MICROCHIP

2C™ Master
Mode

Overview and Use of the
PICmicro® MSSP I2C Interface
with a 24xx01x EEPROM

v 0.40

Getting Startred: I°C Master Mode

Welcome to the Microchip Technology Presentation on using the MSSP module in
Master 12C mode.

In this presentation, we will look at what I2C is and how it is used to communicate
data to and from a PICmicro Microcontroller and a serial EEPROM. We will be
connecting a device from the popular family of PIC16F87x microcontrollersto a
24x01 serid EEPROM. Both of these devices are manufactured by Microchip
Technology Inc and can be found on the popular PICDEM 2 Demonstration Board.

I>C is a popular protocol and is supported by many devices. This presentation
answers some questions about 1°C and explains with a full example how to connect
a PICmicro MSSP module to an EEPROM.

MICROCHIP

e Covered Topics:

Overview of I12C
Using 12C on the PICmicro Microcontroller

Example: A code walk-though for connecting a
24x01x to a PIC16F87X

Finding More Information

Getting Startred: I°C Master Mode

In this presentation, we will cover the following topics:

We will first cover an Overview of 12C.

This chapter of the presentation will introduce you to the 12C Protocol and its
concepts.

Next, we will examine the use of 12C on the PICmicro microcontroller.

The details of how SPI isimplemented on a PICmicro device will be examined. We
will look at the MSSP module, which is available on a wide selection of popular
PICmicro microcontrollers.

We will then examine a code walk-though.

The walkthough will explore code for both writing and reading a seriadl EEPROM.
The example sends sample data to the EEPROM, then reads back the data and
displaysit. The code to do thislooks rather long, but it is not complex. We will
break the code down into smaller and easy to understand sections.

Finally, there will be afew resources given at the end of the presentation. These
resources will allow you to explore in more detail the 1°C interface.

Overview
MICROCHIP

e Used for moving data simply and quickly
from one device to another

e Serial Interface

e Synchronous

e Bidirectional

Getting Startred: I°C Master Mode

I2C stands for Inter-Integrated Circuit Communications.

1C is implemented in the PICmicro by a hardware module called the Master
Synchronous Seria Port, known as the MSSP module. This module is built into
many different PICmicro devices. It allows 1°C serial communication between two
or more devices at a high speed and communicates with other PICmicro devices and
many peripheral 1C’'s on the market today.

I2C is a synchronous protocol that allows a master device to initiate communication
with aslave device. Datais exchanged between these devices. We will look at this
more in detail aswe progress though this presentation.

I°C is aso bi-directional. Thisisimplemented by an “Acknowledge” system. The
“Acknowledge’ system or “ACK” system allows data to be sent in one direction to
one item on the 1°C bus, and then, that item will “ACK” to indicate the data was
received. We will look at thisin detail later, as you can see, thisis a powerful
feature of 1°C. Since a peripheral can acknowledge data, there is little confusion on
whether the data reached the periphera and whether it was understood.

Overview
MICROCHIP

e I°’Cisa protocol

@ The data is clocked along with a clock signal
(SCL)

® The clock signal controls when data is changed
and when it should be read

® Since I°C is synchronous, the clock rate can
vary, unlike asynchronous (RS-232 style)
communications

Getting Startred: I°C Master Mode

I2C is a synchronous protocol that allows a master device to initiate communication
with aslave device. Datais exchanged between these devices.

Since I2C is synchronous, it has a clock pulse along with the data. RS232 and other
asynchronous protocols do not use a clock pulse, but the data must be timed very
accurately.

Since 1°C has a clock signal, the clock can vary without disrupting the data. The
datarate will ssimply change along with the changesin the clock rate. This makes
12C ideal when the micro is being clocked imprecisely, such as by a RC oscillator.

Overview
MICROCHIP

e I°Cisa protocol

The Master device controls the clock (SCL)

The slave devices may hold the clock low to
prevent data transfer

No data is transferred unless a clock signal is
present

All slaves are controlled by the master clock

Getting Startred: I°C Master Mode

1C is a Master-Slave protocol.

Normally, the master device controls the clock line, SCL. This line dictates the
timing of all transfers on the I2C bus. Other devices can manipulate this line, but
they can only force the line low. This action means that item on the bus can not
deal with more incoming data. By forcing the line low, it isimpossible to clock
more datain to any device. Thisisknown as“Clock Stretching”.

As stated earlier, no data will be transferred unless the clock is manipul ated.

All saves are controlled by the same clock, SCL.

|2C - Overview
MICROCHIP

e I°Cisa protocol

e Data is sent either direction on the serial data
line (SDA) by the master or slave.

Getting Startred: I°C Master Mode

I°C is a Bi-directional protocol. Data can flow in any direction on the 1°C bus, but
when it flows is controlled by the master device.

Overview
MICROCHIP

e I°’Cisa of only two signals:

erial ta
This line transfers data to or from the master.

erial ock

This controls when data is sent and when it is
read. The master controls SCK.

Getting Startred: I°C Master Mode

I2C is a Serial Interface and uses only the following two signals to serially exchange
datawith another device:

SDA - Thissignal isknown as Serial Data. Any data sent from one device to
another goes on thisline.

SCL - Thisisthe Serial Clock signal. It is generated by the master device and
controls when data is sent and when it isread. As mentioned earlier, the signal can
be forced low so that no clock can occur. Thisis done by a device that has become
too busy to accept more data.

2 _ .
MICROCHIP I“C — Signals

e Signal Levels
e Float High (logic 1)
e Drive Low (logic 0)

+5
PN

Float High Drive Low

Getting Startred: I°C Master Mode

I2C lines can have only two possible electrical states. These states are known as
“float high” and “drive low”. I>°C works by having a pull-up resistor on the line and
only devices pull the line low. If no deviceis pulling on the line, it will “float
high”. Thisiswhy pull-up resistors are important in 12C.

If no pull-up resistor were used, the line would float to an unknown state. If one
tried to drive the line high, it might cause contention with a device trying to drive
theline low. This contention could damage the either or both devices driving the
line.

To prevent this, the pull-up-drive low system controls when one device has control
of the bus. If another device tried to use the bus when it was busy, it would find the
bus to be driven low aready and know it was busy. Evenif it tried to use the bus
accidentally, it would only drive it low and not damage other devices.

The diagrams shown are symbolic. In each case, the solid diagram represents the
ACTIVE part of the bus. In the case of driving low, the buffer is actively pulling
the line low. In the case of floating high, the resistor pulls the line high, while the
buffer isturned off. A buffer turned off has very high impedance and behaves as if
it were disconnected. Only the output buffers are shown for ssimplicity.

|2C — Hardware
MICROCHIP

12C Pull-up Resistor Setting Suggestions

Vit s [
Coae [o[>

Getting Startred: I°C Master Mode

This diagram represents the recommended pull-up resistor value for various 1°C
speeds. You are free to use any resistor value you like, but the calculation of what
to use will depend on the capacitance of the driven line, and the speed of the 1°C
communication. There may be other factors as well. These values were chosen as
they represent values that have been found to work frequently at these speeds. They
are provided for reference only as suggested values. Y our application may choose
other values.

Next, we will examine the building blocks or “elements’ of I12C

|2C — Elements
MICROCHIP

e Building Blocks of I°C

® I°C consists of many “conditions” which to
simplify this presentation will be represented as
“elements”.

B B [l [oaa | [a]

Getting Startred: I°C Master Mode

The I2C bus has a number of “conditions’. These conditions indicate when a
transfer is starting, stopping, being acknowledged, and other events. To simplify the
explanation of 1°C communications, this presentation will represent these as
“elements’, small colored blocks with aletter and color to represent each condition.

These elements will be used thought the presentation to aid the explanation of 1%C.
Some sample blocks are shown here.

[pause]

Let’stake acloser look at these elements now.

10

|2C — Elements

MICROCHIP

e Start Condition
e Initializes 12C Bus
e SDA is pulled low while SCL is high

Getting Startred: I°C Master Mode

Thefirst element we need to look at is the Sart condition. A start condition
indicates that a device would like to transfer data on the 12C bus.

Pictured hereisthe block with an “S” in it and what it the signals ook like on the
I2C bus. Asyou can see, SDA isfirst pulled low, followed by SCL.

The PICmicro microcontroller will take care of the timing details for you. However
it will need to be told you want a start condition and you will check for when it
completes. We will look at how these blocks relate to using a PICmicro device
later.

11

|2C — Elements

MICROCHIP

e Stop Condition
® Releases I°C Bus
® SDA is released while SCL is high

Getting Startred: I°C Master Mode

The next element we will discussis the Stop condition. A start condition indicates
that a device has finished its transfer on the I2C bus and would like to release the
bus. Once released other devices may use the bus to transmit data.

Asyou can see, ablock with a“T” in it represents the stop condition. A “T” is used
because S’ was already used for start earlier. This convention will continue to be
used thought this presentation.

The signaling used for a stop is arelease of the SCL line followed by arelease of
the SDA line. Remember that releasing a line turns off the driver, and since there is
apull-up resistor on it, the line floats high.

Once the stop condition compl etes, both SCL and SDA will be high. Thisis
considered to be an idle bus. Once the busisidle a Start condition can be used to
send more data.

Again, the PICmicro microcontroller will take care of the timing details of this for
you. You will only need to tell it you want a stop condition and wait for it to
complete.

12

|2C — Elements

MICROCHIP

e Restart Condition
® Reinitializes I2C Bus
® Used when START does NOT follow STOP

Getting Startred: I°C Master Mode

Next isthe Restart condition. A restart condition indicates that a device would like
to transmit more data, but does not wish to release the line. Thisis done when a
start must be sent, but a stop has not occurred. It isalso aconvenient way to send a
stop followed by a start right after each other. It prevents other devices from
grabbing the bus between transfers.

If you are talking to one device, such as a seriadl EEPROM, you may not want to be
interrupted when transmitting addresses and gathering data. A restart condition will
handle this.

The restart condition is represented by a“R” in this presentation.

The signaling used for arestart can be seen to be nothing more than a stop condition
quickly followed by a start condition.

The PICmicro microcontroller also will handle this. You ssimply request a restart
condition be sent, then wait for it to complete.

13

|2C — Elements
MICROCHIP

e Restart Condition
® Reinitializes 12C Bus
® Used when START does NOT follow STOP

condition

Getting Startred: I°C Master Mode

Here we can clearly see that the signaling used for arestart can be seen to be
nothing more than a stop condition quickly followed by a start condition.
Remember that a stop condition is when SDA goes high while SCL ishigh. A start
condition is when SDA is pulled low while SCL is high.

The PICmicro microcontroller automatically generate this as well. One simply
requests that a restart condition be sent, then wait for it to complete.

14

|2C — Elements
MICROCHIP

e Data Transfer
® 8 bits of data is sent on the bus
e Data is valid when SCL is high

soa LOOCOOOO0L
ss. UUHUUUTUL

Getting Startred: I°C Master Mode

Let’s now discuss the data transfer element. The data block represents the transfer
of 8 bits of information. The datais sent on the SDA line and SCL produces a
clock. The clock can be aligned with the data to indicate whether each bitisa“1”
ora“o’.

Data on SDA isonly considered valid when SCL is high. When SCL is not high,
the data is permitted to change. Thisis how the timing of each bit works.

The PICmicro microcontroller a'so can transmit data bytes. To do so, we load a
buffer with the byte of data to send, tell it to send it and wait for its completion.

Data bytes are used to transfer all kinds of information. When communicating to
another 12C device, the 8 bits of data may be a control code, an address or data.
Many possibilities exist and they will be discussed in detail in the manual for the
device you are interfacing to. In this presentation we will connect a serial EEPROM
to the bus and look at the signals involved. Other 1°C devices will require similar
signals, but may not be identical. Check the device datasheet for the peripheral.

15

|2C — Elements
MICROCHIP

e Data States
e Each bit of data can be a “1” or “0”

Data must bevalid on rising edge

Getting Startred: I°C Master Mode

Hereisaclose-up view of adatablock. Asyou can seeg, it contains 8 bits of data
and the datais valid on the rising edge of SCL. The datathen remains valid while
SCL is high.

If SDA is high when this happens, the databitisa“1”. If itislow,itisa“0’. We
will see sample data transfers later in this presentation when we look in detail at our
example.

16

|2C — Elements

MICROCHIP

e ACK Condition
e Acknowledges a data transfer
® ACK is when the recipient drives SDA low

Getting Startred: I°C Master Mode

Lastly we will discuss the ACK and NACK condition. A device can “ACK” or
acknowledge a transfer of each byte by bringing the SDA line low during the Sth
clock pulse of SCL.

The 9 bits of atransfer look like this: 8 bits are clocked out for the data, then during
the 9th bit the item receiving the data grabs the bus for one bit. If it drives this bit
low, then the deviceis signaling an “ACK”. Otherwisg, it it allows the SDA lineto
float high it is transmitting a“NACK”. Remember that the device must actively
drive the bus low to send an ACK, but aNACK could be a passive response. Thisis
one of the benefits of 12C.

This diagram shows an “ACK” element. It is shown asablock with an “A” init.

17

|2C — Elements

MICROCHIP

e NACK Condition
® Negatively acknowledges a data transfer
® NACK - the recipient does NOT drive SDA low

Getting Startred: I°C Master Mode

ThisisaNACK condition. Remember that a“ACK”’ sor “NACK”s abyte of data.
I°C states that each byte MUST be answered with aNACK or ACK. If the device
can not decide if it wantsto ACK or NACK, then it will hold the clock line low until
it makes up its mind. This action is known as “clock stretching” and is a feature of
I2C to give devices enough time to respond. We will look at thisin more detail later.

Notice that a“NACK” iswhen the SDA line floats high during the 9th clock pulse.
It isthe opposite of an ACK. The meaning of these acknowledgements will depend
on which byte is being transferred and what device is being talked to.

This diagram shows an “NACK” element. It isshown as ablock with an “N” in it.

18

M Writing to a I°C EEPROM
ICROCHIP

e Write Example

Blcontroin] [Address | [paa | [p]

From Master

Getting Startred: I°C Master Mode

If we put these elements together, we can produce useful 12C transfers. The aim of this presentation
isto communicate with a serial 12C EEPROM. Hereisan example transfer of writing to asmall
EEPROM.

We need to transfer 3 bytes of information to do this. The transfer begins with a start, to signal the
beginning of the transfer. Then, the control byteis sent. The control byte for an EEPROM can have
two different data bytesin it. One signifiesthat you want to write a byte to the EEPROM, and the
other signifies that we want to read a byte from the EEPROM.

The function of writing to the EEPROM is shown here as“Control IN”, which represents putting the
EEPROM inan “input” mode. Since we are only sending datato the EEPROM, we use the “Control
In” byte. Wewill use“Control OUT” later.

Next, the EEPROM acknowledges this byte. Thisisshown by the“A” after the byte. It is put on the
next line to indicate thisis transmitted by the EEPROM, not the PICmicro device.

Next the PICmicro sends the Address Byte. The Address Byte contains the address of the location of
the EEPROM we want to write datato. Since the addressisvalid, the datais“ACK" ed by the
EEPROM.

Finally, we send the data we want to write. The dataisthen ACK’ed by the EEPROM. When that
finishes, we send a stop condition to complete the transfer. Remember the STOP is represented as
the “T” block on the end. Once the EEPROM gets the stop condition it will begin writing to its
memory. Thewrite will not occur until it receives the stop condition.

19

M Reading from an 1°C EEPROM
ICROCHIP

e Read Example

A A A

7

From Master

From Slave

Getting Startred: I°C Master Mode

Here is an example transfer of reading from a small EEPROM.

We need to transfer 4 bytes of information. The transfer will use the Control IN byte to load the
address into the EEPROM . This sends data to the EEPROM which is why we use the control in byte.
Once the address is |oaded, we want to retrieve the data. So, we send a control OUT byte to indicate
to the EEPROM that we want data FROM it. The EEPROM will acknowledge this and then send the
data we requested. When we are done getting data, we send a“NACK” to tell the EEPROM that we
don’'t want more data. 1f we were to send an ACK at this point, we could get the next byte of data
from the EEPROM. Since we only want to read one byte, we send aNACK. Thisisdetailed in the
specifications for the EEPROM.

Asyou can see, each byte is responded to with an ACK or NACK. If the PICmicro device sends a
byte, the EERPOM responds with an ACK or NACK condition. If the EEPROM sends a byte, then
the PICmicro microcontroller must reply with the required ACK or NACK condition. When the
transfer isfinished, a stop bit is sent by the PICmicro device.

You also will notice that a RESTART is used before the Control Out byteissent. Thisis sent
because the datasheet for the EEPROM states it is needed, but it is needed because the device must
receive a start before it will understand the next byte is a control byte. Thisis part of the internal
decoding hardware of the EEPROM. A start condition can not be used, since a stop condition has not
yet occurred, and we are in the middle of atransfer. We will look at thisin detail next.

20

2C — QUESTION?

MICROCHIP

e A start condition can only be used when the
bus is idle. A STOP will cause an idle bus,
but if in the middle of a transmission a restart
IS needed.

e See the example of an EEPROM read for
reference... (on next slide)

Getting Startred: I°C Master Mode

One frequently asked question about 12C transfersis:
When do | usearestart condition instead of a start condition?

The reasons can vary, but sometimes it becomes necessary to reset adevicein the
middle of atransfer. In the case of an EEPROM, it demands datato bein a
particular order. It must have a Start, followed by a control byte, followed by an
addressif any, and then any dataif applicable.

When reading from an EEPROM, you must WRITE the address IN to the device so
that it understands what address you want to read. Thisis done by sending a Start,
then a control IN, then the address desired.

Once it has the address it is ready to be read, so arestart is used to stop the current
transfer and immediately send a start condition. Once a start is sent, the control
OUT byte is sent then the data can be obtained from the device.

Remember, start conditions can only be used on an idle bus, NOT in the middle of a
transfer. An example of this can be seen on the next page.

21

M Reading from an 1°C EEPROM
ICROCHIP

e Read Example - Using RESTART

beginsatransmission

follows ACK -
thisiswithin a
transmission

Getting Startred: I°C Master Mode

Hereis another look at our EEPROM read example. Asyou can see, a start

condition is used to begin the transfer, arestart is used in the middle of the transfer

to reset the EEPROM device, and a stop ends the transfer.

22

MICROCHIP Writing to a Larger EEPROM

e Large EEPROM Write Example

Sl convraiin | [agrest | [aggrest | [oaa | [e]

%/—/

[Longer address (2 bytes) |

Getting Startred: I°C Master Mode

Writing to alarge EEPROM is not very different from asmall one. The only
difference is there are now two address bytes instead of one. Asyou would expect,
each byte must be “ACK’ed” aswsll.

Aboveis asample write to alarge EEPROM. First the Control In byte is written,
then the Address High, then Address Low. Finadly, the Data byte iswritten
followed by a stop condition. ACK’sfollow each of the four data bytes.

23

I2C in the PICmicro MCU

MICROCHIP

e The MSSP module in the PICmicro
microcontroller (MCU) allows I°C and other
synchronous serial protocols

PICmicroMCU

Getting Startred: I°C Master Mode

In the PICmicro, amodule is used for the I2C protocol. This module is named the
M SSP module and allows SPI or 12C to be implemented.

I2C and SPI are both synchronous serial protocols, and hence the name of the MSSP
module. MSSP stands for “Master Synchronous Seria Port”. If you want to use I2C
ensure your PICmicro MCU has this port. Check the product line card or the device
datasheet to ensure it has an M SSP module.

24

M I2C in the PICmicro MCU
ICROCHIP

e |°C Data Transfer

I2C Engine I2C Engine

Peripheral

Getting Startred: I°C Master Mode

1C is implemented though the SDA and SCL lines.

Datathat is transmitted or received on the PICmicro 1°C interface is sent to the
SSPBUF register. The PICmicro microcontroller handles the details of clock
generation and other features. If a start, restart, stop, ACK or other condition needs
to be generated, one needs only to set the appropriate bits and wait for the condition
to complete.

We will look at this diagram in some more detail now.

25

I2C in the PICmicro MCU

, SSPBUF:
e |°C Data Transfer A register that stores data

that is sent or received
on the I2C bus.

UL 1L VI

MICROCHIP

I2C Engine

Peripheral

Getting Startred: I°C Master Mode

Once a byte of data has been sent to the master vial2C, it is sent to the SSPBUF
register. Datato be sent on the 1°C busis aso sent to the SSPBUF register, which is
then sent via I?C. SSPBUF holds data to transmit or received data, depending on the
current mode of the MSSP module.

26

I2C in the PICmicro MCU

|2C Engine:
A which implements the
the I2C protocol.

UL 1L VI mvuuulli

MICROCHIP

I2C Engine

Peripheral

Getting Startred: I°C Master Mode

The 12C engine sends data out on the 1?C bus using the Clock (SCL) and Data (SDA)
lines for communication. The I2C engine on the PICmicro device contains many
registers which configure it as well as control its operation. The user has full access
to these registers and we will look at them later in this presentation.

The I2C engine on a peripheral is usualy fairly transparent to the user. The data
sheet on the periphera will tell you how to use the peripheral by telling you what
commands must be sent and how it will respond.

27

I2C in the PICmicro MCU

MICROCHIP
e |°C Data Transfer

Control Engine:

This hardware controls the

actions of the device
based on 12C instructions.

I2C Engine I2C Engine

Peripheral

Getting Startred: I°C Master Mode

The peripheral will aso contain a control engine of some kind. This engine will
recognize valid 1°C commands and direct that the peripheral perform the desired
action. It could be thought of as a kind of instruction decoder. This same block will
also take the data generated from the action of the device and communicate this to
the 1°C engine for transmission.

28

I2C in the PICmicro MCU

MICROCHIP
e '°C Data Transfer

- Device Action: .

The device acts upon
the control givenand | »——
relays data.

I2C Engine I2C Engine

Peripheral

Getting Startred: I°C Master Mode

The device action block represents that once the 1°C request is decoded, it will either
generate an action by the peripheral or it will generate data which is sent via I?C.

A common example of an action would be to have an EEPROM store some data.
The Command would be received by the I2C engine, then the control block would
decode what do do with the command, then the action block would perform the
command, which is to store the data.

An example of generating data would be to instead request data from the EEPROM.
The command would be decoded and generate an action. This action would be to
have the EEPROM perform aread of the desired location, and then send the data to
the control block. The control block would format the data and give it to the I2C
engine. The 1°C engine would then send the requested data.

Thisisasimplification of the process. However it gives you ageneral idea of how
an 12C transfer works.

29

M I2C in the PICmicro MCU
ICROCHIP

e 4 Registers control the function 1°C in the
PICmicro microcontroller

e The values to be placed in the registers will
often depend on your application

e See device datasheet for details

@ The next few slides will discuss the registers
that control the MSSP module, and how it is
used for I2C in Master Mode.

Getting Startred: I°C Master Mode

12C on the PICmicro is controlled by 4 registers which we will look at in detall
shortly. The values placed in these registers will control every aspect of the 1°C
communication. The device datasheet and reference manual will contain many
details on using 12C and configuring these values, but we will give an introduction to
them here. Note also that the MSSP module on a PICmicro device is capable of
many different modes and configurations.

To simplify this presentation and to cover the most frequently asked topics, we will
only be looking at how to talk to a standard Microchip Technology seriadl EEPROM.
Thisis known as “Master mode” and contains only one master, the PICmicro
microcontroller, and one slave, the EEPROM.

30

1°C — PICmicro (SSPCON)

MICROCHIP
e Here are the bits in the SSPCON Register:

Write Collision
Overflow
Enable

(4 bits) Function Control

® CKP is also in SSPCON but is not used for
master mode I2C.

Getting Startred: I°C Master Mode

The SSPCON register is one of the 4 registers that controls the 1°C engine.

The bits on these registers can indicate errors and control the mode of the MSSP
module.

WCOL - isan error flag and indicates that a “Write Collision” has occurred.

SSPOV - isaso an error flag. It indicates an “Overflow” condition.

SSPEN - stands for “ Synchronous Serial Port Enable”. This enables the M SSP
module.

Thelast bitsin this register are the SSPM bits 3 though 0. SSPM bits control if the

SSP module isin an I?C mode and whether it isin master or Slave mode. It also can
control timing and other features. More details on all of these bits are in the device

datasheet.

31

|°C - PICmicro (SSPCON)

MICROCHIP

® stands for Write COLIision and is set
when the user tries to write to SSPBUF, but
the I°C bus is not ready

e Generally used for debugging or for “Multi-
Master Mode.”

Getting Startred: I°C Master Mode

WCOL - isan error flag and indicates that a “Write Collision” has occurred.

A Write collision occurs when the 1°C module tries to output to the bus and it was
found to bein use. This should never happen in our example or when commanding
an EEPROM, but this bit is useful for error checking and handling. It is also used
when more than one master is controlling the 1°C bus. Multi-master communication
is not discussed in this presentation.

When using many 12C devices, it isimportant that your code check this bit to handle
the condition of devices writing to the bus when you do not expect it.

32

|°C - PICmicro (SSPCON)

MICROCHIP

® stands for SSP OVerflow and is set
when there is an overflow error

e Read data in SSPBUF before new data
comes in to prevent this error

Getting Startred: I°C Master Mode

As mentioned previously, SSPOV means “ Synchronous Serial Port OVerflow” and
is set by the microcontroller whenever there is an overflow error.

An overflow error occurs whenever an 1°C transfer finishes, but the previous data
had not been read from the SSPBUF.

If SSPOV is set, it must be cleared by the user program. The user program should
check to ensure SSPOV remains clear. Thisis part of good error checking in
program design.

Note, data in the SSPBUF will not be updated until the overflow condition is
cleared.

33

|°C - PICmicro (SSPCON)

MICROCHIP
® stands for SSP Enable

e Set SSPEN to 1 to turn on the MSSP
module

e Leave on for the entire time the MSSP
module is in use

e SSPEN can be cleared to 0 to disable the
MSSP module and to help conserve power

Getting Startred: I°C Master Mode

SSPEN is the “ Synchronous Serial Port Enable” bit.

SSPEN is set to 1 to turn on the SSP module, such aswhen it is to be used for 12C
communications.

The SSP module must be left on for the entire time the SSP module isin use.

SSPEN can be cleared to O to disable or reset the SSP module.

|°C - PICmicro (SSPCON)

MICROCHIP
® control the MSSP mode.

e To enable Master Mode use the binary value
of 1000.

Getting Startred: I°C Master Mode

SSPM3:SSPMO are 4 bits that yield 16 different Synchronous Serial Port modes.

These bits control whether the M SSP module is configured for SPI or I2C, whether
it isin slave or master mode and other options. Full details can be found in the
device data sheet.

The M SSP module has one important feature that no other SSP module has. It
provides a“Hardware Master Mode”. It isthis mode that is used in this presentation
for 12C communications. This mode allows the MSSP module to handle all of the
details of generating conditions, and sending and receiving data.

This mode is also known as “Master Mode” but it is NOT firmware master mode.
Firmware mode means your code will handle the timing, but the MSSP or SSP
module will detect the conditions, but not generate them for you.

To use “Hardware Master Mode” set these control bits to a binary value of 1000.

35

|°C - PICmicro (SSPCON2)

MICROCHIP

e Here are the bits in the SSPCON2 Register:

° General Call Enable
ACK Bit Status
ACK Transmit Data
ACK Transmit Enable
Receive Enable
Stop Condition Enable
Restart Condition Enable
Start Condition Enable

Getting Startred: I°C Master Mode

The SSPCON2 register is other register that controls the 1°C engine on the PICmicro
microcontroller.

All 8 bitsin this register are used for this I°2C mode and are the following:

GCEN - indicates “ General Call ENable”

ACKSTAT - stands for “ACKnowledge bit STATus’
ACKDT - refersto the “ACKnowledge bit DaTa’
ACKEN - controls the “ACKnowlege ENable’

RCEN - isthe “ReCeive ENable”

PEN - isthe bit for “stoP condition ENable”

RESEN - isthe control for a“ReStart condition ENable”
SEN - isthe bit for “ Start condition ENable”

We will look at these in more detail in a moment. Remember, more information on
al of these bitsislocated in the device datasheet.

36

1°C - PICmicro (SSPCONZ2)

MICROCHIP

° allows an interrupt to be generated
when an I°C “general Call Address” is
generated.

e This feature is almost never used in 12C
systems.

e This feature is not used in the example in
this presentation

Getting Startred: I°C Master Mode

GCEN is afeature of 12C that allows the MSSP module to be backward compatible
with older and/or slower systems. It isamost never used in an I2C system and is not
used for our example. For more information on the “General Call” feature of 12C,
consult the 1°C specification.

37

1°C - PICmicro (SSPCONZ2)

MICROCHIP

° indicates whether an ACK
(acknowledge) or NACK (not acknowledge)
was sent by the slave

e When talking to an I°C device (a slave), the
device will return either an ACK or NACK for
each byte transferred

e The user must read and interpret these
conditions in their program

Getting Startred: I°C Master Mode

The ACKSTAT bit is set when an ACK or NACK has been received from the
peripheral device. Remember, the peripheral must acknowledge all data bytes, and
thisis done by sending an ACK or NACK condition. This bit can be polled or
tested to determine if an ACK or NACK condition has occurred. Its usage will be
shown in our example program, which we will see later in this presentation.

38

1°C - PICmicro (SSPCONZ2)

MICROCHIP

® Is the data the master will transmit
when “ACKing” an I°C device.

e When responding to an I°C device, there are
only 2 possibilities: ACK and NACK, this bit
controls which of the two is sent.

Getting Startred: I°C Master Mode

ACKDT indicates the data that will be transmitted if it is desired to send an
acknowledge bit to the peripheral device. Remember, when the master reads data
from a device, it must acknowledge the transfer by sending an ACK or NACK
condition. This bit holds the value of the condition to be sent. If loaded with a0, an
ACK issent, and if loaded with a1, aNACK will be sent.

39

1°C - PICmicro (SSPCONZ2)

MICROCHIP

o controls WHEN the PICmicro MCU
will send the ACK or NACK signal.

e Once the user program has set or cleared
ACKDT to set up an ACK or NACK
condition, set this bit to start sending it.

Getting Startred: I°C Master Mode

ACKEN controls exactly when the acknowledge bit is sent. Regardless of the state
of ACKDT, itisnot sent until ACKEN isset. Thisallows one to set up the desired
acknowledge bit to be sent, then send it when ready.

40

1°C - PICmicro (SSPCONZ2)

MICROCHIP
°® enables I2C receive mode.

® \When the PICmicro MCU must listen to data
from another device, set RCEN

e RCEN automatically clears when one
receive byte completes. This will cause the
MSSP to revert back to transmit mode

@ set each time more data is to be received

Getting Startred: I°C Master Mode

RCEN places the MSSP module into I2C receive mode.

In order to get a data byte from a peripheral, the PICmicro device must be put in
receive mode. To activate this mode, the RCEN bit is set. Note that when one byte
of dataisreceived, this bit automatically clears and the PICmicro device returns to
transmit mode. If you would like to receive another byte, set this bit again, but
don't forget to ACK or NACK the datafirst!

41

1°C - PICmicro (SSPCONZ2)

MICROCHIP
o sends a STOP condition

e Remember, “P” refers to a stoP condition

e Set this to start sending a stop condition on
the 1°C bus.

e PEN automatically clears when the STOP
condition completes.

Getting Startred: I°C Master Mode

Setting the PEN bit will send a stop condition.

This stop condition will be sent automatically by the microcontroller. Once it
completes you may send the next condition as the bit is automatically cleared at the
end of the start condition.

42

1°C - PICmicro (SSPCONZ2)

MICROCHIP
® sends a RESTART condition

e Remember, “R” refers to a Restart condition

e Set this to start sending a restart condition
on the I°C bus.

e RSEN automatically clears when the STOP
condition completes.

e A restart condition is used when a start bit is
needed, but there was no stop before it.

Getting Startred: I°C Master Mode

RSEN allows the user to send arestart condition on the 12C bus.

To send arestart condition, set this bit, then wait for the transfer to complete. This
bit will also reset to 0 automatically, simply wait for the condition to complete
before sending another condition or data.

43

1°C - PICmicro (SSPCONZ2)

MICROCHIP
® sends a START condition

e Remember, “S” refers to a Start condition

e Set this to start sending a start condition on
the 1°C bus.

e SEN automatically clears when the START
condition completes.

Getting Startred: I°C Master Mode

SEN isthe “ Start condition ENable” bit.

Just like sending a stop or restart condition, set the SEN bit to send a start condition.
Wait for it to complete before sending another condition. Just like the other bits we
just mentioned, the SEN bit will reset to O after the start condition completes.

1°C - PICmicro (SSPSTAT)

MICROCHIP

e Looking at the SSPSTAT Reqgister, three bits
help to control master mode I°C transfers:

Slew Rate Control
Signal Level Control
Buffer full

e Note: The other bits in this register are used
for I°C, but not in the mode discussed for this
presentation.

Getting Startred: I°C Master Mode

The next register that controls 1°C isthe SSPSTAT register. SSPSTAT stands for
“Synchronous Serial Port STATus” and provides a few bits for controlling the 1°C
communication.

Three bitsin the SSPSTAT register control 1°C. They arecalled “SMP”, “CKE"
and “BF”. The bits are named after their functionsin SPI, but they are used for 12C
control.

SMP - enables the slew rate control of the I°C stream
CKE - controlsthe I°C levels.

and

BF - isthe “Buffer Full” bit.

More details on all of these bits are in the device datasheet, and they will be
discussed next.

45

|°C - PICmicro (SSPSTAT)

MICROCHIP

® enables a Slew rate control to reduce
EMI in 400 kps mode.

e The slew rate is enabled by the user when
using 400 kbps on I°C.

e If using 400 kbps on I°C, clear this bit to enable
the slew rate control.

o If other rates, set SMP to 1 to disable the slew
rate control.

Getting Startred: I°C Master Mode

SMP enables the dew rate control of the MSSP module.

Depending on your desired 12C bus speed, you may want to enable the dew rate
control. It isafilter that controls the slew rate on the 1°C waveform to improve
performance of 400 kbps I1?C transmissions. |If the I2C speed is too high, this filter
will squelch the output, if the I2C speed istoo slow, it will have little effect. Speeds
around 400 kbps will have the sharp transitions replaced with a smooth waveform
which generates less ElectroM agnetic I nterference (EMI).

46

|°C - PICmicro (SSPSTAT)

MICROCHIP
° controls the I12C input levels

e When using standard I°C, this bit is cleared
to meet I°C levels.

e When using SMBus (similar to I°C), the
voltage levels are different. This bit is set to
1 to conform to SMBus levels.

Getting Startred: I°C Master Mode

CKE controls the voltage range used by the PICmicro microcontroller when
receiving 1°C signals.

This bit allows the choice between standard 1?C signal levels and SMBus signal
levels. SMBus shares many of the features of 12C, but one mgjor differenceis the
signa levels are adifferent range to be valid. This bit allows the MSSP module to
handle SMBus peripherals.

This presentation will demonstrate communicating with a standard 1°C device and
so will not discuss SMBus further. 1f you need more information on SMBuUS,
consult the specification.

a7

|°C - PICmicro (SSPSTAT)

MICROCHIP

® stands for Buffer Full

e BF is set when the SSPBUF needs to be
read

e BF is set and cleared by the PICmicro MCU

Getting Startred: I°C Master Mode

The “BF”’ bit stands for “Buffer Full”.

When this bit is set, it means that the SSPBUF contains data that has not yet been
read. SSPBUF holds datathat is received via I1°C. The data should be read before
any more data is written or received. Thisistrue whether the device isamaster or a
dave.

The BF flag is set and cleared by the PICmicro. Note that if the SSPBUF is not read
before another byte of data is exchanged, the SSPBUF will overflow and the
SSPOV hit will get set.

As previously mentioned, when SSPOV is set, it indicates an overflow condition has
occurred and the module must be reset to clear this condition. Toggling the SSPEN
bit will reset the SSP module.

48

1°C - PICmicro (SSPADD)

MICROCHIP

e The SSPADD register controls the speed of
the 12C bus transmissions. It controls the
baud rate generator.

e Calculating I°C Baud Rate:

Fosc
4* (SSPADD + 1)

Getting Startred: I°C Master Mode

The the last register to be discussed that controls 1°C isthe SSPADD register.
SSPADD stands for “Synchronous Serial Port ADDress’, but in master mode this
register has adifferent function. This register controls the speed of the I2C bus. The
12C bus speed is a calculation based on Fosc, which is the clock speed of the
microcontroller, and the value loaded into SSPADD.

The formulais shown here. Letstry a sample calculation.

49

M 1°C - PICmicro (SSPADD)
ICROCHIP

e Baud Rate Calculation:
e Fosc=4MHz SSPADD = 9 (decimal)

Fosc
4* (SSPADD + 1)

=4MHz/(9+1)*4
=4 MHz /10 * 4

°
°

e =4 MHz /40

e =100 kHz or 100 kbps

Getting Startred: I°C Master Mode

If Fosc were 4 MHz, and SSPADD were 9 (decimal), then lets calculate the I2C
Speed:

Calculating the denominator first, we add the SSPADD value of 9 to 1 giving us 10.
Then 10 is multiplied by 4 to yield 40.

4 MHz divided by 40 is 100 kHz or 100 kbps.

We use this value in our code example which we will look at shortly.

50

|°C - Code Example

MICROCHIP

e Code Example

e Send data from a PIC16F877 (or other
PIC16F87X device) to a 24x01x I1°C
EEPROM.

e The data is written to the EEPROM, then
read. The read data is then displayed on the
LEDs on PORTB.

e Code works on PICDEM™2. or build a
circuit.

Getting Startred: I°C Master Mode

Next we will show you a code example to demonstrate 12C on the PICmicro device.
This example uses a Microchip PIC16F877 device connected to a 24x01x 12C
EEPROM. We happened to use a 24C01C, but many different devices could be
used.

These items were chosen since the PICDEM-2 will support the PIC16F877 and it
comes with a 24C01C or newer serial EEPROM already soldered to it. Plus, this
code outputs the value read on PORTB. On the PICDEM-2, there are LEDs already
connected to this port. If you use a PICDEM-2 with a PIC16F877, you will not
need to build any hardware at all to test this sample code.

51

|°C - Code Example

MICROCHIP
e Code Example - Schematic

PIC16F877 12C Link 24C01C

Getting Startred: I°C Master Mode

If you prefer, you can also build the hardware yourself. Here isasimplified schematic of what is
donein this example. AnI2C link is set up between PICmicro MCU, in this case the PIC16F877 and
the EEPROM. As mentioned earlier the EEPROM is a 24C01C or newer device, and many
substitutions are viable. Pull-ups will be needed on the clock and data lines of the I2C, the values of
which will depend on the desired speed. 2.2k is quite sufficient for the example but if you desire
higher speed for later experimentation, consider using a 1k resistor for each pull-up.

As shown here, PORTB is used to drive 8 LEDs. These LEDswill display the value that isread from
the EEPROM, after we have written and then read back from it with the sample code.

Datais sent from the master to the slave on the 12C link. The saveis our EEPROM and it will store
some sample data that we send to it. Next, we will read the data back and then display it on the
LEDs. Oncethisisdone the codeis finished.

We happen to write to the address “12” (hex), the value “34” (hex) and then read it back. If you see
“34” (hex) on the LEDs, the system isworking correctly. Any value could have been used, but these
were arbitrarily chosen to prove you could write any data desired to any valid location of the
EEPROM.

It is also recommended that you observe the 12C data on an oscilloscope. Doing so will show you the
transfer in action. Y ou can then compare the data that you found with the scope traces that will be
shown at the end of this presentation.

52

M |°C - Code Example - Write
ICROCHIP

e Flowchart for Writing (read on next slide)

Send Address byte
Setup Variables and wait for ACK

Send Data byte
and wait for ACK
Configurel2C "

Send STOP condition
Send START condition

Send Control In byte
and wait for ACK

Getting Startred: I°C Master Mode

Next we will look at some example code.
Here is the flowchart for the EEPROM Write portion of our example code.
[pause]

Notice that the first few steps are used to configure the device, including the I2C port. After that is
done, A start condition is sent to indicate we wish to begin sending data. Then, the control in byteis
sent to indicate what we want to talk to, in this case an EEPROM, and that we want to write to its
registers.

After that occurs, the address byte is sent. Thistells the EEPROM which address we intend to write
datatoo. Following the addressisthe data byte. The data byte contains the 8 bits of datathat isto be
written to the requested address. A Stop condition is then sent to close the transfer. Note that an
ACK must occur after each byte. In this case, after the control in, address and data bytes, thereis an
ACK from the EEPROM. The sample code will look for the ACK and ensure that it isan ACK, not a
NACK that isbeing sent. This helpsto ensure the datais correct.

53

M |°C - Code Example - Read
ICROCHIP

e Flowchart for Reading (flowchart continued)

Send Address byte
and wait for A
Setup Variables
Send Restart

Condition
Configurel2C Send Control Out

byte, wait for ACK
Send START
Condition Get Data Byte
Send Control In byte Send NACK
and wait for ACK Condition

Getting Startred: I°C Master Mode

Here is the flowchart for the EEPROM Read portion of our example code.

[pause]

Once again, the first few steps are used to configure the device, including the I12C port. After that is
done, A start condition is sent to indicate we wish to begin sending data. Then, the control in byteis
sent to indicate we wish to communicate with the EEPROM again and that we want to writeto its
registers. We want to write because we need to tell it what address we want to read from.

As before, we will then send the address byte. Since we wish to read from the address we just wrote
to, we will set this address to be the same value as before. Once thisis done, we send a restart
condition to indicate that we want to send new commands to the EEPROM.

When the restart completes, the Control OUT byte is sent, which will tell the EEPROM that we now
want it to send data to the PICmicro microcontroller. The data byte is then clocked out of the
EEPROM and once that finishes we reply with aNACK. The NACK telsthe EEPROM in this case,
that we do not need any more data. A stop condition is then sent to complete the transfer.

As before, after each transfer of abyte, an ACK or NACK issent. ACK issent from the EEPROM
after the control in and Address byte. It also replies with an ACK after the control out byte, which
follows the restart condition. When the data is clocked out of the EEPROM, the PICmicro device
replieswith aNACK to indicateit isfinished. If it replied with an ACK, it would betelling the
EEPROM that it wants the EEPROM to increment the address and send the next data byte. Since we
only want to read one byte we send a NACK.

MICROCHIP

12C connect ed (or simlar) EEPROM
Wite to location 0x12, data 0x34 and read it
The MSSP modul e is used in |2C MASTER mode

ne LODICTRLIN H. lue for CONTROL BYTE
INputing data to the EEPROV
LCD1CTRLOUT lue for CONTROL BYTE

esting OUTput fromthe EEPROM

Loo1ADDR anpl e val ue for ADDRESS BYTE

LCO1DATA Sanple data to write to EEPROM
BAUD

Desired Baud Rate in kbps
#def i ne FOSC

Gscillator Clock in kHe

#include <p16F8 : Processor
_CONFI G _CP_OFF & _DEBUG OFF
_BODEN_CFF & _PWRTE_ON & _WDT_OFF

& _WRT_ENABLE_OFF & _CPD_OFF & _LVP_
RG 0 ode (1 ocation 0)
**% Setup 1/
cirf PORTB
BANKSEL TRI S
Iw B 00011000" ; Ry are inputs for PCRTC
TRISC Remai ni ng PORTC

PORTB pins set to drive |
BANK 1

Olines are outputs

TR SE al | PORTB pins configured for output mod
oRl

Include file, for standard names

F

(enables al | PCRTB drivers for driving LEDs)

Setup Registers 1A “o0

onf i gure MSSP nudul e for Master Mode

BANKSEL SSPCON

mviw B 00101000 Enabl es MSSP and uses appropri at
PORTC pins for 12C mode (SSPEN set) AND
Enabl es 12C M Mode (SSPMK bi t

movw SSPCON This is |oaded into SSPCON

Configure Input Levels and slew rate as

12C Standard Level
BANKSEL SSPSTAT

) set 1
are 12C spel

Getting Startred: I°C Master Mode

Thisis an overview of the write portion of the sample code. It looks complex, but
we will be breaking it up into portions shortly.

|°C - Code Example - Write

Confi gure Baud Rat
BANKSEL SSPADD
(FOSC / (4 * BAUD)) - 1 ; Calculates SSPADD Setting for
desired Baud rate and sets up SSPADD

gin 12C Data Transfer

Send START condi tion and wait
BANKSEL SSPCON2
bsf SPCON Generate START Condi tion

call Wit fo operation to conplete

to conplete
RLIN sad CONTROL BYTE (input mode)
nd Byt

Send and Check CONTROL BYTE, wait for i
mviw LO
call operation to conplete
BANKSEL SSP(
btfsc SSPCON2, ACKSTAT ; Check ACK Status bit to see if 12C
2CFail failed, skipped if successful

Send and Che Wit for it to compl
Lo Byt

ation to compl et

ACKSTAT ; Check ACK Status bit to s
failed, skipped if succ

d and Check DATA BYTE, wait for
v LOOLDATA

Send_| 2C_
1 vai

BANKSEL SSPCON2
PCON2, ACKSTAT ; Status bit to
failed, skipped if succ

end and Check @it for it to complete

SSP

Send STOP condi ti on

Wit for 12C operation to compl et
The WRI TE has now conpl eted successful ly. Begin the Read Sequenc

55

MICROCHIP

nd RESTART condition and w
BANKSEL N2

i SSPOONZ, RSEN n

ti
to compl et

Now check to 12C EEPROM i 5 ready
BANKSEL
: Check ACK Status bit to see if 12
goto a ACK Pol | waiting for EEPROM
Send and Check ADDRESS BYTE, wait for
Iw LCDIADDR

ad ADDRE:

Check ACK Status bit to see if 12C
failed, skipped if successful

o con
erate REPEATED START Condi tion
12C operation to complete

ondi tion and wait for it
N -

Send and Check CONTROL BYTE (out), vait for it to complete
mviw LODICTRLOUT Load CONTROL BYTE (out put)
all Send_I2C By Send By
call wait r 12C operation to conplete
BANKSEL SSPCON2
btfsc SSPCONZ, ACKSTAT : Check ACK
ai |

Status bit to see if |
goto o2

failed, skipped if successful
Switch MSSP modul e to |2C Receive mode

bsf SSPOCN2, RCEN Enabl e Receive Mbde (120)
the DATA BYTE and wait for it

npl e Data
mode is disabled at end automatically by the

in SSPBUF when
MBSP modul e.

Wit for 12C operation to conplete

Getting Startred: I°C Master Mode

Thisisthe other half of the sample code which controls the read of the EEPROM.
Again, it looks complex, but this is the complete example. Y ou will soon see the

code is lengthy, but not complex.

ite to complete

|°C - Code Example - Read

Send NACK
BANKSEL
ACK DATA to send is 1, which
Send ACK DATA now.
the ACKEN is automatically

ondition and wait for it to
nd STOP condi tion
C operation to complete

12C Wite and Read have both finished lue i's output on LEDs.
BANKSEL SSPBUF BANK O
oy Get data from SSPBUF into Wregi
movwi PCRTB

gi ster
Qutput Wregister to LEDs on PORTB

ram has fini shed conpl et ed essfully.
to $ Wi t at this locatic

*** SUBROUTINES & ERROR HANDLERS ***

i ail ed code seq - This will normally not hapy
but if it does, a STOP is sent and the entire code is tried again.
2Crai |

BANKSEL SSPCON2
bsf =

Send STOP condi ti on
call

Wit fo C operation to complete
BANKSEL PCRTB BANK

movi w Turn on al| LEDs on PCRTB

mvwf PORTB to show error condition

goto § Wit for at this Iocat

outine sends the Wre thus
n, the SSPIF f
th

n byte has ccesstul ly.
nat has conpl eted, th
Byt

BANK O

Get value to send fromW put in SSPBUF
Done, Return 0

s routine waits for th C operation to conpl et
does this by polling the SSPIF flag in PIRL
EL PIRL
PIRL, SSPI F th 12C operation
$ ready yet

$-1
PIRL, SSPI F 12C modul
0 Done, Return

clear flag

56

- Code Example - Write

ICROCHIP

12C connected to 24C01C (or similar) EEPROM Confi gure Baud Rate
Wite to | oca 12, data 0x34 and read it BANKSEL SSPADD
The MSSP modul e is used in |2C MASTER mode (FGSC / (4 * BAUD)) - 1 I cul ates SSPADD Setting for
desired Baud rate and sets up SSPAI
ine LOOICTRLIN H lue for CONTROL BYTE
INputing data to the EEPROV

lue for CONTROL BYTE
esting OUTput fromthe EEPROM

define LCDIADDR H 1. anpl e val ue for ADDRESS BYTE

#define LODIDATA H 34' Sanple data to write to EEPROM
Send and Check CONTROL BYTE, wait for it to comple

Desired Baud Rate in kbps 0
LOOICTRLIN ; Load ROL BYTE (i nput mot
S

Oscillator Oock in ke

Include file, for standard names
2 BANKSEL SSP(

_ENABLE_OFF & _CPD_OFF & _LVP_OFF .
_XT_osC btfsc ACKSTAT ; Check ACK Status bit to see if 12C
ai | failed, skipped if successful

ine BAD

operation to conplete

ode (1ocation 0)

BYTE, vait for

Setup 1/0 *** Load Addr e:

cirf PORTB PORTB pins set to drive | Send Byt
BANKSEL TRI S BANK 1

Iw B 00011000" ; Ry are inputs for PCRTC

movef TRISC Remai ni ng PORTC I/0 |ines are outputs BANKSEL SSPCON2

bt

when enabl ed

ACKSTAT ; Check ACK Status bit to see
al | PORTB pins configured for output mod failed, skipped if succ
(enabl es al | PCRTB drivers for driving LEDs

Send and Cn

*er Setup sters for 12 reck DATA BYTE, wait for it to complete
oy LCO1DATA

Confi gure d Data Byt
BANKSEL N e nd Byt
es MBSP and uses appropriate G operation to conplete
s for (SSPEN
12¢ BANKSEL SSP(
btfsc ACKSTAT ; Check ACK Status bit to see if 12C
movw SSPCON This is |oaded i 2CFail failed, skipped if successful
Configure Input Levels and slew rate as 12C d and Check t dition, vait for it to compl
BANKSEL SSPSTAT BANKSEL SSP(
lw B Slew Rate control 100kHz st SSPCON Send STOP condi ti on
mode and i nput 1 2
I'oaded in VRI TE has noy successful |y

he
2
ai Wit for 12C operation to compl et
Begin the Read

Getting Startred: I°C Master Mode

We will break the write code example into 6 parts which we will look at shortly.

M |°C - Code Example - Read
ICROCHIP

nd RESTART condition and vait for it to comp BANKSEL
BANKSEL N2 S ACK DATA to send is 1, which
i SSPOONZ, RSEN Generate RESTART Condi tion A Send ACK DATA now.
12¢ to compl ACKEN i s aut omatical ly

ait for it to eck ondition and wait for it to
Load CONTROL BYTE (i nput) St PEN nd STOP condi tion

Send Byte 12C operation to complete
Wait for 12C operation to compl

12C Wite and Read have both finished lue i's output on LEDs.
Now check to 12C EEPROM i 5 ready BANKSEL SSPBUF BANK O
BANKSEL 2 oy Get data from SSPBUF into Wregister
E Check ACK Status bit to see if 12 movwi PCRTB Qutput Wregister to LEDS on PORTB
ACK Pol | vaiting for EEPROM write to compl ete

D — ram has fini shed conpl et ed essfully.
] ol rress G to § Wait f at this locatic
Send Byte
0 BROUTINES & ERROR HANDLERS ***
rat ail ed code sequ - This will normally not hapy
BANKSEL SSPCON2 it does, a STOP is sent and the entire code is tried again.
btfsc SSPCON2 AT ; Check ACK Status bit to
12CFai | failed, skipped if succe:
Send STOP condi ti on
12C operation to complete
ondi tion and wait for it to com
N Generate REPEATED START Condi tion BANKSEL PCRTB
Wit for 12C operation to conplete OxFF all LEDs on PORTB
mvwf PORTB to show error condition
goto § vai t e this |ocat
nd and Check CONTROL BYTE (out), vait for it to compl
mviw LODICTRLOUT Load CONTROL BYTE (out put)
all Send_I2C By Send By This routine sends the Wreg PBUF, thus transmtting a byte.
all vait 12 ation to conplet Then, the flag hecked sure the byte h t
VWhen that has conpleted, the routine exits, and execut
BANKSEL SSPCON2 d_|
btfsc SSPCONZ, ACKSTAT ; Check ACK Status bit to see B * BANK
goto I2CFail failed, skipped if success! S Get value to send fromW put in SSPBUF
Done, Return 0

Switch MSSP modul e to 12C Receive mode
bsf SSPOCN2, RCEN Enabl e Receive Mbde (120)
This routine waits for 12C operation to complete.
the DATA BYTE and wait for it to comp Data is in SSPBUF when I't does this by polling the SSPIF flag in PIRL
e receive mode is disabled at ally by the MSSP modul e Vai t MBSP
BANKSEL PIRL BANK O
ation to conplet PIRL, SSPI F th 12C operation
t y yet

$-1
PIRL, SSPI F s clear flag
0 Done, Return

Getting Startred: I°C Master Mode

Asyou can see, we have also done the same to the read example code. It has been
broken down into sections numbered 7 though 12, while the earlier code was broken
into sections 1 though 6. There are only 12 sectionsto look at to study the entire
code example.

58

|°C - Code Example - Write

MICROCHIP
e Plan for EEPROM Write

Blcontroin] [address | [paa | [p]

Send Start.

Send Control (input mode). Get Ack.
Send Address. Get Ack.

Send Data. Get Ack.

Send Stop.

Getting Startred: I°C Master Mode

L ets begin looking at the example code now. Remember that to write to the
EEPROM, the sequence goes like this:

The PICmicro microcontroller sends a Start bit, followed by the Control In byte.
Thisisthen ACKed by the EEPROM. The PICmicro device waits for the ACK and
ensures it received an ACK. Then the Address byteissent. The ACK isagain
waited for and tested. Finally, the data to write to the EEPROM is sent, which is
also ACK’ed by the EEPROM. Again the PICmicro microcontroller waits for the
ACK andtestsit. Once al of this has completed it sends a STOP condition to end
the transfer.

59

M |2C Code - Section 1 of 12
ICROCHIP

| 2C connected to 24C01C (or simlar) EEPROM <+«— Comments
: Wite to | ocation 0x12, data 0x34 and read it back.
: The MSSP npdule is used in |I2C MASTER node. .
<«— D¢fines
#defi ne LCO1CTRLI N H A0’ : 12C value for CONTROL BYTE when
; INputing data to the EEPROM

LCO1CTRLOUT H Al ; 12C val ue for CONTROL BYTE when
; requesting OUTput from EEPROM

LCO1ADDR [’ ; Sanpl e val ue for ADDRESS BYTE
LCO1DATA f ’ ; Sanple data to wite to EEPROM

Desired Baud Rate in kbps
: Oscillator Clock in kHz

Getting Startred: I°C Master Mode

In section 1 of our code, we set up the basics similar to other programs.

Thefirst part of the program is like any other. Some comments at the top state what
the program is and what it does. Having well documented and commented codeis
good general coding practice.

Several #define statements follow which define items like the value of a CONTROL
IN byte, and the value of a CONTROL OUT byte. We have also defined the
address that we will write to, in this case the address of 0x12 (hex). The sample
datavalue is aso defined here, 0x34 (hex). Finally, we have also defined the
intended 12C baud rate (100 kbps) and the oscillator frequency, Fosc. Asyou can
see, we are assuming a4 MHz oscillator. If you wish to use other values, they can
be changed in this section.

Using #define statements prevent the need to change large numbers of literal values
thought the program. Instead of changing countless values, you need only change
the defined values. Thisis again good coding practice for any programming.

60

M |2C Code - Section 2 of 12
ICROCHIP

#i ncl ude <pl6F877.inc> : Processor Include file

¥~ Processor Setup
__CONFIG _CP_OFF & _DEBUG OFF & _W\RT_ENABLE_OFF &
_CPD_OFF & _LVP_OFF & _BODEN OFF & _PWRTE_ON & _WDT_OFF &

XT_0SC
~ T Configuration Bits -~

ORG 0 ; Start of code (location 0)
T—Code Start

CoRkk Setup |/ O *** ‘/POI"[Setup
clrf PORTB ; PORTB pins set to drive | ow
BANKSEL TRI SC ;. BANK 1
mov| w B' 00011000’ ; RC3, R4 are inputs for PORTC
novwf TRI SC ; Remaining PORTC I/ O is output

clrf TRI SB ; all PORTB pins in output node
; (enables all PORTB drivers)

Getting Startred: I°C Master Mode

The next section is the processor setup, and indicates the processor used for the
code. Thisexample uses a PIC16F877, but many other devices could be used.

Next, the_ _CONFIG directive is used to set the configuration bits. Doing this
prevents mistakes during programming. The configuration bits can be changed at
program time, but this directive changes the default state. Asageneral rulethis
should be used in your program. The values for configuration bits are found in the
include file for your processor. For this example, see the bottom of file
“P16F877.inc” in your MPLAB directory.

The code starts at “ORG 0”. The ORG isadirectiveto MPLAB and stands for
“ORIGIn" and tells the assembler where in program memory to locate the next
instruction. Any time an “ORG” is encountered, the next program memory
instruction will begin at the new location. In this example, the program will begin
at 0, while the next instruction will be at program memory location 1, then 2 and so
on.

The directive BANKSEL is used so that the registers TRISC and TRISB can be
accessed. Remember that the PICmicro microcontroller uses banked registers, and
so care must be taken to be in the correct bank at al times. If you build this
program and others like it in MPLAB, it will warn you whenever aregister isnot in
bank 0. It doesthisto provide a helpful reminder of thisissue.

61

|2C Code - Section 3 of 12

MICROCHIP

*ok _Setup Regi sters for |12C *** A 12C Configuration
Confi gure MSSP nodul e for Master Mde

BANKSEL SSPCON
nmov| w B' 00101000’ ;. Enabl es MSSP and uses
; PORTC pins for |12C node
(SSPEN set) AND
Enabl es | 2C Mast er Mode
(SSPMK bi t s)

novwf SSPCON : This is |oaded i nto SSPCON

; Input Levels and slew rate as |2C Standard Level s
BANKSEL SSPSTAT
movliw B 10000000’ ; Slew Rate control (SMP) 100kHz
nmovwf SSPSTAT ; node and input |evels are |2C
| oaded i n SSPSTAT

Getting Startred: I°C Master Mode

Now we begin the code to set up the I12C control registers.

SSPCON is loaded with the value to set 12C Hardware Master Mode, which we use
to make communication with the EEPROM easy. We simply request an action and
wait for it to complete. The MSSP module is also enabled here as we set the
SSPEN bit to turn it on.

Next SSPSTAT is configured. The slew rate control is set for 100 kbps use and
input levels are set to standard 12C levels.

62

M |2C Code - Section 4 of 12
ICROCHIP

o Cerilgurs 2 Reie | 2C Configuration (continued
BANKSEL SSPADD el g ()

moviw (FOSC/ (4 * BAUD)) - 1 ; Cal cul ates SSPADD
nmovwf SSPADD : for desired Baud rate
; and sets up SSPADD

A/Start of 12C Communications

; *** Begin | 2C Data Transfer Sequences ***

| 2CWite

; Send START condition and wait for it to conplete
BANKSEL SSPCON2 ;. BANK 1 &
bsf SSPCON2, SEN ;. Generate START Condition

cal l Wai t MSSP ; Wait for |2C operation

Getting Startred: I°C Master Mode

In this section, the baud rate is set up. Using features of MPLAB allows the baud
rate configuration value to be calculated automatically. The values that we defined
earlier (see section 1), are used in the formula to calculate a value to load into
SSPADD. The value in SSPADD controls the baud rate. Details of thiswere
discussed in this presentation and are found in the device data sheet.

At this point, the 12C configuration registers are set up. It is now time to begin our
write to the EEPROM.

Setting bit SEN will begin our start condition, we want to wait for it to complete, so
a subroutine, named “WaitM SSP’, is called. This subroutine will test for when the
start condition or other action is finished.

The “WaitMSSP’ call will run a subroutine that we will ook at in detail later. This
subroutine polls a flag repeatedly until the flag indicates that the M SSP action has
finished. Once the flag indicates the M SSP action is done, the subroutine ends and
the next instruction is executed.

63

|2C Code - Section 5 of 12

MICROCHIP

; Send and Check CONTROL BYTE, wait for it to conplete
moviw LCO1CTRLI N ; Load CONTROL BYTE (i nput node)
cal l Send_| 2C Byt e ; Send Byte
cal l Wai t MSSP ; Wait for |2C operation

[contral in |
BANKSEL SSPCON2 Control In

bt f sc SSPCON2, ACKSTAT ; Check ACK Status bit
got o | 2CFai | ; failed, skipped if successful

™
: Send and Check ADDRESS BYTE, wait for it to conplete
Dy s on
cal l Wai t MSSP ; Wait for |2C operation
BANKSEL SSPCON2

bt fsc SSPCON2, ACKSTAT ; Check ACK Status bit <«
got o | 2CFai | ; failed, skipped if successful

Getting Startred: I°C Master Mode

The next few lines of code send a control in byte. Thisis needed to tell the
EEPROM we want to send datato it. Call WaitMSSP is used again to wait for this
to complete.

The EEPROM will send an ACK or aNACK to respond to this. To read the
condition, we read the ACKSTAT bit. Inthiscode, if the EEPROM responds with a
NACK, the code will go to the “12CFail” location of the code to handle the error. If
it responds with an “ACK”, the next line executes.

The next few lines send the address byte to the EEPROM and wait for an ACK.
Notice how these lines ook very similar to the sending of the control in byte.

[pause]

Y ou should start to see a pattern by now. When sending a bytein12C, W is loaded
with the value to send and a subroutine “Send_12C_Byte’, is called to send it. Then
the “WaitM SSP” subroutine waits for the byte or other condition to finish. These
subroutines will be looked at in detail at the end of the program.

To check for ACK, the ACKSTAT hit is checked in SSPCON2 and adecision is
made from there as to what the program does next.

M |2C Code - Section 6 of 12
ICROCHIP

Send and Check DATA BYTE, wait for it to conplete

nmov| w LCO1DATA ; Load Data Byte _
cal l Send_| 2C Byt e ; Send Byte < Data

cal l Wai t MSSP ; Wait for |2C operation

BANKSEL SSPCON2
bt f sc SSPCON2, ACKSTAT ; Check ACK Status bit <«

got o | 2CFai | ; failed, skipped if successful

Send and Check the STOP condition, wait for it to conplete
BANKSEL SSPCON2
bsf SSPCON2, PEN ; Send STOP condition —
cal l Wai t MSSP ; Wait for |2C operation IEI
The WRI TE has now conpl et ed successful ly.
Begi n the Read Sequence

Getting Startred: I°C Master Mode

Next, the data byte is sent. Notice that since we are sending abyte, W is |oaded
with the value, the Send_12C_Byte code is run, and we wait for it to compl ete.
Then the ACK bit is checked.

The EEPROM write is now almost finished. All that remainsisto send a stoP
condition and wait for it to complete. Thisiswhat the next few lines do.

Much like sending a start condition, instead of setting SEN, the PEN bit isset. This
tells the MSSP module to send a stop condition. After waiting for that to complete,
the EEPROM Write is finished.

|°C - Code Example - Read

MICROCHIP

e Plan for EEPROM Read

Bl cooin] [roaes | [elconmoou]

Send Start.
Send Control (input mode). Get Ack.
Send Address. Get Ack.
Send Restart and Control (output mode).
Get Ack. Get Data.
Send Nack.

e Send stoP.

Getting Startred: I°C Master Mode

Hereiswhat is needed to read the data from the EEPROM. Remember, a start
condition is sent, followed by the control in byte. The EEPROM responds with an
ACK and the PICmicro then sends the address information. Again the EEPROM
responds with an ACK. The address is now loaded, so arestart condition isinitiated
followed by a control out byte to indicate to the EEPROM that aread isrequired
next. The EEPROM ACK’sthis and sendsthe data. NACKing this data indicates
no more data is needed and a stop condition follows. Lets quickly review the code
step by step. We will also review the subroutines “Send 12C Byte’ and
“WaitMSSP”, at the end of this code.

[pause]

66

|°C - Code Example - Read

MICROCHIP
e ACK Polling
[v] [n] [v]

e When the EEPROM ACK’s the control byte, it is
ready for new commands

e EEPROM will NACK data if busy, so test again

Getting Startred: I°C Master Mode

There is one problem with the approach we just discussed. If the EEPROM is busy, it will NACK
the next command. This NACK will occur after we send the contral byte. Seethe diagram here. If
itisdtill busy, it will NACK again. If one were to keep sending a control byte, one could discover
exactly when the EEPROM was ready. Doing this allows the fastest accesstime and is called “ACK
Polling”.

In order to perform ACK polling, one sends the control byte, in this case control in, and checks the
ACK or NACK response from the EEPROM. If it isa NACK, the EEPROM is busy, so we send a
restart to reset the EEPROM and then try again by sending another control byte. Thisis done over
and over until an ACK isreturned.

When an ACK is returned, then we can continue the transfer.

67

M |°C - Code Example - Read
ICROCHIP

e Plan for EEPROM Read - with ACK Polling

B o | Blcmao
<« _rh

The EEPROM may still be busy writing

When EEPROM is busy it will NACK
commands

ACK Polling keeps asking “Are you ready?”
RESTART is substituted for START

Getting Startred: I°C Master Mode

Notice in this diagram the start condition has been changed to arestart condition.
This is done because arestart is simply a stop followed by a start condition. So,
even if we just had a stop before the restart, we get two stops, followed by a start.
Two stop conditionsin arow is not a problem and perfectly legal in 12C. So, the
start has been replaced with arestart.

Now the EEPROM can be tested if it is ready for commands by looping. First a
restart is sent, then the control in byte, then the ACK or NACK ischecked. Ifitis
an ACK, the program loops back to try again. If itisan ACK, it can continue. This
handles the possibility of the EEPROM being busy after the next command.

68

M |2C Code - Section 7 of 12
ICROCHIP

| 2CRead

; Send RESTART condition and wait for it to conplete
BANKSEL SSPCON2 & IEI
bsf SSPCON2, RSEN : Generate RESTART Condition
cal l Wi t MSSP ; Wait for |2C operation

o Control In

; Send and Check CONTROL BYTE, wait for it to conplete
moviw LCO1CTRLI N ; Load CONTROL BYTE (i nput)
cal l Send_| 2C Byt e ; Send Byte
cal l Wai t MSSP ; Wait for |2C operation

Now check to see if |12C EEPROM i s ready
BANKSEL SSPCON2
bt f sc SSPCON2, ACKSTAT ; Check ACK Status bit «— A
got o | 2CRead ; ACK Poll waiting for EEPROM
; Wwite to conplete

Getting Startred: I°C Master Mode

Here is the continuation of the 12C sample code. This code performs aread of the
EEPROM.

To start the read sequence, arestart condition isused. A restart is sent by setting bit
“RSEN”. After the restart sequence completes, the control in byteis sent to tell the
EEPROM we want to send datato it. The EEPROM will reply with either aNACK
if busy, or an ACK if ready for more data.

The code handles both conditions. The ACK bit istested, and if it isaNACK, the
instruction at the bottom “goto 12C read”, is executed. Thisisthe heart of the ACK
polling. When the code is sent to “12C read”, it returns to the top and runs the
sequence again. Thiswill happen repeatedly until the EEPROM answers with an
ACK.

When the EEPROM answers with ACK, the data transfer continues.

69

M |2C Code - Section 8 of 12
ICROCHIP

Send and Check ADDRESS BYTE, wait for it to conplete
movl w LCO1ADDR ; Load ADDRESS BYTE _
cal | Send_| 2C Byte ; Send Byte <«—| Address

cal l Wai t MSSP ; Wait for |2C operation

BANKSEL SSPCON2
bt f sc SSPCON2, ACKSTAT ; Check ACK Status bit «—

got o | 2CFai | ; failed, skipped if successful

Send REPEATED START condition and wait for it to conplete
bsf SSPCON2, RSEN : Generate RESTART Condition
cal l Wai t MSSP ; Wait for |2C operation «

Getting Startred: I°C Master Mode

Now it istime to send the address to the EEPROM. The address is sent by the next
few lines and again we wait for this action to finish. When it has finished, it is again
ACK’d by the EEPROM.

Next the restart condition is sent. To send arestart, RSEN is set. When that
completes, the program continues.

70

|2C Code - Section 9 of 12

MICROCHIP

Send and Check CONTROL BYTE (out), wait for it to conplete
moviw LCO1CTRLOUT ; Load CONTROL BYTE (out put)
cal l Send_| 2C Byt e ; Send Byte
cal l Wai t MSSP ; Wait for |2C operation

™~
BANKSEL SSPCON2 Control Out

bt f sc SSPCON2, ACKSTAT ; Check ACK Status bit
got o | 2CFai | ; failed, skipped if successful

Switch MSSP nodul e to | 2C Recei ve npde \

bsf SSPCON2, RCEN ; Enabl e Receive Mode (I2C)

CGet the DATA BYTE and wait for it to conpl em Data
Data i s in SSPBUF when

done.
The receive node is disabled at end automatically by the
MSSP nodul e.

cal l Wi t MSSP ; Wait for |2C operation

Getting Startred: I°C Master Mode

Its time now to send the control out byte. Thistellsthe EEPROM to send data out
to the PICmicro MCU. After we check for the ACK condition, it istime to receive
the data.

To receive data, the M SSP module must be put in receive mode. Thisis done by
setting the receive mode bit “RCEN”. Theline “bsf SSPCON2,RCEN” setsthis bit
to enable the receive mode. The data byte is automatically clocked out of the
EEPROM by the PICmicro and isin SSPBUF register when finished.

Note that once that the one byte of data has be transferred, receive mode
automatically ends. It can take some time to receive a byte, so the “WaitM SSP”
codeis called again to allow the byte to fully transfer before continuing.

71

M |2C Code - Section 10 of 12
ICROCHIP

; Send NACK bit for Acknow edge Sequence
BANKSEL SSPCON2
bsf SSPCON2, ACKDT ; ACK DATA to send is 1 (NACK)
bsf SSPCON2, ACKEN : Send ACK DATA now. <«
Once ACK or NACK is sent, ACKEN is automatically cleared

Send and Check the STOP condition and wait for i

t
bsf SSPCON2, PEN : Send STOP condition <— IEI
cal l Wai t MSSP ; Wait for |2C operation

|12C Wite and Read have both finished, value is on LEDs
BANKSEL SSPBUF ;. BANK O
nov f SSPBUF, W ;. Get data from SSPBUF i nto W
novwf PORTB ; Qutput Wregister to LEDs

Output on LEDsﬁ +— End of 12C Communications

; Program has finished and conpl et ed successfully.
got o $: Wit forever at this |ocation

Getting Startred: I°C Master Mode

After the data byte is received, we must reply to the EEPROM with an ACK or NACK condition.
The EEPROM expects an ACK, when more datais desired and aNACK to say that no more datais
required. Since this example only reads one byte of data, a NACK is sent.

To send an ACK or NACK condition, see the code at the top of thisdide.
[pause]

The desired data, a0 for ACK, a1 for aNACK reply, isloaded into the ACKDT hit. Recall thisis
the ACK data bit. Oncethisis done, the ACK or NACK condition is sent by setting ACKEN, which
isthe ACK enable hit.

Just like when sending a start, stop or restart condition, when the ACK or NACK isfinished, the
ACKEN bhit isautomatically cleared. Once the code waits for it to complete (using the WaitM SSP
routine), it istime to send the stop condition to indicate the end of the transfer.

The stop condition code should look very familiar. The PEN bit is set, and we wait for the condition
to complete with WaitM SSP.

Finally, this code sends the result of the read to PORTB for display on LEDs. Recall the data that
was received was loaded into SSPBUF from the read earlier. So, this code copies SSPBUF data into
PORTB for display.

At this point, the main code is finished, so to prevent the program counter from advancing further,
the“goto $” code forces the the PICmicro to freeze at that line “$’ means “thisline” so “goto $
means “go to thisling”, where this, isthe current line.

72

|2C Code - Section 11 of 12

MICROCHIP

*** SUBROUTI NES & ERROR HANDLERS ***
; 12C Operation Failed code sequence - This will normally not
; happen, but if it does, a STOP is sent and the entire code
; is tried again.
| 2CFai | «— Error Handler
BANKSEL SSPCON2
bsf SSPCON2, PEN : Send STOP condition
cal Wai t MSSP ; Wait for |2C operation

BANKSEL PORTB : BANK O

nmov| w OxFF ; Turn on all LEDs on PORTB
novwf PORTB : to show error condition

got o $; Wait forever at this |ocation

Getting Startred: I°C Master Mode

Its now time to look at the error handling code and subroutines.

This code is used to handle any error that results from the 12C main code.

Y ou may recall seeing “goto 12CFail” linesin the earlier code. They were placed after we tested the
ACK or NACK gtatus. If the ACK or NACK status was not what was expected, the “ goto 12CFail”
line would execute and this code would run. Lets see what it does.

This code is known as an error handler. Asyou can see, this error handler sends a stop condition and
then waits for it to complete. Thisisimportant to release the I°C bus. Then it goesto PORTB and
puts OxXFF (hex) onit. Thiswill light all of the LEDs on PORTB. Thisis doneto provide avery easy
indication to you that something is wrong.

Since the code has been proven, it could be hardware related, or perhaps an error has been placed in
your code. No errors have been placed in this code on purpose and it has been tested extensively.

If you would like to see this code run, try removing the EEPROM or ground the SCL or SDA line.
Thiswill force an error which is handled by this code.

Y ou should recognize the “goto $” code. It prevents further execution past that line.

Y ou may have noticed that this codeis not “called” and “returned” from so it is not technically a
subroutine. It has been separated from the main code and placed here to make the code explanation
easier to understand.

73

|2C Code - Section 12 of 12

MICROCHIP

; This routine sends the Wregister to SSPBUF, thus

; transmtting a byte. The SSPIF flag is checked to ensure

; the byte has been sent. On conpletion, the routine exits.

Send_I| 2C Byt e)
BANKSEL SSPBUF . BANK 0 a4~ Send Byte Subroutine
nmovwf SSPBUF ; Get value to send put in SSPBUF
retlw 0 ;. Done, Return O

; This routine waits for the |l ast |12C operation to conpl ete.
It does this by polling the SSPIF flag in PIR1.

Wi t MSSP . .
BANKSEL PI R1 ;. BANK 0 4— Wait Subroutine
bt fss Pl R1, SSPI F ; Check if |2C operation done
got o $-1 ; 12C modul e is not ready yet
bcf Pl R1, SSPI F ; 12C ready, clear flag
retlw 0 ;. Done, Return O

END «— End of Program

Getting Startred: I°C Master Mode

Thisisthe last dide to review for this code example. It contains two very small
subroutines that we have used extensively in the main code. Letslook at them now.

“Send 12C Byte”, smply takes the value currently in W and placesit in SSPBUF.
If al other conditions are correct, thiswill send abyte. Remember that W was
loaded with a value, which you probably noticed was from one of the #defines used
at the beginning of the code. It ends with “retlw 0" which writes 0 to W and then
exits the subroutine. The 0, indicates “no errors’, but is not important in this case.

The “WaitMSSP” subroutine waits for an MSSP action to complete. To do this, we
poll the “SSPIF” flag. SSPIF stands for “ Synchronous Seria Port Interrupt Flag”.
Thisflag is set by the M SSP module when any M SSP action completes. So, polling
thisflag is used to wait thought this code. However, notice that the flag is cleared
again after we discover it has been set. This must be done in order to useit again.
The PICmicro will only set thisflag, it is up to the user code to clear it. Thisisthe
case with many interrupt flags. Check the data sheet for details on these flags.
Again, since it isasubroutine, “retlw 0" is used to end the routine and return to the
main code.

This completes the code review. Next, we will look at the waveforms you should
see, complete with sample oscilloscope traces.

74

1°C - Example Waveforms
MICROCHIP

e The following slides show the waveforms
produced from the sample code.

Writing to EEPROM

|2C Bus Conditions (Start, Stop, Restart)

°
e Reading from EEPROM
°
e Waveform Close-ups

Getting Startred: I°C Master Mode

The next dlides in this presentation will look at what you should see if you look at
the SCL and SDA lines during the data transfer. It isrecommended that you try this
asit will be helpful to learning 12C.

75

1°C - Example Waveforms

MICROCHIP
e Complete Transfer

Getting Startred: 1°C Master Mode

Hereis an overview of the transfer. It isnot easy to understand what is happening
yet, but if your results look like this, you are probably doing well.

76

1°C - Example Waveforms

MICROCHIP
e Close-up of Waveforms

RN it B) . II,"FH“M_“

Getting Startred: I°C Master Mode

Hereis agreatly magnified look at a high and alow. When the I12C lines are driven
low, the signal fals, and often quite rapidly. There may be some ringing as you can
see, but this can be tweaked in your system if needed. Note that when a signal floats
high, the slope is quite gentle. This slope will depend on your pull-up resistor. Itis
aresult of the pull-up resistor and the capacitance of the 12C line. If you choose too
large of a pull-up resistor for your application, you may notice the slope is so slow,
the signal never becomes high, or the results may be ambiguous. If the pull-up is
too small, the 12C drivers may have trouble driving enough current to compensate
and your average current consumption will rise as well.

Pull-up values were suggested earlier in this presentation, but the results were only a
suggestion, it is these waveforms that will determine the success of your 12C. Itis
also thisthat limits your distance and speed. Asyou try to increase distance, you
will increase capacitance. As capacitance increases, so will the time constant and
the rise curve will get longer. If it gets too long, the data can not be read reliably as
the signal will not rise high enough. This also limits speed, asto go faster, thisrise
must happen faster.

Asagenerd rule, 12C is not made for long distances. Keep it on one PCB or at least
in one box. If you want to go longer distances, slow down and use smaller pull-ups,
and remember there are limits to its drive capabilities.

77

1°C - Example Waveforms

MICROCHIP
e \Writing a Data Byte To the EEPROM

Getting Startred: 1°C Master Mode

Hereis aclose-up of the writing to the EEPROM. The diagram points to the various
conditions that make up the write transfer sequence. Note, even though the arrows
appear to only point to the SDA or SCL signals, both the SDA and SCL are part of
each condition. For example, datais not data unless thereisaclock for it, and a
Start condition is made up of the timing of both SDA and SCL.

If you look at the results on your oscilloscope, you should be able to see asimilar
result here and be able to recognize each condition.

Have you noticed those spikes near clock pulse number 9? Consider them as alow
for now. We will look at them in detail shortly.

78

1°C - Example Waveforms

MICROCHIP
e Start Condition and First (Control In) Byte

Getting Startred: I°C Master Mode

Hereis aclose up of a start condition, the control in byte and its ACK. You can
clearly see the data now. After the start, SDA goes high, then low, then high again.
Then it remains low until the spike. This trandlates into a data bit at each clock
pulse. At thefirst SCL pulse, SDA ishigh, so thisbitisa 1, then it goeslow for the
next pulse so thisisa 0, and so on. Y ou should be able to recognize the binary
value of 1010 0000, or OxAO (hex).

Have you seen this before? It is used in the code used to define a*® Control In”.
Remember the first thing we did when sending a byte was to send a control in byte.
A control in byte was defined in the “#define” section of the code as OXAO hex.
Clearly things are working well.

The 9th bit isthe ACK from the EEPROM. The reason for the spike is that the
PICmicro MCU releases the data line so that the EEPROM can answer. If the
EEPROM pullstheline low, itsan ACK, if it floats high, itsa NACK. The spikeis
caused due to the fact that as soon as the PICmicro MCU releases the data line, it
startsto go high. A very short time later, the EEPROM pullsit low. This happens
to be a short time, but thisis the reason you see a spike here. The important thing to
12C isthat the line is low when the clock is high, and this condition is satisfied.

What it does until then is not very important.

79

1°C - Example Waveforms

MICROCHIP
e Close-up of ACK Signaling

Getting Startred: 1°C Master Mode

Hereisaclose up of the ACK pulse and the nearby spike we have mentioned.
Notice that it only happens when SCL islow. Remember that dataonly hasto be
valid when SCL ishigh. Thisis part of the definition of 12C protocol. Asyou can
see, this does happen and so the ACK will be correctly recognized. If you have
trouble with your 12C system, be sure to check this. The data must be valid when

SCL goes high.

80

1°C - Example Waveforms

MICROCHIP
e Restart Condition

Getting Startred: 1°C Master Mode

Hereisalook at the restart condition. Thisisthefirst restart that occurs in the waveform. It
happened after the write to the EEPROM completed and we begin the first part of the ACK polling.
Y ou can see the start and stop conditions contained within it.

81

1°C - Example Waveforms

MICROCHIP
e Close-up of Restart Condition

Getting Startred: 1°C Master Mode

Hereis acloser look at the same restart condition. Y ou can now clearly see the stop
and start condition contained within it. Remember, a stop condition is a release of
the SCL line followed by arelease of the SDA line. A start condition is when SDA
is pulled low, followed by SCL. Restart conditions may sometimes look different
from each other, but they must contain a stop followed by a start condition by

definition.

82

1°C - Example Waveforms
MICROCHIP

e Reading a Data Byte From the EEPROM

[FHazRE]y A

Getting Startred: 1°C Master Mode © 2001

Hereisalook at our EEPROM read waveform. Shown hereisthefirst control byte that is ACKed
by the EEPROM. None of the ACK polling is shown here. Y ou can see the Control in byte, which
has the value of OxAO (hex). Y ou can also see the address byte and data byte. Remember we wrote
0x34 (hex) to address 0x12 (hex).

83

1°C - Example Waveforms
MICROCHIP

e ACK Polling

T e o il i o il s o o o i o i i i o i i
]

P R E REEEE W 'Illl‘l-' = |-Im-||- B opEmmmmiEE m EEEEEN BIEEEIEE B ORE

=

Getting Startred: 1°C Master Mode

Hereisalook at the ACK polling results. Itsabit hard to see from this diagram, but each of the polls
has returned a NACK from the EEPROM. Only the one being pointed to returned an ACK, thus
ending the polling. The polling when tested went for many cycles, many more than shown here, and
will vary. However, ACK polling gives you the fastest possible response from the EEPROM

because you can know immediately when it is no longer busy.

Letstake a closer look at the ACK polling now.

1°C - Example Waveforms
MICROCHIP

e Close-up of ACK Polling

.—.—.—u—.—.—.—.—,—,—l—n—.—.—hﬂ—.—i.—._

&

Getting Startred: 1°C Master Mode

Hereis another look at the ACK polling. Each write of the control out byteis
returning a NACK, thus indicating the EEPROM is not ready for new commands at
thistime.

85

1°C - Example Waveforms

MICROCHIP
e ACK Polling - Device Returned NACK

E Control Out

Getting Startred: 1°C Master Mode

Here we have zoomed in on one loop. You can clearly see the restart, the control
out byte, and the NACK. The NACK isnow easy to see. Notice that one the Sth
clock pulse the SDA line goes high. Thisindicates the bit isa 1, which signifies a
NACK response.

If this bit were low, it would signify a0, which isan ACK response.

86

1°C - Example Waveforms

MICROCHIP
e NACK and STOP at End of Transfer

Getting Startred: 1°C Master Mode

This dlide has zoomed in on the last byte in the transfer. It contains the data that
was retrieved from the EEPROM, the NACK sent by the PICmicro and the stop
condition. Once these signals have finished, the busisidle as there is no more data
or conditions on the bus. This can be seen from the right of the stop condition.
Once the stop condition completes, we have finished communicating with the
EEPROM.

87

12C - For More Information
MICROCHIP

e More I12C Resources:

® PICmicro Data Sheet, (example: “PIC16F87x
Data Sheet,” MSSP Chapter).

® Reference Manuals (MSSP Chapter).

e Application Notes AN734, AN735 and
ANS578.

Getting Startred: I°C Master Mode

Listed here are some more resources that you can take alook at. These items are all
available on the Microchip Technology web site. Visit:
“http://mwww.microchip.com” to locate these documents.

ANS578 - Description: Use of the SSP Module in the I[IC Multi-Master Environment
AN734 - Description: Using the PICmicro SSP for Slave 12C Communication

AN735 - Description: Using the PICmicro MSSP Module for [Master Modg] 12C
Communications

88

