

AVR310: Using the USI module as a I2C master

Features
• C-code driver for TWI master
• Compatible with Philips' I2C protocol
• Uses the USI module
• Uses no interrupts or timers
• Supports both Standard mode and Fast mode

Introduction
The Two Wire serial Interface (TWI) is compatible with Philips' I2C protocol. The
bus was developed to allow simple, robust and cost effective communication
between integrated circuits in electronics. The strengths of the TWI bus includes
the capability of addressing up to 128 devices on the same bus, arbitration, and the
possibility to have multiple masters on the bus.

The Universal Serial Interface (USI) module on devices like ATmega169, ATtiny26
and ATtiny2313 has a dedicated Two-wire mode. The USI provides the basic
hardware resources needed for synchronous serial communication. Combined with
a minimum of control software, the USI allows higher transfer rates and uses less
code space than solutions based on software only.

This application note describes a TWI master implementation, in form of a full-
featured driver and an example of usage for this driver. The driver handles
transmission according to both Standard mode (<100kbps) and Fast mode
(<400kbps).

8-bit
Microcontrollers

Application Note

Rev. 2561B-AVR-09/04

2 AVR310
2561B-AVR-09/04

Theory
This section gives a short description of the TWI interface and the USI module. For
more detailed information refer to the datasheets.

Two-wire serial Interface The Two-wire Serial Interface (TWI) is ideally suited for typical microcontroller
applications. The TWI protocol allows the systems designer to interconnect up to 128
individually addressable devices using only two bi-directional bus lines, one for clock
(SCL) and one for data (SDA). The only external hardware needed to implement the
bus is a single pull-up resistor for each of the TWI bus lines. All devices connected to
the bus have individual addresses, and mechanisms for resolving bus contention are
inherent in the TWI protocol.

Figure 1. TWI Bus Interconnection

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC

The TWI bus is a multi-master bus where one or more devices, capable of taking
control of the bus, can be connected. Only Master devices can drive both the SCL
and SDA lines while a Slave device is only allowed to issue data on the SDA line.

Data transfer is always initiated by a Bus Master device. A high to low transition on
the SDA line while SCL is high is defined to be a START condition (or a repeated
start condition).

Figure 2. TWI Address and Data Packet Format

1 2 7 8 9

Data Byte

Data MSB Data LSB ACK

SDA

SCL

START

1 2 7 8 9

Addr MSB Addr LSB R/W ACK

SLA+R/W STOP

A START condition is always followed by the (unique) 7-bit slave address and then by
a Data Direction bit. The Slave device addressed now acknowledges to the Master by
holding SDA low for one clock cycle. If the Master does not receive any acknowledge
the transfer is terminated. Depending of the Data Direction bit, the Master or Slave
now transmits 8-bit of data on the SDA line. The receiving device then acknowledges
the data. Multiple bytes can be transferred in one direction before a repeated START
or a STOP condition is issued by the Master. The transfer is terminated when the
Master issues a STOP condition. A STOP condition is defined by a low to high
transition on the SDA line while the SCL is high.

 AVR310

 3

2561B-AVR-09/04

If a Slave device cannot handle incoming data until it has performed some other
function, it can hold SCL low to force the Master into a wait-state.

All data packets transmitted on the TWI bus are 9 bits long, consisting of one data
byte and an acknowledge bit. During a data transfer, the master generates the clock
and the START and STOP conditions, while the receiver is responsible for
acknowledging the reception. An Acknowledge (ACK) is signaled by the receiver
pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA
line high, a NACK is signaled.

Universal Serial
Interface – USI

The Universal Serial Interface (USI) provides the basic hardware resources needed
for synchronous serial communication. Combined with a minimum of control software,
the USI allows higher transfer rates and uses less code space than solutions based
on software only. Interrupts are included to minimize the processor load. The main
features of the USI are:

• Two-wire Synchronous Data Transfer
• Three-wire Synchronous Data Transfer
• Data Received Interrupt
• Wakeup from Idle Mode
• In Two-wire Mode: Wake-up from All Sleep Modes, Including Power-down Mode
• Two-wire Start Condition Detector with Interrupt Capability
The USI Two-wire mode is compliant to the TWI bus protocol, but without slew rate
limiting on outputs and input noise filtering.

Figure 3. Universal Serial Interface, Block Diagram

D
A

T
A

 B
U

S

U
S

IP
F

U
S

IT
C

U
S

IC
L

K

U
S

IC
S

0

U
S

IC
S

1

U
S

IO
IF

U
S

IO
IE

U
S

ID
C

U
S

IS
IF

U
S

IW
M

0

U
S

IW
M

1

U
S

IS
IE

B
it7

Two-wire Clock
Control Unit

DO (Output only)

DI/SDA (Input/Open Drain)

USCK/SCL (Input/Open Drain)
4-bit Counter

USIDR

USISR

D Q
LE

USICR

CLOCK
HOLD

TIM0 COMP

B
it0

[1]

3

0
1

2

3

0
1

2

0

1

2

4 AVR310
2561B-AVR-09/04

Figure 4. Two-wire Mode Operation, Simplified Diagram

MASTER

SLAVE

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SDA

SCL

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Two-wire Clock
Control Unit

HOLD
SCL

PORTxn

SDA

SCL

VCC

The USI Data Register (USIDR) is an 8-bit Shift Register that contains the incoming
and outgoing data. The register has no buffering so the data must be read as quickly
as possible to ensure that no data is lost.

The USI Status Register (USISR) contains a 4-bit counter. Both the Serial Register
and the counter are clocked simultaneously by the same clock source. This allows the
counter to count the number of bits received or transmitted and sets a flag
alternatively generates an interrupt when the transfer is complete. The clock can be
selected to use three different sources: The SCL pin, Timer/Counter0 Compare Match
or from software. The Two-wire clock control unit generates flags when a start
condition, data collision, or stop condition is detected on the Two-wire bus.

Implementation
The application note describes the implementation of a TWI master. The driver is
written as a standalone driver that easily can be included into the main application.
Use the code as an example, or customize it for own use. Defines and status
registers are all set in the application note header file.

The driver uses the USI module and standard IO pin control. No additional resources
as timers or any other interrupt sources are needed. The driver ensures correct timing
even if it gets any interrupt signals during execution. The execution is however
sequential, i.e. all cpu resources are therefore used during transmission.

 AVR310

 5

2561B-AVR-09/04

Figure 5. Flowchart of the transceiver function. A flowchart of the sub function
USI_TWI_Master_Transfer is found in Figure 6.

USI TWI Start
Transceiver With Data()

Release and wait for
SCL to go high

Generate START
Condition

Is this
byte to be transmitted

(or received)?

Pull SCL low

Copy data from
buffer to USIDR

Send the byte with
USI_TWI_Master

_Transfer()

Set addressMode =
FALSE

Read 1 bit with
USI_TWI_Master

_Transfer()

Received ACK?

Return

Set SDA as input

All data sent/
received?

Read a byte with
USI_TWI_Master

_Transfer()

Set SDA as input

Copy data from
USIDR to buffer

Is this end of
transmission?

Prepare a ACK
in the USIDR

Prepare a NACK
in the USIDR

Send 1 bit with
USI_TWI_Master

_Transfer()Yes

No

Yes

Yes

No

Yes

No

No

6 AVR310
2561B-AVR-09/04

The driver consists of these functions:

• USI_TWI_Master_Initialise
• USI_TWI_Start_Transceiver_With_Data
• USI_TWI_Master_Transfer
• USI_TWI_Master_Stop
• USI_TWI_Get_State_Info

The USI_TWI_Master_Initialise function is used to set the USI module in TWI mode,
and setting the TWI bus in idle/released mode.

The START and RESTART conditions are included into the transceiver function;
USI_TWI_Start_Transceiver_With_Data. A flowchart of the function can be found in
Figure 5. The same function is used for both transmit and receive operations. The
transceiver takes a pointer to a transmission buffer as parameter, together with the
number of bytes in the buffer. The first location in the buffer must always contain both
the address of the slave and the read/write bit determining the transmission type. If
the master is requesting data from the slave, the transmit buffer only contains the
slave address (with the read bit set), and a data size parameter indicating the number
of bytes requested. The transceiver function will put the received data into the
transmission buffer.

USI_TWI_Master_Transfer (Figure 6) is called from within USI_TWI_Start_Trans-
ceiver_With_Data.

USI_TWI_Master_Stop is called from within USI_TWI_Start_Transceiver_With_Data.

Figure 6. Flowchart of the general transfer function. The function is used by the
USI_TWI_Start_Transeiver_With_Data function in Figure 5.

USI TWI Master
Transfer ()

Set USISR to shift 8 or
1 bit, depending on
function parameter

All data shifted?

Return with contents
of USIDR

Release and ensure
SCL goes high. Then wait

a TWI high period

Pull SCL low and wait for
a TWI low period

No

Release SDA

Yes

Set SDA as output

On completion the transceiver function holds the TWI bus by pulling the SCL line low.
A new transmission can be initiated immediately by rerunning the transceiver
function.

 AVR310

 7

2561B-AVR-09/04

The transceiver function generates error codes if the transmission fails. The codes
are listed in the header file and in Table 1. Use the function USI_TWI_Get_State_Info
to get hold of the error state if the transceiver returns a fail.

Table 1. Error codes returned from the transceiver function.
Define name of error code # Description

USI_TWI_NO_DATA 0x00 Transmission buffer is empty

USI_TWI_DATA_OUT_OF_BOUND 0x01 Transmission buffer is outside SRAM space

USI_TWI_UE_START_CON 0x02 Unexpected Start Condition

USI_TWI_UE_STOP_CON 0x03 Unexpected Stop Condition

USI_TWI_UE_DATA_COL 0x04 Unexpected Data Collision (arbitration)

USI_TWI_NO_ACK_ON_DATA 0x05 The slave did not acknowledge all data

USI_TWI_NO_ACK_ON_ADDRESS 0x06 The slave did not acknowledge the address

USI_TWI_MISSING_START_CON 0x07 Generated Start Condition not detected on bus

USI_TWI_MISSING_STOP_CON 0x08 Generated Stop Condition not detected on bus

The driver takes care of the low level communication as transmission/reception of
address, data, and ACK/NACK. High level operations like address setting, message
interpreting, and data preparation, must be taken care of by the main application. A
small sample code of how to use the driver is included.

This implementation does not support TWI bus arbitration. The device using this
driver must therefore be the only master on the bus. As according to the TWI
standard, all 127 slaves can be addressed individually on the bus. The lack of bus
arbitration is not a limit of the USI module, and can be implemented into the driver,
but is not in the scope for this application note.

The driver does not use interrupts and uses loops to control the TWI bus activity. To
add additional execution control and security one can use a Watchdog Timer. This
can prevent unintentional behavior on the TWI bus from blocking the application. All
AVR’s have an on-chip Watchdog Timer. For more information on the watchdog
timer, check out the application note “AVR132: Using the Enhanced Watchdog Timer”
and the datasheets.

The driver has code for both standard and fast mode TWI timing. Set selected mode
in the header file of the driver. The default setting is fast mode.

Code size Table 2. Code sizes with IAR EWAVR 3.10 with all code optimization on
Function Size [bytes]
USI_TWI_Master_Initialise() 28
USI_TWI_Start_Transceiver_With_Data() 142
USI_TWI_Master_Transfer() 56
USI_TWI_Master_Stop() 24
USI_TWI_Get_State_Info() 6

 256

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET
FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY
WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR
LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of
the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You Are™ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of
others.

2561B-AVR-09/04

	AVR310: Using the USI module as a I2C master
	Features
	Introduction
	Theory
	Two-wire serial Interface
	Universal Serial Interface – USI

	Implementation
	Code size

	Disclaimer

