)
which has not been maintained in accordance with any operating or handling instructions supplied by
Symbol, (iii) which has been subjected to unusual physical or electrical stress, misuse, abuse, power
shortage, negligence or accident or (iv) which has been used other than in accordance with the product
operating and handling instructions. Preventive maintenance is the responsibility of customer and is not
covered under this warranty.

Wear items and accessories having a Symbol serial number, will carry a 90-day limited warranty. Non-
serialized items will carry a 30-day limited warranty.

Xiii

s ‘ 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

=

Warranty Coverage and Procedure

During the warranty period, Symbol will repair or replace defective products returned to Symbol’s
manufacturing plan in the US. For warranty service in North America, call the Symbol Support Center
at 1-800-653-5350. International customers should contact the local Symbol office or support center.
If warranty service is required, Symbol will issue a Return Material Authorization Number. Products
must be shipped in the original or comparable packaging, shipping and insurance charges prepaid.
Symbol will ship the repaired or replacement product freight and insurance prepaid in North America.
Shipments from the US or other locations will be made F.O.B. Symbol’s manufacturing plant.

Symbol will use new or refurbished parts at its discretion and will own all parts removed from repaired
products. Customer will pay for the replacement product in case it does not return the replaced product
to Symbol within 3 days of receipt of the replacement product. The process for return and customer’s
charges will be in accordance with Symbol’s Exchange Policy in effect at the time of the exchange.

Customer accepts full responsibility for its software and data including the appropriate backup thereof.
Repair or replacement of a product during warranty will not extend the original warranty term.

Symbol’s Customer Service organization offers an array of service plans, such as on-site, depot, or phone
support, that can be implemented to meet customer’s special operational requirements and are available
at a substantial discount during warranty period.

General

Except for the warranties stated above, Symbol disclaims all warranties, express or implied, on products
furnished hereunder, including without limitation implied warranties of merchantability and fitness for
a particular purpose. The stated express warranties are in lieu of all obligations or liabilities on part of
Symbol for damages, including without limitation, special, indirect, or consequential damages arising
out of or in connection with the use or performance of the product.

Seller’s liability for damages to buyer or others resulting from the use of any product, shall in no way
exceed the purchase price of said product, except in instances of injury to persons or property.

Some states (or jurisdictions) do not allow the exclusion or limitation of incidental or consequential
damages, so the proceeding exclusion or limitation may not apply to you.

Xiv

2 3

Chapter 1
Installing the CSP32.DLL

Introduction

This chapter covers the installation of the CSP32.DLL on your Windows 95, 98 and NT 4.0
system.

If you will be redistributing the Csp32.dIl with your system source code, you need to be aware
of other DLLs that are required in order for the Csp32.dll to function properly. The Csp32.dll
relies on the files specified in the following table in order to operate. Some of the files are
provided by the Windows operating system; others are provided by Visual C/C++ and Visual
Basic installations.

Note: If you are installing programs on a system which does not have
Visual C/C++ or Visual Basic installed, then you are responsible for
installing the distributable Windows DLLs into the
\Windows\System directory. Failure to do so will cause error
messages such as “Error 48: Error in loading DLL Csp32.dll.” Error
messages such as this indicate that the Csp32.dll could not be loaded
because it relies on other DLLSs, which are not present, in order to
function. Consult your Visual Basic documentation for a list of other
files which are required to execute Visual Basic programs.

1-1

& \ J 32-Bit Dynamic Link Library for Windows 95, 98, and Windows NT User Guide

=

Table 1-1. CSP32.DLL Files

Debug Release Windows System Files
v v \Windows\System\Version.dll
v v \Windows\System\User32.dll
v v \Windows\System\Kernel.dll
Debug Release Microsoft Distributable Files
v \Windows\System\Mfc42.dll
v \Windows\System\Msvcrt.dll
v \Windows\System\Mfc42d.dll
v \Windows\System\Msvcrtd.dll

Installing CSP32.DLL

To install the CSP32.DLL on your development PC, run the setup.exe program on the CD.
Follow the prompts on the screen until you receive a message that the software has been
successfully installed. Once the installation completes, you are prompted to reboot your PC
in order to use the software.

The CSP setup.exe program adds the distributable files to your \Windows\System directory if
they did not already exist. This allows the demo programs that ship with the Csp32.dll to
function immediately after installation.

The Csp32.dll should also be installed into the \Windows\System directory WHEN you are
redistributing the DLL. For the purpose of testing, the Csp32.dIl has been copied from the
\Csp32\Debug directory to each of the demo program directories. Windows will search for
the file starting in the current directory, then the Windows\System directory, then by
traversing the PATH information. The first instance of the Csp32.dll to be located will be
used. By copying the DLL to the local directory you can experiment with the debug and non-
debug versions of the code.

1-2

2 5

Chapter 2
Function Definitions

Introduction

This section provides all the available function calls and their descriptions. All of the CSP
functions listed below are broken down by functional group.

Please note, the returned data from each function, if negative, indicates an error condition in
executing the function, except for errors reported from Windows file operations. A zero or
positive value indicates success and/or returned data as detailed by each function description.

For the purpose of compatibility between Visual Basic programs and Visual C programs, the
“int” data type is not used within the CSP API functions. This is because a Visual Basic
program running under Windows ’95, '98, or NT uses a 16-bit value when ““int™ is specified.
Visual C/C++ programs running on the same operating systems use a 32-bit value for “int”
data types. Both Visual Basic and Visual C/C++ use a 32-bit data type when specifying “long”
variables. So, by specifying “long” variables, the functions calls and documentation across
development platforms remains consistent.

Returned Status Definitions

The functions in this document may return status as indicated. The standard returned status
codes are as follows:

2-1

=

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

Table 2-1. Status Codes

Return Code

Meaning

STATUS_OK

the function parameters were verified, the function
call was successful.

COMMUNICATIONS_ERROR

indicates that a timeout condition occurred. The
previous transmit message was not verified through
an acknowledge, and therefore, is questionable.

BAD_PARAM

indicates that the communications parameters used
were out of limits for the serial communications
setup.

SETUP_ERROR

indicates that a parameter passed to a function is out
of limits.

INVALID_COMMAND_NUMBER

returned by the CSP Device, indicates that the
command was not received correctly.

NO_ERROR_ENCOUNTERED

returned by the CSP Device to indicate the receipt of
a valid command sequence.

COMMAND_LRC_ERROR

returned by the CSP Device to indicate that a
command packet was invalid due to the failure of
the Longitudinal Redundancy Check.

RECEIVED_CHARACTER_ERROR

returned by the CSP Device to indicate the failure of
a character within a packet.

GENERAL_ERROR

either a catchall error returned by the CSP Device, or
an error reporting that a NULL pointer was sent to
a function when requesting CSP Device parameter
settings.

ACCESS_DENIED

the specified communications port is currently in use
by another program (for example HyperTerminal)
on the host computer.

FILE_ NOT_FOUND

the specified communications port does not exist on
the host system.

Function Definitions

Communications

Initialize Communications Port

Syntax

long csplnit(long nComPort)

Description

The csplnit() function provides a single call to initialize the CSP communications and all of
the software structures for the CSP interface. The initialization will consist of:

+ Initialize all memory structures, queues, and pointers
+ Establish a serial communications connection with the CSP using the specified port.
If any errors are detected, the serial communications will be unchanged.

Parameters
Where:

nCompPort is one of the following values:

COM1
COM2
COM3
comM4

Returned Status

STATUS_OK
BAD_PARAM if nComPort is less than COM1
COMMUNICATIONS_ERROR

Example
/I try to initialize COML1...
If (cspInit(COM1) == STATUS_OK)

{
/l we can use COML1 to talk to a CSP device...

}

else

{

2-3

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

/I COM1 is not available
}

2-4

Function Definitions

Restore Communications Port

Syntax

long cspRestore(void)

Description

The cspRestore() function provides a single call to restore the previously selected COM port
and all of the software structures for the CSP interface.

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR

Example

/I try to release the COM port...

If (cspRestore() == STATUS_OK)
{

/I released the COM port, switch to a new port/new device...

}

else

{

/I error handling procedure

}

2-5

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Basic Function Commands

Read Data

Syntax
long cspReadData(void)

Description

The cspReadData() function reads both the Barcode and the Device ID information stored in
the CSP device and saves this data in the DLL. The user must then call other functions listed
below to retrieve this data. Please refer to the following functions to retrieve the data from
the DLL.

¢+ cspGetBarcode() on page 2-10
¢ cspGetDevicelD() on page 2-12

Returned Status

If the number is zero the operation was successful, but no barcodes were stored in the CSP.
The Device ID can be read using cspGetDevicelD().

If the number is greater than zero: Indicates the number of barcodes retrieved from the CSP.
These barcodes can be read using cspGetBarcode().

Or if value was negative:

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

long nNumBarcodes;

[/ initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{

/I read in the barcodes...

2-6

if (NnNumBarcodes = cspReadData()) >= 0)

{
/I nNumBarcodes indicates how many barcodes were
/I stored
}
else
/I Error: alert the user to activate the CSP device
}

Function Definitions

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Clear Barcodes

Syntax

long cspClearBarCodes(void)

Description
The cspClearBarCodes() function clears all the barcodes stored in the CSP.

If this is the last action in a communications session, it should be followed by a power down
command.

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

/I try to release the COM port...

If (cspClearBarCodes () == STATUS_OK)
{

/I cleared the old barcodes from the device

}

else

{

/I Error: alert the user to activate the CSP device

2-8

Function Definitions

Power Down

Syntax

long cspPowerDown(void)

Description

The cspPowerDown() function directs the device to end the communication session and enter
the STOP mode until the next trigger action. This function returns on or before the device
issues an audible signal confirming the power down command.

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

long nNumBarcodes;
/l'initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored
/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device

cspPowerDown();
}
else
/I Error: alert the user to activate the CSP device
}

2-9

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

CSP Data Get

Get Barcode

Syntax
long cspGetBarcode (char szBarData[]
long nBarcodeNumber ,
long nMaxLength)
/
Description

The cspGetBarcode() function copies the barcode data to the users allocated memory space
from the DLL. The function will only copy up to the nMaxLength characters. If the barcode
is longer it will be truncated. The barcode data will be null terminated. The user must specify
which barcode they want (refer to cspReadData() on page 2-6) and the maximum length of
the allocated space they have reserved.

Parameters

Where:
szBarData is a character array the user has allocated to hold the barcodedata. The string
will be null terminated.
nBarcodeNumber is the number of the barcode the user wants to read.

nMaxLength is the length of the allocated space including the null terminator. If
nMaxLength is set to DETERMINE_SIZE, the function will return the length of the
barcode without copying any data. Note, if the user specifies the space is bigger than was
actually allocated, unpredictable results will occur.

Returned Status

length of barcode
BAD_PARAM if the user requested a barcode that does not exist.

Note: The value returned by this function will reflect the value of the
parameter in the CSP device at the time of the last call to the
cspReadData() function. In order to receive an accurate current

2-10

Function Definitions

parameter value, be sure that the call to cspReadData() function is
current.

Example

long nNumBarcodes;
char szBarData[80];
long nBarcodeNumber;
[/ initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored
/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the CSP device
cspPowerDown();

/I read each of the barcodes from the device...
for (nBarcodeNumber = 0;
nBarcodeNumber < nNumBarcodes;
nBarcodeNumber++)
{
cspGetBarcode (szBarData,
nBarcodeNumber,
sizeof(szBarData));

/I store the null terminated szBarData[] string
// to a disk file...

}

else
/I Error: alert the user to activate the CSP device

2-11

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Device ID
Syntax

long cspGetDeviceld(char szDeviceld[9], long nMaxLength)
Description

The cspGetDevicelD() function retrieves the szDeviceld [] string from the CSP device data
stored in the DLL. The string is null terminated.

Parameters
Where:

szDeviceld [] holds the returned data.

nMaxLength is the length of the allocated space including the null terminator. Note, if
the user specifies the space is bigger than was actually allocated, unpredictable results
will occur.

Returned Status
The length of szDeviceld.

Note: The value returned by this function will reflect the value of the
parameter in the device at the time of the last call to the
cspReadData() function. In order to receive an accurate current
parameter value, be sure that the call to cspReadData() function is
current.

Example

long nNumBarcodes;
char szDeviceld[9];
[/ initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored

2-12

Function Definitions

/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device
cspPowerDown();

/I retrieve the null terminated szDeviceld[] string and
I/ write it to a file...
cspGetDeviceld(szDeviceld, sizeof(szDeviceld));
}
else
/I Error: alert the user to activate the CSP device

2-13

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Protocol

Syntax

long cspGetProtocol(void)

Description

The cspGetProtocol() returns a long word corresponding to the protocol byte from the CSP
device data stored in the DLL.

Returned Status
If zero or positive, Protocol version
If negative, the Protocol version for the last transfer is not available.

Note: The data returned by this function will reflect the value of the
parameter in the CSP device at the time of the last call to one of the
following functions:

cspReadData(),
cspSet...(),
cspGet...(),
cspClearBarcode(),
cspPowerDown()

In order to receive an accurate current parameter value, be sure that the call to these functions
is current.

Example

long nNumBarcodes;
long nProtocol;

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored

2-14

else

/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device
cspPowerDown();

/I retrieve the CSP protocol value...
nProtocol = cspGetProtocol ();

}

/I Error: alert the user to activate the CSP device

Function Definitions

2-15

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get System Status

Syntax
long cspGetSystemStatus(void)

Description

The cspGetSystemStatus() returns a long word corresponding to the system status byte from
the CSP device data stored in the DLL.

Returned Status
If zero or positive, system status
If negative, the system status for the last transfer is not available.

Note: The data returned by this function will reflect the value of the
parameter in the device at the time of the last call to one of the
following functions:

cspReadBarCodes(),
cspSet...(),
cspGet...(),
cspClearBarcode(),
cspPowerDown()

In order to receive an accurate current parameter value, be sure that the call to these functions
is current.

Example

long nNumBarcodes;
long nStatus;

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored

2-16

else

/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device
cspPowerDown();

/I retrieve the CSP status value...
nStatus = cspGetSystemsStatus ();
}

/I Error: alert the user to activate the CSP device

Function Definitions

2-17

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get User ID

Syntax
long cspGetUserID(char szUserld[9], long nMaxLength)

Description

The cspGetUserID function retrieves the szUserld [] string from the CSP device data stored
in the DLL. The returned string is null terminated.

Where:

szUserld [] holds the returned data.

nMaxLength is the length of the allocated space including the null terminator. Note, if
the user specifies the space is bigger than was actually allocated, unpredictable results
will occur.

Returned Status

The length of szUserld.
COMMUNICATIONS ERROR
INVALID_ COMMAND_NUMBER
COMMAND_LRC ERROR
RECEIVED _CHARACTER_ERROR
GENERAL_ERROR

Note: The data returned by this function will reflect the value of the
parameter in the device at the time of the last call to one of the
following function:

cspReadBarCodes(),
cspSet...(),
cspGet...(),
cspClearBarcode(),
cspPowerDown()

In order to receive an accurate current parameter value, be sure that the call to these functions
is current.

Example

2-18

Function Definitions

long nNumBarcodes;
char szUserld[9];

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored

/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device
cspPowerDown();

/I retrieve the null terminated szUserld[] string...
cspGetUserID(szUserld, sizeof(szUserld));

}

else
/I Error: alert the user to activate the CSP device

2-19

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Software Version

Syntax

long cspGetSwVersion(char szSwVersion[9], long nMaxLength)

Description

The cspGetSW\ersion() function retrieves the user szSwVersion [] string from the CSP device
data stored in the DLL.

Where:

szSwVersion [] holds the null terminated version string.

nMaxLength is the length of the allocated space including the null terminator. Note, if
the user specifies the space is bigger than was actually allocated, unpredictable results
will occur.

Returned Status
The length of szSwVersion.

Note: The data returned by this function will reflect the value of the
parameter in the device at the time of the last call to one of the
following functions:

cspReadBarCodes(),
cspSet...(),
cspGet...(),
cspClearBarcode(),
cspPowerDown()

In order to receive an accurate current parameter value, be sure that the call to these functions
is current.

Example

long nNumBarcodes;
char szSwVersion [9];

[/ initialize the COM port for its FIRST use...

If (cspInit(COM1) == STATUS_OK)
{

2-20

Function Definitions

/I read in the barcodes...

if (nNumBarcodes = cspReadData()) >= 0)
{
/I nNumBarcodes indicates how many barcodes were
/I stored

/I Because the barcodes are buffered by the DLL,
/I conserve battery life and power down the device
cspPowerDown();

/I retrieve the null terminated szSwVersion [] string...
cspGetSwVersion(szSwVersion, sizeof(szSwVersion));

}

else
/I Error: alert the user to activate the CSP device}

2-21

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

CSP Configuration Set

Set TL Bits

Syntax
long cspSetTIBits(char aTlBits[8], long nMaxLength)

Description
The cspSetTLBits() function saves 8 bytes (64 bits) of host specific data to the CSP device.

Parameter
Where:

aTIBits [8] specifies all of the bits which are to be stored.

nMaxLength is the length of the allocated. Note, if the user specifies the space is bigger
than was actually allocated, unpredictable results will occur.

Returned Status

STATUS_OK

BAD_PARAM if nMaxLength < 8
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

char count;
char aTIBits[8];

[/l initialize the array of bits...
for (count = 0; count < sizeof(aTIBits); count++)
aTIBits[count] = count;

[/ initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{

/I program the new array of aTIBits[]...

2-22

Function Definitions

cspSetTIBits(aTIBits, sizeof(aTIBits));

}
else

{

/I Error: alert the user to activate the CSP device
}

2-23

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Set Volume

Syntax

long cspSetVolume(long nVolume)

Description
The cspSetVolume() function sets the CSP device’s volume.

Parameter
Where:

nVolume is one of the following values:

VOLUME_QUIET
VOLUME_LOW
VOLUME_MEDIUM
VOLUME_HIGH

Returned Status

STATUS_OK

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

BAD_PARM if nVolume not in range of valid values

Example
[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (cspSetVolume (VOLUME_MEDIUM) == STATUS_OK)
{

/I new volume was set properly...

}

else
/I Error: alert the user to activate the CSP device

2-24

Function Definitions

Set Barcode Redundancy

Syntax
long cspSetBarcodeRedundancy(long nonoOff)

Description
The cspSetBarcodeRedundancy() function turns the barcode redundancy on or off.

Parameter
Where:

nONOff is one of the following values:

PARM_OFF
PARM_ON

Returned Status

STATUS_OK

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

BAD_PARM if nOnOff not in range of valid values

Example

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (cspSetBarcodeRedundancy (PARM_OFF) == STATUS_OK)
{
/I Barcode Redundancy was disabled...
}
else
/I Error: alert the user to activate the CSP device

2-25

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Set User ID

Syntax
long cspSetUserld(char szUserld[9], long nMaxLength)

Description
The cspSetUserID() function saves the szUserld [] string to the CSP device.

Where:

szUserld [] contains the string to be written to the CSP device.

nMaxLength is the length of the allocated space including the null terminator. Note, if
the user specifies the space is bigger than was actually allocated, unpredictable results
will occur.

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

BAD_PARAM if nMaxLength is less than 8

Example

char count;
char szUserld [9];

[/ initialize the null terminated szUserld[] string...
memcpy(szUserld, “Its Mine”, 9);

[/ initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I program the szUserld []...
cspSetUserld (szUserld, sizeof(szUserld));

}

else

{

2-26

Function Definitions

/I Error: alert the user to activate the CSP device

}

2-27

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Set Continuous Scanning

Syntax

long cspSetContinuousScanning(long nonOff)

Description
The cspSetContinuousScanning() function turns the barcode continuous scanning on or off.

Parameters
Where:

nONOff is one of the following values:

PARM_OFF
PARM_ON

Returned Status:

STATUS_OK

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

BAD_PARM if nOnOff not in range of valid values

Example

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
/I read in the barcodes...
if (cspSetContinuousScanning (PARM_OFF) == STATUS_OK)
{
/I Continuous Scanning was disabled...
}
else
/I Error: alert the user to activate the CSP device

2-28

Function Definitions

CSP Configuration Get

Get TL Bits

Syntax

long cspGetTIBits(char aTlBits[8], long nMaxLength)

Description
The cspGetTLBiIts() function retrieves the aTIBits [] string from the CSP device.

Parameters
Where:

aTIBits [] holds the returned data.

nMaxLength is the length of the allocated space. Note, if the user specifies the space is
bigger than was actually allocated, unpredictable results will occur.

Returned Status

If operation OK- length of aTIBits read

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

char aTIBits[8];

[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
if (cspGetTIBits (aTIBits, sizeof(aTIBits) >= STATUS_OK)
{
/I retrieved the current value of aTIBits[]
/I from the device...

}

else

2-29

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

/I Error: alert the user to activate the CSP device

}

2-30

Function Definitions

Get Volume

Syntax

long cspGetVolume(void)

Description
The cspGetVolume() function retrieves the CSP device’s volume setting.

Returned Status
If the returned value is zero or greater:

VOLUME_QUIET
VOLUME_LOW
VOLUME_MEDIUM
VOLUME_HIGH

If the returned value is negative:

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

long nVolume;

[/ initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
if (nVolume = cspGetVolume()) >= 0)
{
/I retrieved the current value of volume from
/I the device...
}

else

{

/I Error: alert the user to activate the CSP device

}

2-31

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Barcode Redundancy

Syntax

long cspGetBarcodeRedundancy(void)

Description
The cspGetBarcodeRedundancy() function retrieves the CSP device’s redundancy setting.

Returned Status
If the returned value is zero or greater:

PARM_OFF
PARM_ON

If the returned value is negative:

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

long nBcRedundancy;
[/ initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)
{
if (nBcRedundancy = cspGetBarcodeRedundancy ()) >= 0)
{
/I retrieved the current value of BC Redundancy
/I from the device...
}

else

{
/I Error: alert the user to activate the CSP device

}

2-32

Function Definitions

Get Continuous Scanning

Syntax

long cspGetContinuousScanning(void)

Description

The cspGetContinuousScanning() function retrieves the CSP device’s continuous scanning
setting.

Returned Status
If the returned value is zero or greater:

PARM_OFF
PARM_ON

If the returned value is negative:

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example:

long nContinuousScan;
[/l initialize the COM port for its FIRST use...
If (csplnit(COM1) == STATUS_OK)

{

if (nContinuousScan = cspGetContinuousScanning ()) >= 0)
{
/I retrieved the current value of Continuous Scan
/I from the device...
}

else
{
/I Error: alert the user to activate the CSP device
}

}

2-33

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

DLL Configuration

Set Retry Count

Syntax
long cspSetRetryCount(long nRetryCount)

Description

The cspSetRetryCount() function sets the communications retry count. The default is 5. In
the event of a communications failure, the DLL will attempt the communication
nRetryCount more times before returning a communications error. Each retry extends the
length of the CSP communication by approximately 1 second until the count expires or the
CSP device responds.

Parameters
Where:

nRetryCount - any long word in the range from 0 to 9.

Returned Status

STATUS_OK
BAD_PARAM

Example

/I change the default retry count to O

/I future attempts to get/set device parameters will not attempt
/I any retries so the device will time out within one second
cspSetRetryCount(0);

2-34

Function Definitions

Get Retry Count

Syntax
long cspGetRetryCount(void)

Description
The cspGetRetryCount() function retrieves the current retry count setting in the DLL.

Returned Status
The value of the retry count (0-9)

Example

long nRetryCount;

/I retrieve the default number of retries upon
/I starting an application

nRetryCount = cspGetRetryCount ();

2-35

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Miscellaneous

Get DLL Version

Syntax
long cspGetDlIlIVersion(char szDllIVersion[] , long nMaxLength)

Description

The cspGetDLLVersion() function copies the DLL version string into the users allocated
memory area. The string is null terminated. The user should allocate a minimum string array
size of 20 characters for this function. If the debug version of the DLL is being used, the
version information will be prepended with “Debug™.

Parameters
Where:

szDIIVersion [] holds the returned data.

nMaxLength is the length of the allocated space including the null terminator. If
nMaxLength is set less than the length of the version string, the function will return the
length of the szDIIVersion without copying any data. Note, if the user specifies the space
is bigger than was actually allocated, unpredictable results will occur.

Returned Status

STATUS_OK
FILE_NOT_FOUND
Length of version string

Example

char szDIIVersion[20]; /I minimum of 20 chars recommended
/I retrieve the current null terminated DLL

/I revision information string...

cspGetDllIVersion(szDlIVersion, sizeof(szDIIVersion));

2-36

Function Definitions

Debug

Note: This function only works in the debug version of the DLL.

Set Debug Mode

Syntax
long cspSetDebugMode(long nOnOff)

Description

The cspSetDebugMode() function turns the debug mode of the DLL on or off. Note this
function is only writes data to the output file in the debug version of the DLL.

When the debug mode is on, all commands and responses are written to a debug file named
‘debug.txt’. Each entry in the file will have a time stamp preceding the entry.

Parameters
Where:

nONOff is one of the following values:

PARM_OFF
PARM_ON

Returned Status

STATUS OK
FILE_ NOT_FOUND
Other: see WinError.h

Example

If (cspSetDebugMode(PARM_ON) = STATUS_OK)
{

/I File error, look up the problem...

}

else

{
/I the debug.txt file will be written to during CSP

/I transfers if the debug version of the DLL is being used...

}

2-37

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Communications Port Information

Syntax

long cspGetComminfo(long nComPort)

Description
The cspGetComminfo() function determines information about the specified nComPort.

This function determines if the Port specified is a valid RS-232 serial port. It can detect the
following information about the specified serial port:

¢ It can detect a serial port (default RS-232)
¢ It can detect a modem (internal/external)

¢ It can detect when a port is in use

¢ It can detect that the port does not exist

¢ It can report other Windows errors associated with the specified port

Parameters
Where:

nComPort is one of the following values:

COM1
COM2
COM3
comM4

Returned Status

SERIAL_MODEM - the port is a modem/connected to a modem
SERIAL_RS232 - the port is an RS-232 port

ACCESS _DENIED - the port is in use by another program
FILE_NOT_FOUND - the port does not exist

other - consult WinError.h

Example

if (cspGetComminfo(COM1) != SERIAL_RS232)
{

/I try another port until an available
/I RS-232 port is found...

2-38

Function Definitions

else

{
/I this is the first available RS-232 port,

/I display a message...

}

2-39

& \ J 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Advanced Function Commands

Four additional functions provide users with advanced capabilities for reading data as well
as setting and retrieving parameters. Knowledge of the CSP protocol is required when dealing
with raw data formats.

Read Raw Data

Syntax
long cspReadRawData(char aBuffer[], long nMaxLength)

Description

The cspReadRawData() function performs an “Upload” command on a CSP device. The raw
data read from the CSP device is placed into aBuffer[] for up to nMaxLength bytes. If the
amount of data that is read from the CSP device exceeds nMaxLength, the buffer will be
truncated at nMaxLength bytes. The data in the buffer will be exactly the data received from
the CSP device. A knowledge of the CSP protocol and data format is required in order to
interpret the device data.

Returned Status:
Positive return values indicate the number of bytes actually read from the CSP device.

If the return value was negative:

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

char aBuffer[4096];
long nBytesRead;

[/l initialize the COM port for its FIRST use...
If (cspInit(COM1) == STATUS_OK)
{
/I read in the raw data...
if (nBytesRead =
cspReadRawData (aBuffer, sizeof(aBuffer))) > 0)

2-40

Function Definitions

{
/I nBytesRead indicates how many bytes of
// data were read

}

else
/I Error: alert the user to activate the CSP device}

2-41

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Set Device Parameters

Syntax

long cspSetParam (long nParam, char szString[] , long nMaxLength)

Description
The cspSetParam() function permits the user to write individual CSP device parameters one
at a time as illustrated by the following table.

If this is the last action in a communications session, it should be followed by a power down
command.

Parameters
Where:

nParam is one of the following:

TL_BITS

VOLUME
BARCODE_REDUNDANCY
USER_ID
CONTINUOUS_SCANNING

szString[] contains the new parameter setting
nMaxLength determines how many characters in szString[] are used in setting the

parameters.
NParam SzString[] nMaxLength
TL_BITS char [8]: any eight byte string 8
VOLUME Array with the first byte set to one of 1

the following values:
VOLUME_QUIET
VOLUME_LOW
VOLUME_MEDIUM
VOLUME_HIGH

2-42

Function Definitions

BARCODE_REDUNDANCY

Array with the first byte set to one of
the following values:

PARAM_OFF
PARAM_ON

USER_ID

char [8]: any eight byte string

CONTINUOUS_SCANNING

Array with the first byte set to one of
the following values:

PARAM_OFF
PARAM_ON

Returned Status
STATUS_OK

COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER

COMMAND_LRC_ERROR

RECEIVED_CHARACTER_ERROR

GENERAL_ERROR

Example

char szString[9];

/I create a volume string...
szString[0] = VOLUME_LOW;
szString[1] = O;

[/ initialize the COM port for its FIRST use...

If (cspInit(COM1) == STATUS_OK)

{

/I try to change the volume setting...
if (cspSetParam (VOLUME, szString, 1) == STATUS_OK)

{

/I The CSP volume setting was changed...

}

else

/I Error: alert the user to activate the CSP device

2-43

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

Get Device Parameters

Syntax

long cspGetParam (long nParam, char szString[] , long nMaxLength)

Description
The cspGetParam() function permits the user to read individual device parameters one at a
time as illustrated by the following table.

If this is the last action in a communications session, it should be followed by a power down
command.

Parameters
Where:

nParam is one of the following:

TL_BITS

VOLUME
BARCODE_REDUNDANCY
USER_ID
CONTINUOUS_SCANNING

SzString[] will be used to store the retrieved parameter setting

nMaxLength determines how many characters from the retrieved parameter are written
into SzString[].

nParam SzString[] required
nMaxLength
TL_BITS char [8]: any eight byte string 8
VOLUME Array with the first byte set to one of 1

the following values:
VOLUME_QUIET
VOLUME_LOW
VOLUME_MEDIUM
VOLUME_HIGH

2-44

Function Definitions

BARCODE_REDUNDANCY Array with the first byte set to one of
the following values:

PARAM_OFF
PARAM_ON

USER_ID char [8]: any eight byte string

CONTINUOUS_SCANNING Array with the first byte set to one of
the following values:

PARAM_OFF
PARAM_ON

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example
char szString[9];

[/l initialize the COM port for its FIRST use...
if (cspInit(COM1) == STATUS_OK)
{
/I read in the current volume setting
if (cspGetParam (VOLUME, szString, 1) == STATUS_OK)
{
/I The CSP volume setting was changed...
/I szString[0] contains the value of
/I the current volume...
switch ((long) szString[0])
{
case VOLUME_QUIET: // Note: long values!
case VOLUME_ LOW:
case VOLUME_MEDIUM:
case VOLUME_HIGH:
break;

default:

2-45

s ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

/I print out error message...
break;

}

else
/I Error: alert the user to activate the CSP device

2-46

Function Definitions

Interrogate the Device

Syntax

long cspinterrogate (void)

Description

The csplnterrogate() function request a response from the device indicating that it is
operating and containing version information. The actual CSP device interrogation reports
the communications status, the protocol version, the system status, and the device software
version. All of this information can be read back using the appropriate CSP functions.

Note: An interrogation is required to establish communications with the
device each time the device is activated. If the device goes to sleep, an
interrogation is required to re-establish communications. All DLL
functions that communicate with the device automatically perform an
interrogation. An audible beep indicates that the device is connected
before this function returns.

Returned Status

STATUS_OK
COMMUNICATIONS_ERROR
INVALID_COMMAND_NUMBER
COMMAND_LRC_ERROR
RECEIVED_CHARACTER_ERROR
GENERAL_ERROR

Example

[/l initialize the COM port for its FIRST use...
if (cspInit(COM1) == STATUS_OK)

{
if (cspinterrogate() == STATUS_OK)
{
/I found a CSP device on this port!
}
else
{

/I Error: alert the user to activate the CSP device

2-47

& \ ‘ 32-Bit DLL for Windows 95, 98, and Windows NT User Guide

=

2-48

2 3

Index

A
Advanced Function Commands 2-40
B
Basic Function Commands.............. 2-6
bullets X
C
ClearBarcodes 2-8
Communications Function Commands 2-3
conventions

notational X
CSP Configuration Get Command . s 2-22, 2-29
CSP Configuration Set Commands. 2-22
CSP Data Get Commands 2-10
CSP32.DLL

Install 1-1

redistributing. 1-1
D
Debug Commands 2-37
DLL Configuration Commands 2-34
F
Function Definitions. 2-1
G
GetBarcode 2-10
Get Barcode Redundancy 2-32
Get Communications Port Information ... 2-38
Get Continuous Scanning 2-33

GetDevicelD 2-12
Get Device Parameters 2-44
Get DLL Version 2-36
GetProtocol 2-14
GetRetryCount 2-35
Get Software Version 2-20
Get System Status 2-16
GetTLBIitS ...t 2-29
GetUserID 2-18
GetVolume 2-31
|
information, service. X
Initialize Communications Port 2-3
Interrogate the Device 2-47
M
Miscellaneous Commands 2-36
N
notational conventions X
P
PowerDown 2-9
R
ReadData 2-6
Read RawData 2-40
Restore Communications Port 2-5
Returned Status Definitions 2-1
Access Denied 2-2

F CSP 32-Bit DLL for Windows 95, 98, and NT User Guide

=

Bad Param 2-2
Command LRC Error 2-2
Communications_Error 2-2
File_Not Found 2-2
General_Error 2-2
Invalid_Command_Number 2-2
No_Error_Encountered 2-2
Received_Character Error 2-2
Setup_Error 2-2
Status OK 2-2

Index-2

S

service information X
Set Barcode Redundancy 2-25
Set Continuous Scanning 2-28
SetDebugMode 2-37
Set Device Parameters 2-42
SetRetryCount 2-34
Set TLBits 2-22
SetUserID 2-26
SetVolume 2-24
symbol supportcenter Xi

part number
Revision Level — Release Date

Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742

	About This Manual
	Table of Contents
	Index
	Contents
	Chapter 1 Installing the CSP32.DLL
	Introduction
	Note:
	Table 1-1. CSP32.DLL Files

	Installing CSP32.DLL

	Chapter 2 Function Definitions
	Introduction
	Returned Status Definitions
	Table 2-1. Status Codes

	Communications
	Initialize Communications Port
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Restore Communications Port
	Syntax
	Description
	Returned Status
	Example

	Basic Function Commands
	Read Data
	Syntax
	Description
	Returned Status
	Example

	Clear Barcodes
	Syntax
	Description
	Returned Status
	Example

	Power Down
	Syntax
	Description
	Returned Status
	Example

	CSP Data Get
	Get Barcode
	Syntax
	Description
	Parameters
	Returned Status
	Note:

	Example

	Get Device ID
	Syntax
	Description
	Parameters
	Returned Status
	Note:

	Example

	Get Protocol
	Syntax
	Description
	Returned Status
	Note:

	Example

	Get System Status
	Syntax
	Description
	Returned Status
	Note:

	Example

	Get User ID
	Syntax
	Description
	Returned Status
	Note:

	Example

	Get Software Version
	Syntax
	Description
	Returned Status
	Note:

	Example

	CSP Configuration Set
	Set TL Bits
	Syntax
	Description
	Parameter
	Returned Status
	Example

	Set Volume
	Syntax
	Description
	Parameter
	Returned Status
	Example

	Set Barcode Redundancy
	Syntax
	Description
	Parameter
	Returned Status
	Example

	Set User ID
	Syntax
	Description
	Returned Status
	Example

	Set Continuous Scanning
	Syntax
	Description
	Parameters
	Returned Status:
	Example

	CSP Configuration Get
	Get TL Bits
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Get Volume
	Syntax
	Description
	Returned Status
	Example

	Get Barcode Redundancy
	Syntax
	Description
	Returned Status
	Example

	Get Continuous Scanning
	Syntax
	Description
	Returned Status
	Example:

	DLL Configuration
	Set Retry Count
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Get Retry Count
	Syntax
	Description
	Returned Status
	Example

	Miscellaneous
	Get DLL Version
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Debug
	Note:
	Set Debug Mode
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Get Communications Port Information
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Advanced Function Commands
	Read Raw Data
	Syntax
	Description
	Returned Status:
	Example

	Set Device Parameters
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Get Device Parameters
	Syntax
	Description
	Parameters
	Returned Status
	Example

	Interrogate the Device
	Syntax
	Description
	Note:

	Returned Status
	Example
	part number Revision Level — Release Date

