
Tutorial

November 2010

Creating LiveView™
plug-ins
for Android™ phones

Version 1.0

Tutorial | Creating LiveView™ plug-ins
Preface

Document history

Purpose of this document

The purpose of this document is to illustrate how to create plug-ins for the LiveView™ micro display on
Android version 2.1 (Eclair).

The document is divided into three parts. The first part describes the LiveView™ micro display,
LiveWare™ application, LiveView™ manager and LiveView™ plug-ins. The second part is the actual
tutorial, describing how to create plug-ins for the LiveView™ micro display. The third part includes some
LiveView™ best practices.

Date Version

November 2010 Version 1.0
2 November 2010

This document is published by Sony Ericsson
Mobile Communications AB, without any
warranty*. Improvements and changes to this
text necessitated by typographical errors,
inaccuracies of current information or
improvements to programs and/or equipment,
may be made by Sony Ericsson Mobile
Communications AB at any time and without
notice. Such changes will, however, be
incorporated into new editions of this document.
Printed versions are to be regarded as temporary
reference copies only.

*All implied warranties, including without
limitation the implied warranties of
merchantability or fitness for a particular
purpose, are excluded. In no event shall
Sony Ericsson or its licensors be liable for
incidental or consequential damages of any
nature, including but not limited to lost profits or
commercial loss, arising out of the use of the
information in this document.

This Tutorial is published by:

Sony Ericsson Mobile Communications AB,
SE-221 88 Lund, Sweden

www.sonyericsson.com/

© Sony Ericsson Mobile Communications AB,
2010. All rights reserved. You are hereby granted
a license to download and/or print a copy of this
document.
Any rights not expressly granted herein are
reserved.

November 2010

Tutorial | Creating LiveView™ plug-ins

 on an
(IPC).

ilities to
ing the
Sony Ericsson Developer World

At www.sonyericsson.com/developer, developers find the latest technical
documentation and development tools such as phone White papers, Developers
guidelines for different technologies, Getting started tutorials, SDKs (Software
Development Kits) and tool plug-ins. The Web site also features news articles, go-
to-market advice, technical support and much more. For more information about
these professional services, go to the Sony Ericsson Developer World Web site.

Document conventions

Terminology

Typographical conventions
Code is written in Courier font: <java>..</java>.

Trademarks and
acknowledgements

Java and all Java based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc, in the U.S. and other countries.

Android and Android Market are trademarks of Google Inc. Use of these
trademarks are subject to Google Permissions.

The Liquid Identity logo, LiveView and LiveWare are trademarks or registered
trademarks of Sony Ericsson Mobile Communications AB.

Twitter is a trademark or a registered trademark of Twitter, Inc.

AIDL Android Interface Definition Language

An IDL language used to generate code that enables two processes
Android-powered device to talk using interprocess communication

Plug-in An plug-in is a set of software components that adds specific capab
a larger software application. If supported, plug-ins enable customis
functionality of an application.
3 November 2010

www.sonyericsson.com/developer

Tutorial | Creating LiveView™ plug-ins
Facebook is a trademark or a registered trademark of Facebook, Inc.

Bluetooth is a trademark or a registered trademark of Bluetooth SIG Inc. and any
use of such mark by Sony Ericsson is under license. Interoperability and
compatibility among Bluetooth™ devices varies. Device generally supports
products utilizing Bluetooth spec. 1.2 or higher, and Headset or Handsfree profile.

Sony is a trademark or registered trademark of Sony Corporation.

Ericsson is a trademark or registered trademark of Telefonaktiebolaget LM
Ericsson.

Other product and company names mentioned herein may be the trademarks of
their respective owners.

Licensing

The plug-in tutorial code and example projects are licensed under the MIT license -
www.opensource.org/licenses/mit-license.php.

Copyright (c) 2010 Sony Ericsson

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
4 November 2010

www.opensource.org/licenses/mit-license.php

Tutorial | Creating LiveView™ plug-ins

5 November 2010

Contents

 Introduction ...6
 LiveView™ micro display ...6
 Architecture ...8
 Plug-in types ..9
 Plug-in components ..11
 Registration of a plug-in ..13
 Finding the installed plug-in ..14
 Publishing to Android Market ..14
 How to create plug-ins ..15
 Step 1 - Download developer tools ...15
 Step 2 - Implement components ...15
 Step 3 - Check framework classes ..16
 Step 4 - Implement Service methods ..17
 Step 5 - Update resources for Preference Activity ..18
 Step 6 - Implement Broadcast Receiver ...19
 Step 7 - Publishing to Android Market ..19
 Best practices ...20
 Sending images ...20
 Battery drain and Bluetooth stability ...20
 Misbehaving plug-ins ..20
 Appendix ...21
 LiveView™ application GUI ...21
 Announce plug-in example project ..25
 Sandbox plug-in example project ...28
 Intents ..30

Tutorial | Creating LiveView™ plug-ins
Introduction

You can create LiveView™ plug-ins which work as plug-ins of already exicting
applications or as standalone applications, both with the purpose to feed
information to the LiveView™ micro display. The easiest way to get started with a
new plug-in, is to use the plug-in template project that is provided with the Sony
Ericsson LiveView™ SDK. You can create either announce plug-ins or sandbox
plug-ins which you can run on an Android phone paired with a LiveView™.

For more information on how to create plug-ins, see “How to create plug-ins” on
page 15. For more information about a the different plug-ins, see “Plug-in types”
on page 9. For information about an announce plug-in project, see “Announce
plug-in example project” on page 25. For information about a sandbox plug-in
project, see “Sandbox plug-in example project” on page 28.

LiveView™ micro display
LiveView™ micro display is an accessory that mirrors and displays the events that
happen in your phone, so you never miss what is going on. On your LiveView™
screen, you can view plug-ins and notifications such as text messages, multimedia
messages, incoming calls, calendar event reminders, updates from friends on
Facebook™, and tweets. LiveView™ uses a Bluetooth™ connection to
communicate with your phone.
6 November 2010

Tutorial | Creating LiveView™ plug-ins
Overview
The LiveView™ micro display has two hardware keys and a touch area. You can use
either a clip or a wrist strap to wear the LiveView™ micro display.

Note! If you create plug-ins, you can customise number 2, 3, 4, 5 and 6 (See illustration
above).

Notification LED
The Notification LED (Light-emitting diode) provides information on the status and
notifications of LiveView™.

1 Power on/off, Pairing mode, Display on/off,
Notification LED

2 Back, Select, Media player, Display on

3 Next

4 Down

5 Previous

6 Up

Flashing blue Incoming call

Flashing red Low battery

Flashing green A new notification is available

Flashing blue and
green alternately

Pairing is underway

Red The battery is charging, and the battery level is
between low and full

Green The battery is fully charged
7 November 2010

Tutorial | Creating LiveView™ plug-ins
LiveView™ User guide
For more information about the LiveView™ micro display, a User guide is available at
www.sonyericsson.com/support.

Architecture
All plug-ins communicates with the LiveView™ device via the use of a defined interface
to the LiveView™ service installed on the phone. The LiveView™ service
communicates with the LiveView™ device via Bluetooth.

LiveView™ plug-ins
A plug-in can be implemented as a part of an application, and would, when launched
on the phone, send information to the LiveView™ device. An example could be an
extended screen for the phone camera application, showing a snapshot of the just
taken photo. On the other hand, a plug-in can be a standalone application which whole
purpose would be to feed information to the LiveView™ device, for example a plug-in
that fetches the latest information from a specific blog. LiveView™ plug-ins can be
created either as announce plug-ins, or as sandbox plug-ins. For more information
about the different plug-ins, see “Plug-in types” on page 9.

LiveView™ application
The LiveView™ application consists of a GUI and a service. The GUI shows the user
which plug-ins that are installed, and presents the plug-in preferences, for example
enabling or disabling the plug-ins as well as setting custom preferences defined by the
implemented plug-in. For more information about the LiveView™ application GUI, see
“LiveView™ application GUI” on page 21.

The LiveView™ service is the communication hub, talking to the LiveView™ device as
well as handling the communication with the plug-ins via broadcasts, intents and direct
RPC communication. For more information see “Plug-in components” on page 11.

There are two interfaces to consider for the LiveView™ service, the IPluginService and
the IPluginServiceCallback. The IPluginService interface defines the methods to call
that will interact with the LiveView™ service and consequently the LiveView™ device.
The IPluginServiceCallback interface defines the methods that the LiveView™ service
8 November 2010

www.sonyericsson.com/support
www.sonyericsson.com/support

Tutorial | Creating LiveView™ plug-ins
will use to communicate with the plug-in. For more information about IPluginService
and IPluginServiceCallback, see “IPluginService” on page 22 and
“IPluginServiceCallback” on page 23.

LiveWare™ manager
LiveWare™ manager is a framework for Android phones that manages applications
and related settings for smart accessories, for example LiveView™. LiveWare™
manager requires Android version 2.0 or later. LiveWare™ manager needs to be
installed on your phone before using your LiveView™. LiveWare™ manager is required
in order to:

- Define what application should be started when a specific accessory such as Live
View™ is connected to the phone

- Download and install applications that are defined for a specific accessory from
Android Market

- Download and install plug-ins for applications from Android Market

In order for the LiveWare™ manager to find the plug-in, you need to define certain
information in the Android project manifest description. For more information, see
“Step 7 - Publishing to Android Market” on page 19.

Plug-in types

Announce plug-in
Announce plug-ins can send announcements to the LiveView™ device. This is done in
the same way as the predefined announce features, like Facebook and Twitter. An
announce plug-in example is available in section “Announce plug-in example project”
on page 25.

Sandbox plug-in
The sandbox plug-in can take complete control of the LiveView™ device by sending
images to it and control its ability to vibrate and display different colors on the LED. All
user activities are propagated to the plug-in, so that it can take appropriate actions.
For example, when the user presses buttons on the LiveView™ device, events are sent
to the sandbox plug-in. The plug-in can then handle the events, for example by
sending a specific image to the LiveView™ device.
9 November 2010

Tutorial | Creating LiveView™ plug-ins
The diagram below shows an example of how a sandbox plug-in works. The
LiveView™ service starts the plug-in when the user has entered the plug-in on the
LiveView™ device, then button press events are sent to it. The plug-in responds by
starting a worker that sends images. All button events are sent to the plug-in. A long-
press on the right button of the LiveView™ device indicates to the LiveView™
application that the user has left the sandbox mode. A stopPlugin call is made to the
sandbox plug-in, and any work is stopped.

For more information about a sandbox plug-in see “Sandbox plug-in example project”
on page 28.

LiveView Service Broadcast Receiver Service

Plugin

Preference Activity

startPlugin

sendImage

button(select)

startWork

sendImage

sendImage

sendImage

button(select)

stopWork

button(long press)

stopPlugin
10 November 2010

Tutorial | Creating LiveView™ plug-ins
Plug-in components
A plug-in needs to define three components to be able to function correctly with the
LiveView™ micro display. It is the Service, Preference Activity and the Broadcast
Receiver. For more information about the components, from what is already mentioned
in this section, see “Step 2 - Implement components” on page 15.

The architecture overview for the LiveView™ application and plug-ins is shown in the
illustration below.

Service
The Service is the worker of the plug-in. It should handle communication with the
LiveView™ service as well as define the total lifecycle span of the plug-in.

Preference Activity
The Preference Activity defines the settings that the user will be able to update.
Settings could include if the plug-in is enabled, updated sequences for
announcements, and account handling. All plug-ins are responsible for their own
preferences which are launched as a new activity from the LiveView™ application.

Plugin
Service

Plugin

Preference
Activity

Broadcast
Receiver

LiveView
Service

LiveView app

broadcast

RPC communication
via AIDL interfaces

startService
startActivity

Phone

bluetooth

intent
11 November 2010

Tutorial | Creating LiveView™ plug-ins
The diagram above shows an example of how the user disables plug-in via
preferences. The user is shown the preferences for the plug-in and the user chooses to
disable the plug-in. In this sequence, the service implements a shared preference
listener and is therefore notified of the change. The plug-in service stops.

Broadcast Receiver
The primary functionality of the Broadcast Receiver is to catch the LiveView™
application plug-in broadcast and use that to determine which, if any, of the two
entities (install plug-in or launch its Preferences Activity) to launch. The broadcast has
at least one additional data field in the key CMD which will equal either start or
preferences.

- start - the Broadcast Receiver should start its service which in turn should notify the
LiveView™ application that it is installed on the phone. The start command is sent by
the LiveView™ application when the user has requested that plug-ins registers
themselves.

- preferences - it should get the second additional data in the key pluginName. If that
value corresponds to the plug-ins own name it should launch its Preference Activity.
The preferences command is sent when the user has requested its preferences from
the LiveView™ configuration screen.

LiveView Service Broadcast Receiver Service

Plugin

Preference Activity

preferences

startActivity

addPreferencesFromResources

display preference screen

User disables plugin

onSharedPreferenceChanged

stop work
12 November 2010

Tutorial | Creating LiveView™ plug-ins
Registration of a plug-in
The registration of a plug-in is triggered by a request from the LiveView™ application,
using a pre-defined broadcasted intent which all plug-ins need to respond to. For more
information about broadcast intent, see “Broadcast intent” on page 30.

The registration can be called upon several times for the same plug-in, but will only
result in one actual instance being registered. When registering the plug-in, the
LiveView™ service is provided with the following:

- An instance of the callback interface

- A path to the image it wants to have displayed in the menu

- A name of the plug-in (also for the menu)

- If the plug-in is an announce plug-in or a sandbox plug-in

- The plug-in package name (this is used for un-installation purposes)

The diagram above shows an example of how the user register an announce plug-in.
The LiveView™ service sends a broadcast message containing a start command to all
plug-ins. The plug-in Broadcast Receiver is invoked and starts the plug-in Service. The
Service registers itself to the LiveView™ service and also notifies the specific Service
start-intent for the LiveView™ service to use for specific starts and stops. The plug-in
will receive the startPlugin call on registration, and if the LiveView™ service is
restarted. The plug-in service starts its dedicated work.

LiveView Service Broadcast Receiver Service

Plugin

Preference Activity

start

startService

Plugin ID

notifyInstalled

register

result

startPlugin

sendAnnounce
13 November 2010

Tutorial | Creating LiveView™ plug-ins
Finding the installed plug-in
When a plug-in has been found by the LiveView™ application, the LiveView™ device
will present a new plug-in icon in the scrolling icon list. By tapping this icon you will find
the new installed plug-in.

Depending on what type of plug-in you have installed, the LiveView™ device will act
according to its type:

- Announce - show all announcements sent by the plug-in

- Sandbox - enter sandbox mode and start plug-in

When in sandbox mode, you will leave the plug-in by pressing and holding down the
action button.

Publishing to Android Market
There are some requirements for publishing your plug-in to Android Market. For more
information, see “Step 7 - Publishing to Android Market” on page 19.
14 November 2010

Tutorial | Creating LiveView™ plug-ins
How to create plug-ins

Step 1 - Download developer tools
The easiest way to get started with a new plug-in, is to use the plug-in template project
that is provided with the Sony Ericsson LiveView™ SDK. You can create either
announce plug-ins or sandbox plug-ins which you can run on an Android phone paired
with a LiveView™ device. For more information about the different plug-ins, see “Plug-
in types” on page 9. Below is a table of the developer tools you need.

Step 2 - Implement components
In order for the plug-in to function with the LiveView™ device, you need to implement a
Service, a Preference Activity and a Broadcast Receiver. For more information about
the three components, see “Plug-in components” on page 11.

Note! If you decide to use the plug-in template project, the above information is
already implemented for you, but has to be configured.

Service
Your service needs to extend the android.app.Service class and implement four of its
methods. The following four methods of the android.app.Service class have to be
extended:

onCreate
This method does initializations like moving icons to the phone.

onStart
This method connects to the LiveView™ service and other start activities.

onBind
This method needs to be implemented in order to bind the service to the LiveView™
service, but does not need to contain any logic.

onDestroy
This method unregisters the plug-in and un-binds it from the LiveView™ service.

Tool Information

Eclipse version
3.4 or 3.5

http://www.eclipse.org/downloads

Android SDK http://developer.android.com/sdk/index.html

ADT plug-in for
Eclipse

http://developer.android.com/sdk/eclipse-adt.html
15 November 2010

http://www.eclipse.org/downloads
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html

Tutorial | Creating LiveView™ plug-ins
Besides this, the Service needs to define instances of ServiceConnection, to bind with
the LiveView™ service, and define an OnSharedPreferenceChangeListener, to register
in the PreferenceManager. The OnSharedPreferenceChangeListener will tell the service
when the user changes any settings of the plug-in, which it then can respond to.

Preference Activity
You need to define a class that extends the android.preference.PreferenceActivity
class. The class needs to implement the method onCreate and should include a call to
the method addPreferencesFromResource, which adds the defined preference
resources to the shared preferences of the current user session. Your resources need
to be defined in a preference resource, that is xml/preferences.xml. The xml should at
least contain a checkbox, for the user to check/uncheck in order to enable or disable
the plug-in.

Broadcast Receiver
The LiveView™ service will try to communicate with your plug-in by sending broadcast
messages with the intent

com.sonyericsson.extras.liveview.LAUNCH_PLUGIN

You need to define a class that extends the android.content.BroadcastReceiver class
and implements the onReceive method.

The incoming broadcast intent will contain two extras that is CMD and pluginName. In
addition to the obvious pluginName, the CMD will contain either the string start or
preferences and will have the following intentions.

Start
This should start the plug-in service by for example using context.startService(intent).

Preferences
This should start the preference activity by for example using
context.startActivity(intent).

Step 3 - Check framework classes
The framework that is the foundation of the plug-in template project consists of a
number of classes that takes care of the communication with the LiveView™
application, as well as giving you access to some utility classes.

AbstractPluginService
This is the main class of the framework. It sets up the communication with the
LiveView™ application. It implements:

- Bind with LiveView™ application

- ServiceConnection.onServiceConnected which is where the registration of the plug-
in is done
16 November 2010

Tutorial | Creating LiveView™ plug-ins
- ServiceConnection.onServiceDisconnected which is where the connection to the
LiveView™ application is terminated and the service is stopped

- OnSharedPreferenceChangeListener.onSharedPreferenceChanged which is when
the user changes any of the settings of the plug-in via the LiveView™ application

These methods are extendable in your service via abstract method implementations.
When you create a new plug-in, your service needs to extend the
AbstractPluginService.

LiveViewAdapter
This is an abstraction of the LiveView™ application interface which encapsulates the
methods you can call.

PluginConstants
This class holds common constants that are used throughout the project.

PluginPreferences
This class handles the Preference Activity call from the LiveView™ application.

PluginReceiver
This class is the Broadcast Receiver for the broadcasts sent from the LiveView™
application. It will in its turn start the preferences, PluginPreferences, or the service
which is extending the AbstractPluginService. For more information about the class,
see an example in “Announce plug-in example project” on page 25.

PluginUtils
This is a utility class that implements methods for communicating with the LiveView™
application, for example to send an image or send an announcement.

Step 4 - Implement Service methods
If you use the plug-in template project your Service needs to extend the
AbstractPluginService class, as is shown in the class TemplateService. You can
rename the TemplateService class and use it as a skeleton, since it already has all
method stubs needed. Follow the instructions that are included as comments in the
code. There you will find methods that you can extend to get the plug-in behaviour you
want. You need to implement the method isSandboxPlugin to state what type of plug-
in it is.

LiveView adapter
To communicate with the LiveView™ application, you can use the global instance
mLiveViewAdapter.

LiveView callback interface
To be able to handle events coming from the LiveView™ device, there are a number of
abstract methods that you need to implement in your service.
17 November 2010

Tutorial | Creating LiveView™ plug-ins
protected abstract void startPlugin();

This method is called when the LiveView™ application wants to start the plug-in. For a
sandbox plug-in, this would be called when the user enters the plug-in on the
LiveView™ device.

protected abstract void stopPlugin();

This method is called when the LiveView™ application wants to stop the plug-in. For a
sandbox plug-in, this would be called when the user leaves the plug-in on the
LiveView™ device by pressing and holding down the action button.

protected abstract void button(String buttonType, boolean
doublepress, boolean longpress);

Sandbox mode only. This method is called when the user presses any of the buttons
on the LiveView™ device.

protected abstract void displayCaps(int displayWidthPx, int
displayHeigthPx);

This method is called by the LiveView™ application to indicate the capabilities of the
LiveView™ device.

protected abstract void onUnregistered() throws RemoteException;

This method is called by the LiveView™ application when the plug-in has been kicked
out by the framework, for example by uninstallation.

protected abstract void openInPhone(String openInPhoneAction);

This method is called when the user taps open in phone on the LiveView™ device.
You could for example open an URL in the browser. For more information about this,
see “Announce plug-in example project” on page 25.

All methods are forwarders for the methods of the callback interface. For more
information, see “IPluginServiceCallback” on page 23.

Step 5 - Update resources for Preference
Activity
In the plug-in template project, there are two plug-in resources to consider, the xml/
preferences.xml and the values/strings.xml. The xml/preferences.xml resource should
contain your plug-in preferences. A checkbox resource for handling the enabling and
disabling of the plug-in is already implemented in the template project. The values/
strings.xml resource contains resource strings. There are three defined strings that you
need to fill out:

- pluginname

- intent_preferences - the intent used to start your preference activity
18 November 2010

Tutorial | Creating LiveView™ plug-ins
- intent_service - the intent used to start your plug-in service

Step 6 - Implement Broadcast Receiver
The Broadcast Receiver is already fully implemented when using the plug-in template
project.

Step 7 - Publishing to Android Market
When you have created your plug-in, visit the http://developer.android.com/guide/
publishing/publishing.html to find requirements for publishing to Android Market
defined by Google.

Requirements on the Android Market description
The description that should be used on Android Market has to contain the following
string: "Extends:<HostApplication>.". This means that your plug-in has to contain the
following:

Extends:com.sonyericsson.extras.liveview.

Requirements on the manifest description
The application description should contain the String "Extends:<HostApplication>."
where <HostApplication> should be the same as the PackageName of the application
that has the plug-in API.

The package name of the LiveView™ application is:

com.sonyericsson.extras.liveview

Sandbox plug-in example:

<?xml version="1.0" encoding="utf-8"?>
<manifest>
 <application android:description="Application plug-in for Sony
Ericsson notifiers.

 For: LiveView
 Extends:com.sonyericsson.extras.liveview.
 ">
</application>
</manifest>
19 November 2010

http://developer.android.com/guide/publishing/publishing.html
http://developer.android.com/guide/publishing/publishing.html

Tutorial | Creating LiveView™ plug-ins
Best practices

Sending images
Sending full screen images when not necessary should be avoided as it slows down
both the update frequency of the screen and the battery life of the device.

If possible, use the sendImageAsBitmap or sendImageAsByteArray since that will save
the framework the additional time to read and decode a file from the file system. For
more information about the two methods, see examples in the “IPluginService” on
page 22.

For information about image restrictions, see “Image restrictions and
recommendations” on page 24.

Battery drain and Bluetooth stability
If your plug-in has a high image update ratio, be sure to make use of the callback
function screenMode to limit the Bluetooth traffic to the LiveView™ device. This will
limit the drain of the LiveView™ device and put less stress on the Bluetooth
connection. For more information about the screenMode, see an example in the
section “Sandbox plug-in example project” on page 28.

Misbehaving plug-ins
Since the plug-in API is open, a misbehaving plug-in can tear down the LiveView™
application as well. To avoid this, it is important that plug-in developers make sure not
to flood the AIDL interface with too many calls.
20 November 2010

Tutorial | Creating LiveView™ plug-ins
Appendix

LiveView™ application GUI
The following set of images shows the LiveView™ application GUI that runs on the
phone and where you will find your plug-in preferences. The first image shows the
startup screen of the LiveView™ application. If you tap Customise tiles, you will enter
the setup screen for the installed applications. If you tap Manage plug-ins, you will
enter a screen where a list of the installed and downloaded plug-ins is presented.

In this example, only the HelloWorld plug-in is installed. The HelloWorld plug-in has
two preferences, one is if the plug-in should be enabled or not, and the other is the
update frequency of the "Hello World" announcements sent to the LiveView™ device.

21 November 2010

Tutorial | Creating LiveView™ plug-ins
IPluginService
int register(IPluginServiceCallbackV1 cb, String imageMenu,
String pluginName, boolean selectableMenu, String packageName);

Called by plug-in to register itself. The plug-in implementation needs to define a
callback stub as well as the plug-in name, to provide in the call to the LiveView™
service. ImageMenu is the reference to an image that will be displayed in the
LiveView™ device for the specific plug-in. SelectableMenu indicates if the plug-in
should receive information from the LiveView™ device, for example when a button is
pressed, or if the plug-in just provides notifications to the LiveView™ device. The
packageName is the package name of the plug-in. The register method function
returns a unique id for the specific plug-in, as it has been registered in the internal
LiveView™ database.

void unregister(int id, IPluginServiceCallbackV1 cb);

This method unregisters the plug-in from the LiveView™ database. The id is the unique
plug-in id returned in the register method.

Note! This method should basically just be used for unregistering the plug-in when for
example the plug-in has been uninstalled on the Android device.

void sendAnnounce(int id, String imageAnnounce, String header,
String body, long timestamp, String openInPhoneAction);

This method sends an announcement to the LiveView™ device. The id is the unique
plug-in id returned in the register method. ImageAnnounce is the absolute path to the
image on the Android device. Header and body define what message should be
shown. OpenInPhoneAction should define the actual action taken if the LiveView™
device user wants to open the announcement in the phone. For example, opening an
URL in the browser of the phone.

void sendImage(int id, int x, int y, String image);

This method sends an image stored on the phone to the LiveView™ device. The id is
the unique plug-in id returned in the register method. X is the number of pixels from the
left side of the screen. Y is the number of pixels from the top of the screen. Image
defines the absolute path to the image on the Android device.

For more information about image restrictions and format, see “Image restrictions and
recommendations” on page 24.

void sendImageAsBitmap(int id, int x, int y, Bitmap bitmapData);

This method sends a bitmap to the LiveView™ device. The id is the unique plug-in id
returned in the register method. X is the number of pixels from the left side of the
screen. Y is the number of pixels from the top of the screen. BitmapData is the actual
bitmap data.

For more information about image restrictions and format, see “Image restrictions and
recommendations” on page 24.

void clearDisplay(int id);
22 November 2010

Tutorial | Creating LiveView™ plug-ins
This method clears the LiveView™ display. The id is the unique plug-in id returned in
the register method.

int notifyInstalled(String launcherIntent, String pluginName);

This method is used to notify the actual start intent of the plug-in service.

void ledControl(int id, int rgb565, int delayTime, int onTime);

This method controls the LED. The id is the unique plug-in id returned in the register
method. Rgb565 is the color to use. DelayTime defines if it should be a delayed action.
OnTime defines if the color should change on a given time.

void vibrateControl(in int id, int delayTime, int onTime);

This method controls the vibrator. The id is the unique plug-in id returned in the
register method. DelayTime defines if it should be a delayed action. OnTime defines if
the device should vibrate on a given time.

void sendImageAsBitmapByteArray(int id, int x, int y, byte[]
bitmapByteArray);

This method sends a bitmap byte array to the LiveView™ device. The id is the unique
plug-in id returned in the register method. X is the number of pixels from the left side of
the screen. Y is the number of pixels from the top of the screen.BitmapByteArray is the
byte array.

For more information about image restrictions and format, see “Image restrictions and
recommendations” on page 24.

void screenOff(in int id);

This method is used to put the screen in power save mode.

void screenDim(in int id);

This method is used to put the screen in dimmed mode.

void screenOn(in int id);

This method is used to wake the screen from power save mode.

void screenOnAuto(in int id);

This method is used to give the control of the power save functionality back to the
LiveView™ device.

IPluginServiceCallback
void startPlugin();

This method is used by the LiveView™ service to start the plug-in. The plug-in
workers, if any, in the plug-in should be started.
23 November 2010

Tutorial | Creating LiveView™ plug-ins
void stopPlugin();

This method is used by the LiveView™ service to stop the plug-in. The plug-in workers,
if any, in the plug-in should be stopped.

String getPluginName();

This method is called by the LiveView™ service to fetch the plug-in name.

void openInPhone(String openInPhoneAction);

This method is called by the LiveView™ service to indicate to the plug-in that it should
handle the action that is provided in the openInPhoneAction parameter. The action
could be to open a browser, or a local application. The openInPhoneAction is provided
by the plug-in in the callback interface.

void onUnregistered();

The plug-in has been kicked out of the framework.

Note! When this happens for a sandbox plug-in, the user has left the plug-in on the
LiveView™ device, and the plug-in has no control over the screen any more.

void displayCaps(int displayWidthPixels, int
displayHeigthPixels);

This method is used by the LiveView™ service to tell the plug-in the screen
boundaries.

void button(String buttonType, boolean doublepress, boolean
longpress);

This method is called by the LiveView™ service to indicate that a button has been
pressed on the LiveView™ device.

void screenMode(int mode);

This method is used by the LiveView™ service to notify to the sandbox plug-in that the
screen mode has changed.

0 - screen is OFF, 1 - screen id ON.

Image restrictions and recommendations
Images sent to the Liveview™ device are always palette PNG with 8 bits/pixel, non-
interlaced with a palette size of 256 colors. Maximum dimensions:

- Menu icon - 48 x 48 pixels

- Announce icon - 16 x 16 pixels

- Sandbox mode - 128 x 128 pixels (currently the full size of the screen)

- In general, the PNG data has an upper limit of approximately 8k packed
24 November 2010

Tutorial | Creating LiveView™ plug-ins
If you send image data in other formats than recommended, the LiveView™
application will convert the image data using its own native implementation. Sending
image data with more than 256 colors will force the LiveView™ application to reduce
the color data before sending the image to the display. Since the timing is important
the color reduction algorithm focuses on speed and not color optimization.

When saving a bitmap file to the file system in Android (using compress), you cannot
save it in the format that LiveView™ wants. Thus all images saved to the file system will
be reduced by the LiveView™ application. Be sure to use the Config.RGB565 and that
the image has no more than 256 colors. Then the compression will be as fast and
lossless as possible.

Announce plug-in example project
The HelloWorld plug-in project implements an announce plug-in that sends
notifications to the LiveView™ device with different intervals. The default interval is 60
seconds. The notification can be seen in the LiveView™ device, and you can open a
browser on your phone with the openInPhone functionality. By managing the
HelloWorld plug-in in the LiveView™ application, you can set the interval of your
choice.

The plug-in implements a ListPreference resource which defines the update interval of
the announcements. There is also an array string resource in the res/values directory
which defines the values of the different intervals.

Implementation
When the plug-in is instantiated by the LiveView™ application, the onStart method is
called and a Handler is instantiated to handle the interval of the announcements.

@Override
public void onStart(Intent intent, int startId) {
 super.onStart(intent, startId);

 // Create handler.
 if(mHandler == null) {
 mHandler = new Handler();
 }
}

Then the LiveView™ application will call the startPlugin method to indicate to the plug-
in that it should now start its work. In the HelloWorld example, the startPlugin method
will call the mandatory method startWork.

protected void startWork() {
 // Check if plugin is enabled.
 if(!mWorkerRunning &&
mSharedPreferences.getBoolean(PluginConstants.PREFERENCES_PLUGIN
_ENABLED, false)) {
 mWorkerRunning = true;
 scheduleTimer();
 }
25 November 2010

Tutorial | Creating LiveView™ plug-ins
}

The method will check that the worker is not already running, and that the user has
enabled the plug-in on the phone. If these conditions are true, an announcement is
scheduled to be sent by using the local method scheduleTimer.

private void scheduleTimer() {
 if(mWorkerRunning) {
 mHandler.postDelayed(mAnnouncer, mUpdateInterval);
 }
}

private Runnable mAnnouncer = new Runnable() {

 @Override
 public void run() {
 try
 {
 sendAnnounce("Hello", "Hello world number " + mCounter++);
 } catch(Exception re) {
 Log.e(PluginConstants.LOG_TAG, "Failed to send image to
LiveView.", re);
 }

 scheduleTimer();
 }

};

The schedulerTimer method makes use of the Handler instance to schedule an
announcement with a specific delay in milliseconds. The mAnnouncer instance creates
a runnable instance that executes the announcement and schedules another. To send
the announcement, the sendAnnounce method is used.

mLiveViewAdapter.sendAnnounce(mPluginId, mMenuIcon, header,
body, System.currentTimeMillis(), "http://en.wikipedia.org/wiki/
Hello_world_program");

The mPluginId is used to identify the plug-in to the LiveView™ application. mMenuIcon
is a string with the path to the menu icon of the HelloWorld project. Header and body
are the texts that will be displayed on the device. The URL that is handed in to the
method is the action string for the openInPhone action. When the user at a later stage
activates the openInPhone action, this string will be provided, and the browser can be
started, as in the HelloWorld example:

protected void openInPhone(String openInPhoneAction) {
 final Uri uri = Uri.parse(openInPhoneAction);
 final Intent browserIntent = new Intent();
 browserIntent.setData(uri);
 browserIntent.setClassName("com.android.browser",
"com.android.browser.BrowserActivity");
 browserIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(browserIntent);
}
26 November 2010

Tutorial | Creating LiveView™ plug-ins
Another important aspect is when the user changes the settings of the plug-in by using
the LiveView™ application. The preference screen is shown and the user changes the
update interval.

The update is handled by the OnSharedPreferenceChangeListener implemented in the
AbstractPluginService. It will call an extension in the HelloWorldService, the
onSharedPreferenceChangedExtended method.

From the AbstractPluginService:

protected OnSharedPreferenceChangeListener mPrefChangeListener =
new OnSharedPreferenceChangeListener() {
 @Override
 public void onSharedPreferenceChanged(SharedPreferences prefs,
String key) {

 ... Do standard stuff ...

 // Call custom plugin implementation
 onSharedPreferenceChangedExtended(prefs, key);
 }
};

The onSharedPreferenceChangedExtended is called from the AbstractPluginService.
The implementation of this method in HelloWorldService handles the interval change.

protected void
onSharedPreferenceChangedExtended(SharedPreferences pref, String
key) {
 if(key.equals(UPDATE_INTERVAL)) {
 long value = Long.parseLong(pref.getString("updateInterval",
"60"));
 mUpdateInterval = value * 1000;
27 November 2010

Tutorial | Creating LiveView™ plug-ins
 }
}

Sandbox plug-in example project
The Sandbox plug-in project implements a sandbox plug-in. This means that some of
the extended functionality has been implemented. More specifically, all button events
are responded upon.

There are examples on adding a text to a bitmap, which is then stored to the phone
and then transmitted to the LiveView™ device, as well as examples on sending normal
images.

In the PluginUtils class you will find various methods for sending images to the
LiveView™ device. For example, by using the android.graphics.Canvas you can
propagate text to a specific bitmap. In the example, when you start the plug-in by
pressing the right button, you will be greeted with a text saying "HELLO!". Then all
button events will be reacted upon:

- up - Android image pointing up

- down - Android image pointing down

- right - Android image rotating right

- left - Android image rotating left

- right select button - starting/stopping a clock

All events are using the sendImage method to send images to the LiveView™ device.

Implementation
First of all, some things need to be initialized. This is done in the onStart in the same
manner as for the HelloWorld plug-in. For more information, see “Announce plug-in
example project” on page 25. A handler is needed to queue image sending, and in the
example below, a bitmap is initialized to be used during the lifecycle of the plug-in.

mRotateBitmap =
BitmapFactory.decodeStream(this.getResources().openRawResource(R
.drawable.icon_small));

The method isSandboxPlugin needs to return true for the framework to know how to
treat the plug-in.

protected boolean isSandboxPlugin() {
 return true;
}

The SandboxPluginService uses one Handler, mHandler, and two runnables to send
images to the LiveView™ device, mTimer and mRotator.

private Runnable mTimer = new Runnable() {
28 November 2010

Tutorial | Creating LiveView™ plug-ins
 @Override
 public void run() {
 Date currentDate = new Date(System.currentTimeMillis());
 Format timeFormatter = new SimpleDateFormat("HH:mm:ss");
 PluginUtils.sendTextBitmap(mLiveViewAdapter, mPluginId,
timeFormatter.format(currentDate));

 if(mWorkerRunning) {
 scheduleTimer();
 }
 }
};

The method sendTextBitmap from PluginUtils is used to send a string within a bitmap
to the device. In this case, the text is the current time in HH:mm:ss format.

private Runnable mRotator = new Runnable() {
 @Override
 public void run() {
 try
 {
 PluginUtils.rotateAndSend(mLiveViewAdapter, mPluginId,
mRotateBitmap, updateDegrees());
 } catch(Exception re) {
 Log.e(PluginConstants.LOG_TAG, "Failed to send image to
LiveView.", re);
 }

 rotate();
 }
};

In this case, the rotateAndSend utility function is used. The function will take the
bitmap and rotate it to a certain degree, provided by updateDegrees.

The image sending is controlled via the button presses done by the user, and is
implemented by the mandatory callback method button.

protected void button(String buttonType, boolean doublepress,
boolean longpress) {
 if(buttonType.equalsIgnoreCase(PluginConstants.BUTTON_UP)) {
 if(longpress) {
 mLiveViewAdapter.ledControl(mPluginId, 50, 50, 50);
 } else {
 rotate(0);
 }
 } else
if(buttonType.equalsIgnoreCase(PluginConstants.BUTTON_DOWN)) {
 if(longpress) {
 mLiveViewAdapter.vibrateControl(mPluginId, 50, 50);
 } else {
 rotate(180);
 }
 } else
if(buttonType.equalsIgnoreCase(PluginConstants.BUTTON_RIGHT)) {
29 November 2010

Tutorial | Creating LiveView™ plug-ins
 toggleRotate(true);
 } else
if(buttonType.equalsIgnoreCase(PluginConstants.BUTTON_LEFT)) {
 toggleRotate(false);
 } else
if(buttonType.equalsIgnoreCase(PluginConstants.BUTTON_SELECT)) {
 toggleTimer();
 }
}

The button types are defined in constants in the PluginConstants class. For each type
of button that has been pressed, different actions are taken, for example rotating the
Android image or start a clock. In the example, if the user presses and holds down the
up and down buttons, the led will change color, or the device will vibrate.

In the Sandbox plug-in example, the mandatory callback methods startPlugin and
stopPlugin will in their turn call startWork and stopWork. StopWork will clean up the
handler queue so that the work does not continue.

protected void stopWork() {
 mWorkerRunning = false;
 mHandler.removeCallbacks(mTimer);
 mHandler.removeCallbacks(mRotator);
}

The method screenMode of the callback interface is used by the LiveView™
application to indicate to the plug-in that the screen has changed status, that is either
gone off or on. This is a good way to limit the traffic to the LiveView™ device and thus
limit the drain of the battery.

protected void screenMode(int mode) {
 if(mode == PluginConstants.LIVE_SCREEN_MODE_ON) {
 startUpdates();
 } else {
 stopUpdates();
 }
}

private void stopUpdates() {
 // stop workers
}

private void startUpdates() {
 // restart workers
}

Intents

Broadcast intent
The LiveView™ service will use the following broadcast intent to communicate with the
installed plug-ins:
30 November 2010

Tutorial | Creating LiveView™ plug-ins
com.sonyericsson.extras.liveview.LAUNCH_PLUGIN

Manifest example:

<receiver android:name="<MYRECEIVER>">
 <intent-filter>
 <action
android:name="com.sonyericsson.extras.liveview.LAUNCH_PLUGIN"/>
 </intent-filter>
</receiver>

Bind intent
The following intent is used for binding plug-in to LiveView™ service:

com.sonyericsson.extras.liveview.PLUGIN_SERVICE_V1

Example:

bindService(new
Intent("com.sonyericsson.extras.liveview.PLUGIN_SERVICE_V1"),
<ServiceConnection to use>, 0);
31 November 2010

	Preface
	Document history
	Purpose of this document
	Sony Ericsson Developer World
	Document conventions
	Terminology
	Typographical conventions

	Trademarks and acknowledgements
	Licensing
	Contents
	Introduction
	LiveView™ micro display
	Architecture
	Plug-in types
	Plug-in components
	Registration of a plug-in
	Finding the installed plug-in
	Publishing to Android Market

	How to create plug-ins
	Step 1 - Download developer tools
	Step 2 - Implement components
	Step 3 - Check framework classes
	Step 4 - Implement Service methods
	Step 5 - Update resources for Preference Activity
	Step 6 - Implement Broadcast Receiver
	Step 7 - Publishing to Android Market

	Best practices
	Sending images
	Battery drain and Bluetooth stability
	Misbehaving plug-ins

	Appendix
	LiveView™ application GUI
	Announce plug-in example project
	Sandbox plug-in example project
	Intents

