
1

Getting Startred: I2C Master Mode © 2001

I2C™ Master
Mode

II22CC™ Master Master
ModeMode

Overview and Use of the
PICmicro® MSSP I2C Interface

with a 24xx01x EEPROM

Overview and Use of the
PICmicro® MSSP I2C Interface

with a 24xx01x EEPROM

v 0.40

Welcome to the Microchip Technology Presentation on using the MSSP module in
Master I2C mode.

In this presentation, we will look at what I2C is and how it is used to communicate
data to and from a PICmicro Microcontroller and a serial EEPROM. We will be
connecting a device from the popular family of PIC16F87x microcontrollers to a
24x01 serial EEPROM. Both of these devices are manufactured by Microchip
Technology Inc and can be found on the popular PICDEM 2 Demonstration Board.

I2C is a popular protocol and is supported by many devices. This presentation
answers some questions about I2C and explains with a full example how to connect
a PICmicro MSSP module to an EEPROM.

2

Getting Startred: I2C Master Mode © 2001

TopicsTopicsTopics

l Covered Topics:

l Overview of I2C
l Using I2C on the PICmicro Microcontroller
l Example: A code walk-though for connecting a

24x01x to a PIC16F87X
l Finding More Information

l Covered Topics:

l Overview of I2C
l Using I2C on the PICmicro Microcontroller
l Example: A code walk-though for connecting a

24x01x to a PIC16F87X
l Finding More Information

In this presentation, we will cover the following topics:

We will first cover an Overview of I2C.

This chapter of the presentation will introduce you to the I2C Protocol and its
concepts.

Next, we will examine the use of I2C on the PICmicro microcontroller.

The details of how SPI is implemented on a PICmicro device will be examined. We
will look at the MSSP module, which is available on a wide selection of popular
PICmicro microcontrollers.

We will then examine a code walk-though.

The walkthough will explore code for both writing and reading a serial EEPROM.
The example sends sample data to the EEPROM, then reads back the data and
displays it. The code to do this looks rather long, but it is not complex. We will
break the code down into smaller and easy to understand sections.

Finally, there will be a few resources given at the end of the presentation. These
resources will allow you to explore in more detail the I2C interface.

3

Getting Startred: I2C Master Mode © 2001

OverviewOverviewOverview

l Used for moving data simply and quickly
from one device to another

l Serial Interface
l Synchronous
l Bidirectional

l Used for moving data simply and quickly
from one device to another

l Serial Interface
l Synchronous
l Bidirectional

I2C stands for Inter-Integrated Circuit Communications.

I2C is implemented in the PICmicro by a hardware module called the Master
Synchronous Serial Port, known as the MSSP module . This module is built into
many different PICmicro devices. It allows I2C serial communication between two
or more devices at a high speed and communicates with other PICmicro devices and
many peripheral IC’s on the market today.

I2C is a synchronous protocol that allows a master device to initiate communication
with a slave device. Data is exchanged between these devices. We will look at this
more in detail as we progress though this presentation.

I2C is also bi-directional. This is implemented by an “Acknowledge” system. The
“Acknowledge” system or “ACK” system allows data to be sent in one direction to
one item on the I2C bus, and then, that item will “ACK” to indicate the data was
received. We will look at this in detail later, as you can see, this is a powerful
feature of I2C. Since a peripheral can acknowledge data, there is little confusion on
whether the data reached the peripheral and whether it was understood.

4

Getting Startred: I2C Master Mode © 2001

OverviewOverviewOverview

l I2C is a Synchronous protocol

l The data is clocked along with a clock signal
(SCL)

l The clock signal controls when data is changed
and when it should be read

l Since I2C is synchronous, the clock rate can
vary, unlike asynchronous (RS-232 style)
communications

l I2C is a Synchronous protocol

l The data is clocked along with a clock signal
(SCL)

l The clock signal controls when data is changed
and when it should be read

l Since I2C is synchronous, the clock rate can
vary, unlike asynchronous (RS-232 style)
communications

I2C is a synchronous protocol that allows a master device to initiate communication
with a slave device. Data is exchanged between these devices.

Since I2C is synchronous, it has a clock pulse along with the data. RS232 and other
asynchronous protocols do not use a clock pulse, but the data must be timed very
accurately.

Since I2C has a clock signal, the clock can vary without disrupting the data. The
data rate will simply change along with the changes in the clock rate. This makes
I2C ideal when the micro is being clocked imprecisely, such as by a RC oscillator.

5

Getting Startred: I2C Master Mode © 2001

OverviewOverviewOverview

l I2C is a Master-Slave protocol

l The Master device controls the clock (SCL)
l The slave devices may hold the clock low to

prevent data transfer
l No data is transferred unless a clock signal is

present
l All slaves are controlled by the master clock

l I2C is a Master-Slave protocol

l The Master device controls the clock (SCL)
l The slave devices may hold the clock low to

prevent data transfer
l No data is transferred unless a clock signal is

present
l All slaves are controlled by the master clock

I2C is a Master-Slave protocol.

Normally, the master device controls the clock line, SCL. This line dictates the
timing of all transfers on the I2C bus. Other devices can manipulate this line, but
they can only force the line low. This action means that item on the bus can not
deal with more incoming data. By forcing the line low, it is impossible to clock
more data in to any device. This is known as “Clock Stretching”.

As stated earlier, no data will be transferred unless the clock is manipulated.

All slaves are controlled by the same clock, SCL.

6

Getting Startred: I2C Master Mode © 2001

I2C - OverviewI2C I2C -- OverviewOverview

l I2C is a Bidirectional protocol

l Data is sent either direction on the serial data
line (SDA) by the master or slave.

l I2C is a Bidirectional protocol

l Data is sent either direction on the serial data
line (SDA) by the master or slave.

I2C is a Bi-directional protocol. Data can flow in any direction on the I2C bus, but
when it flows is controlled by the master device.

7

Getting Startred: I2C Master Mode © 2001

OverviewOverviewOverview

l I2C is a Serial Interface of only two signals:

l SDA Serial DAta
 This line transfers data to or from the master.

l SCL Serial CLock
 This controls when data is sent and when it is

read. The master controls SCK.

l I2C is a Serial Interface of only two signals:

l SDA Serial DAta
 This line transfers data to or from the master.

l SCL Serial CLock
 This controls when data is sent and when it is

read. The master controls SCK.

I2C is a Serial Interface and uses only the following two signals to serially exchange
data with another device:

SDA - This signal is known as Serial Data. Any data sent from one device to
another goes on this line.

SCL - This is the Serial Clock signal. It is generated by the master device and
controls when data is sent and when it is read. As mentioned earlier, the signal can
be forced low so that no clock can occur. This is done by a device that has become
too busy to accept more data.

8

Getting Startred: I2C Master Mode © 2001

I2C – SignalsII22CC – SignalsSignals

l Signal Levels
l Float High (logic 1)
l Drive Low (logic 0)

l Signal Levels
l Float High (logic 1)
l Drive Low (logic 0)

+5 +5

Float High Drive Low

Note: Diagrams are symbolic

I2C lines can have only two possible electrical states. These states are known as
“float high” and “drive low”. I2C works by having a pull-up resistor on the line and
only devices pull the line low. If no device is pulling on the line, it will “float
high”. This is why pull-up resistors are important in I2C.

If no pull-up resistor were used, the line would float to an unknown state. If one
tried to drive the line high, it might cause contention with a device trying to drive
the line low. This contention could damage the either or both devices driving the
line.

To prevent this, the pull-up-drive low system controls when one device has control
of the bus. If another device tried to use the bus when it was busy, it would find the
bus to be driven low already and know it was busy. Even if it tried to use the bus
accidentally, it would only drive it low and not damage other devices.

The diagrams shown are symbolic. In each case, the solid diagram represents the
ACTIVE part of the bus. In the case of driving low, the buffer is actively pulling
the line low. In the case of floating high, the resistor pulls the line high, while the
buffer is turned off. A buffer turned off has very high impedance and behaves as if
it were disconnected. Only the output buffers are shown for simplicity.

9

Getting Startred: I2C Master Mode © 2001

I2C – HardwareII22CC – HardwareHardware

I2C Pull-up Resistor Setting SuggestionsI2C Pull-up Resistor Setting Suggestions

1 k2.2 k4.7 k

100 kbps 400 kbps< 100 kbps

NOTE: Values are approximate

This diagram represents the recommended pull-up resistor value for various I2C
speeds. You are free to use any resistor value you like, but the calculation of what
to use will depend on the capacitance of the driven line, and the speed of the I2C
communication. There may be other factors as well. These values were chosen as
they represent values that have been found to work frequently at these speeds. They
are provided for reference only as suggested values. Your application may choose
other values.

Next, we will examine the building blocks or “elements” of I2C

10

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Building Blocks of I2C

l I2C consists of many “conditions” which to
simplify this presentation will be represented as
“elements”.

l Building Blocks of I2C

l I2C consists of many “conditions” which to
simplify this presentation will be represented as
“elements”.

S P R Data A

The I2C bus has a number of “conditions”. These conditions indicate when a
transfer is starting, stopping, being acknowledged, and other events. To simplify the
explanation of I2C communications, this presentation will represent these as
“elements”, small colored blocks with a letter and color to represent each condition.

These elements will be used thought the presentation to aid the explanation of I2C.
Some sample blocks are shown here.

[pause]

Let’s take a closer look at these elements now.

11

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Start Condition
l Initializes I2C Bus
l SDA is pulled low while SCL is high

l Start Condition
l Initializes I2C Bus
l SDA is pulled low while SCL is high

S
SDA

SCL
=

The first element we need to look at is the Start condition. A start condition
indicates that a device would like to transfer data on the I2C bus.

Pictured here is the block with an “S” in it and what it the signals look like on the
I2C bus. As you can see, SDA is first pulled low, followed by SCL.

The PICmicro microcontroller will take care of the timing details for you. However
it will need to be told you want a start condition and you will check for when it
completes. We will look at how these blocks relate to using a PICmicro device
later.

12

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Stop Condition
l Releases I2C Bus
l SDA is released while SCL is high

l Stop Condition
l Releases I2C Bus
l SDA is released while SCL is high

SDA

SCL
=P

The next element we will discuss is the Stop condition. A start condition indicates
that a device has finished its transfer on the I2C bus and would like to release the
bus. Once released other devices may use the bus to transmit data.

As you can see, a block with a “T” in it represents the stop condition. A “T” is used
because “S” was already used for start earlier. This convention will continue to be
used thought this presentation.

The signaling used for a stop is a release of the SCL line followed by a release of
the SDA line. Remember that releasing a line turns off the driver, and since there is
a pull-up resistor on it, the line floats high.

Once the stop condition completes, both SCL and SDA will be high. This is
considered to be an idle bus. Once the bus is idle a Start condition can be used to
send more data.

Again, the PICmicro microcontroller will take care of the timing details of this for
you. You will only need to tell it you want a stop condition and wait for it to
complete.

13

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Restart Condition
l Reinitializes I2C Bus
l Used when START does NOT follow STOP

l Restart Condition
l Reinitializes I2C Bus
l Used when START does NOT follow STOP

SDA

SCL
=R

Next is the Restart condition. A restart condition indicates that a device would like
to transmit more data, but does not wish to release the line. This is done when a
start must be sent, but a stop has not occurred. It is also a convenient way to send a
stop followed by a start right after each other. It prevents other devices from
grabbing the bus between transfers.

If you are talking to one device, such as a serial EEPROM, you may not want to be
interrupted when transmitting addresses and gathering data. A restart condition will
handle this.

The restart condition is represented by a “R” in this presentation.

The signaling used for a restart can be seen to be nothing more than a stop condition
quickly followed by a start condition.

The PICmicro microcontroller also will handle this. You simply request a restart
condition be sent, then wait for it to complete.

14

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Restart Condition
l Reinitializes I2C Bus
l Used when START does NOT follow STOP

l Restart Condition
l Reinitializes I2C Bus
l Used when START does NOT follow STOP

SDA

SCL
=R

START condition

STOP condition

Here we can clearly see that the signaling used for a restart can be seen to be
nothing more than a stop condition quickly followed by a start condition.
Remember that a stop condition is when SDA goes high while SCL is high. A start
condition is when SDA is pulled low while SCL is high.

The PICmicro microcontroller automatically generate this as well. One simply
requests that a restart condition be sent, then wait for it to complete.

15

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Data Transfer
l 8 bits of data is sent on the bus
l Data is valid when SCL is high

l Data Transfer
l 8 bits of data is sent on the bus
l Data is valid when SCL is high

=Data
SDA

SCL

Let’s now discuss the data transfer element. The data block represents the transfer
of 8 bits of information. The data is sent on the SDA line and SCL produces a
clock. The clock can be aligned with the data to indicate whether each bit is a “1”
or a “0”.

Data on SDA is only considered valid when SCL is high. When SCL is not high,
the data is permitted to change. This is how the timing of each bit works.

The PICmicro microcontroller also can transmit data bytes. To do so, we load a
buffer with the byte of data to send, tell it to send it and wait for its completion.

Data bytes are used to transfer all kinds of information. When communicating to
another I2C device, the 8 bits of data may be a control code, an address or data.
Many possibilities exist and they will be discussed in detail in the manual for the
device you are interfacing to. In this presentation we will connect a serial EEPROM
to the bus and look at the signals involved. Other I2C devices will require similar
signals, but may not be identical. Check the device datasheet for the peripheral.

16

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l Data States
l Each bit of data can be a “1” or “0”

l Data States
l Each bit of data can be a “1” or “0”

SDA

SCL

SDA

SCL

11 00
Data

Data must be valid on rising edge

Here is a close-up view of a data block. As you can see, it contains 8 bits of data
and the data is valid on the rising edge of SCL. The data then remains valid while
SCL is high.

If SDA is high when this happens, the data bit is a “1”. If it is low, it is a “0”. We
will see sample data transfers later in this presentation when we look in detail at our
example.

17

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l ACK Condition
l Acknowledges a data transfer
l ACK is when the recipient drives SDA low

l ACK Condition
l Acknowledges a data transfer
l ACK is when the recipient drives SDA low

=A
SDA

SCL

Lastly we will discuss the ACK and NACK condition. A device can “ACK” or
acknowledge a transfer of each byte by bringing the SDA line low during the 9th
clock pulse of SCL.

The 9 bits of a transfer look like this: 8 bits are clocked out for the data, then during
the 9th bit the item receiving the data grabs the bus for one bit. If it drives this bit
low, then the device is signaling an “ACK”. Otherwise, it it allows the SDA line to
float high it is transmitting a “NACK”. Remember that the device must actively
drive the bus low to send an ACK, but a NACK could be a passive response. This is
one of the benefits of I2C.

This diagram shows an “ACK” element. It is shown as a block with an “A” in it.

18

Getting Startred: I2C Master Mode © 2001

I2C – ElementsII22CC – ElementsElements

l NACK Condition
l Negatively acknowledges a data transfer
l NACK - the recipient does NOT drive SDA low

l NACK Condition
l Negatively acknowledges a data transfer
l NACK - the recipient does NOT drive SDA low

=N
SDA

SCL

This is a NACK condition. Remember that a “ACK”’s or “NACK”s a byte of data.
I2C states that each byte MUST be answered with a NACK or ACK. If the device
can not decide if it wants to ACK or NACK, then it will hold the clock line low until
it makes up its mind. This action is known as “clock stretching” and is a feature of
I2C to give devices enough time to respond. We will look at this in more detail later.

Notice that a “NACK” is when the SDA line floats high during the 9th clock pulse.
It is the opposite of an ACK. The meaning of these acknowledgements will depend
on which byte is being transferred and what device is being talked to.

This diagram shows an “NACK” element. It is shown as a block with an “N” in it.

19

Getting Startred: I2C Master Mode © 2001

Writing to a I2C EEPROMWriting to a IWriting to a I22C EEPROMC EEPROM

l Write Examplel Write Example

S Data P

A

AddressControl In

A A

From Master

From Slave

If we put these elements together, we can produce useful I2C transfers. The aim of this presentation
is to communicate with a serial I2C EEPROM. Here is an example transfer of writing to a small
EEPROM.

We need to transfer 3 bytes of information to do this. The transfer begins with a start, to signal the
beginning of the transfer. Then, the control byte is sent. The control byte for an EEPROM can have
two different data bytes in it. One signifies that you want to write a byte to the EEPROM, and the
other signifies that we want to read a byte from the EEPROM.

The function of writing to the EEPROM is shown here as “Control IN”, which represents putting the
EEPROM in an “input” mode. Since we are only sending data to the EEPROM, we use the “Control
In” byte. We will use “Control OUT” later.

Next, the EEPROM acknowledges this byte. This is shown by the “A” after the byte. It is put on the
next line to indicate this is transmitted by the EEPROM, not the PICmicro device.

Next the PICmicro sends the Address Byte. The Address Byte contains the address of the location of
the EEPROM we want to write data to. Since the address is valid, the data is “ACK”’ed by the
EEPROM.

Finally, we send the data we want to write. The data is then ACK’ed by the EEPROM. When that
finishes, we send a stop condition to complete the transfer. Remember the STOP is represented as
the “T” block on the end. Once the EEPROM gets the stop condition it will begin writing to its
memory. The write will not occur until it receives the stop condition.

20

Getting Startred: I2C Master Mode © 2001

Reading from an I2C EEPROMReading from an IReading from an I22C EEPROMC EEPROM

l Read Examplel Read Example

S

A

RAddressControl In Control Out P

DataA A

N

From Master

From Slave

Here is an example transfer of reading from a small EEPROM.

We need to transfer 4 bytes of information. The transfer will use the Control IN byte to load the
address into the EEPROM. This sends data to the EEPROM which is why we use the control in byte.
Once the address is loaded, we want to retrieve the data. So, we send a control OUT byte to indicate
to the EEPROM that we want data FROM it. The EEPROM will acknowledge this and then send the
data we requested. When we are done getting data, we send a “NACK” to tell the EEPROM that we
don’t want more data. If we were to send an ACK at this point, we could get the next byte of data
from the EEPROM. Since we only want to read one byte, we send a NACK. This is detailed in the
specifications for the EEPROM.

As you can see, each byte is responded to with an ACK or NACK. If the PICmicro device sends a
byte, the EERPOM responds with an ACK or NACK condition. If the EEPROM sends a byte, then
the PICmicro microcontroller must reply with the required ACK or NACK condition. When the
transfer is finished, a stop bit is sent by the PICmicro device.

You also will notice that a RESTART is used before the Control Out byte is sent. This is sent
because the datasheet for the EEPROM states it is needed, but it is needed because the device must
receive a start before it will understand the next byte is a control byte. This is part of the internal
decoding hardware of the EEPROM. A start condition can not be used, since a stop condition has not
yet occurred, and we are in the middle of a transfer. We will look at this in detail next.

21

Getting Startred: I2C Master Mode © 2001

I2C – QUESTION?II22CC – QUESTION?QUESTION?

l When do I use a restart condition instead
of a start condition?

l A start condition can only be used when the
bus is idle. A STOP will cause an idle bus,
but if in the middle of a transmission a restart
is needed.

l See the example of an EEPROM read for
reference... (on next slide)

l When do I use a restart condition instead
of a start condition?

l A start condition can only be used when the
bus is idle. A STOP will cause an idle bus,
but if in the middle of a transmission a restart
is needed.

l See the example of an EEPROM read for
reference... (on next slide)

One frequently asked question about I2C transfers is:

When do I use a restart condition instead of a start condition?

The reasons can vary, but sometimes it becomes necessary to reset a device in the
middle of a transfer. In the case of an EEPROM, it demands data to be in a
particular order. It must have a Start, followed by a control byte, followed by an
address if any, and then any data if applicable.

When reading from an EEPROM, you must WRITE the address IN to the device so
that it understands what address you want to read. This is done by sending a Start,
then a control IN, then the address desired.

Once it has the address it is ready to be read, so a restart is used to stop the current
transfer and immediately send a start condition. Once a start is sent, the control
OUT byte is sent then the data can be obtained from the device.

Remember, start conditions can only be used on an idle bus, NOT in the middle of a
transfer. An example of this can be seen on the next page.

22

Getting Startred: I2C Master Mode © 2001

Reading from an I2C EEPROMReading from an IReading from an I22C EEPROMC EEPROM

l Read Example - Using RESTARTl Read Example - Using RESTART

RESTART
follows ACK -
this is within a
transmission

START begins a transmission

S

A

RAddressControl In Control Out P

DataA A

N

Here is another look at our EEPROM read example. As you can see, a start
condition is used to begin the transfer, a restart is used in the middle of the transfer
to reset the EEPROM device, and a stop ends the transfer.

23

Getting Startred: I2C Master Mode © 2001

Writing to a Larger EEPROMWriting to a Larger EEPROMWriting to a Larger EEPROM

l Large EEPROM Write Examplel Large EEPROM Write Example

Longer address (2 bytes)

S

A

Address HControl In Address L PData

A A A

Writing to a large EEPROM is not very different from a small one. The only
difference is there are now two address bytes instead of one. As you would expect,
each byte must be “ACK’ed” as well.

Above is a sample write to a large EEPROM. First the Control In byte is written,
then the Address High, then Address Low. Finally, the Data byte is written
followed by a stop condition. ACK’s follow each of the four data bytes.

24

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22C in the PICmicro C in the PICmicro MCUMCU

l The MSSP module in the PICmicro
microcontroller (MCU) allows I2C and other
synchronous serial protocols

l The MSSP module in the PICmicro
microcontroller (MCU) allows I2C and other
synchronous serial protocols

PICmicro MCU

MSSP

In the PICmicro, a module is used for the I2C protocol. This module is named the
MSSP module and allows SPI or I2C to be implemented.

I2C and SPI are both synchronous serial protocols, and hence the name of the MSSP
module. MSSP stands for “Master Synchronous Serial Port”. If you want to use I2C
ensure your PICmicro MCU has this port. Check the product line card or the device
datasheet to ensure it has an MSSP module.

25

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

I2C Engine

SSPBUF

l I2C Data Transfer

Master Peripheral

SDASDA

Control

SCL SCL

I2C Engine

Action

I2C is implemented though the SDA and SCL lines.

Data that is transmitted or received on the PICmicro I2C interface is sent to the
SSPBUF register. The PICmicro microcontroller handles the details of clock
generation and other features. If a start, restart, stop, ACK or other condition needs
to be generated, one needs only to set the appropriate bits and wait for the condition
to complete.

We will look at this diagram in some more detail now.

26

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

l I2C Data Transfer

I2C Engine

SSPBUF

Master Peripheral

SDASDA

Control

SCL SCL

I2C Engine

Action

SSPBUF:
A register that stores data
that is sent or received
on the I2C bus.

Once a byte of data has been sent to the master via I2C, it is sent to the SSPBUF
register. Data to be sent on the I2C bus is also sent to the SSPBUF register, which is
then sent via I2C. SSPBUF holds data to transmit or received data, depending on the
current mode of the MSSP module.

27

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

l I2C Data Transfer

I2C Engine

SSPBUF

Master Peripheral

SDASDA

Control

SCL SCL

I2C Engine

Action

I2C Engine:
A hardware engine
which implements the
the I2C protocol.

The I2C engine sends data out on the I2C bus using the Clock (SCL) and Data (SDA)
lines for communication. The I2C engine on the PICmicro device contains many
registers which configure it as well as control its operation. The user has full access
to these registers and we will look at them later in this presentation.

The I2C engine on a peripheral is usually fairly transparent to the user. The data
sheet on the peripheral will tell you how to use the peripheral by telling you what
commands must be sent and how it will respond.

28

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

l I2C Data Transfer

I2C Engine

SSPBUF

Master Peripheral

SDASDA

Control

SCL SCL

I2C Engine

Action

Control Engine:
This hardware controls the
actions of the device
based on I2C instructions.

The peripheral will also contain a control engine of some kind. This engine will
recognize valid I2C commands and direct that the peripheral perform the desired
action. It could be thought of as a kind of instruction decoder. This same block will
also take the data generated from the action of the device and communicate this to
the I2C engine for transmission.

29

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

l I2C Data Transfer

I2C Engine

SSPBUF

Master Peripheral

SDASDA

Control

SCL SCL

I2C Engine

ActionDevice Action:
The device acts upon
the control given and
relays data.

The device action block represents that once the I2C request is decoded, it will either
generate an action by the peripheral or it will generate data which is sent via I2C.

A common example of an action would be to have an EEPROM store some data.
The Command would be received by the I2C engine, then the control block would
decode what do do with the command, then the action block would perform the
command, which is to store the data.

An example of generating data would be to instead request data from the EEPROM.
The command would be decoded and generate an action. This action would be to
have the EEPROM perform a read of the desired location, and then send the data to
the control block. The control block would format the data and give it to the I2C
engine. The I2C engine would then send the requested data.

This is a simplification of the process. However it gives you a general idea of how
an I2C transfer works.

30

Getting Startred: I2C Master Mode © 2001

I2C in the PICmicro MCUII22CC in the PICmicroin the PICmicro MCUMCU

l 4 Registers control the function I2C in the
PICmicro microcontroller

l The values to be placed in the registers will
often depend on your application

l See device datasheet for details
l The next few slides will discuss the registers

that control the MSSP module, and how it is
used for I2C in Master Mode.

l 4 Registers control the function I2C in the
PICmicro microcontroller

l The values to be placed in the registers will
often depend on your application

l See device datasheet for details
l The next few slides will discuss the registers

that control the MSSP module, and how it is
used for I2C in Master Mode.

I2C on the PICmicro is controlled by 4 registers which we will look at in detail
shortly. The values placed in these registers will control every aspect of the I2C
communication. The device datasheet and reference manual will contain many
details on using I2C and configuring these values, but we will give an introduction to
them here. Note also that the MSSP module on a PICmicro device is capable of
many different modes and configurations.

To simplify this presentation and to cover the most frequently asked topics, we will
only be looking at how to talk to a standard Microchip Technology serial EEPROM.
This is known as “Master mode” and contains only one master, the PICmicro
microcontroller, and one slave, the EEPROM.

31

Getting Startred: I2C Master Mode © 2001

I2C – PICmicro (SSPCON)II22C C – PICmicro (SSPCON)PICmicro (SSPCON)

l Here are the bits in the SSPCON Register:

l WCOL Write Collision
l SSPOV Overflow
l SSPEN Enable
l SSPM3:SSPM0 (4 bits) Function Control

l CKP is also in SSPCON but is not used for
master mode I2C.

l Here are the bits in the SSPCON Register:

l WCOL Write Collision
l SSPOV Overflow
l SSPEN Enable
l SSPM3:SSPM0 (4 bits) Function Control

l CKP is also in SSPCON but is not used for
master mode I2C.

The SSPCON register is one of the 4 registers that controls the I2C engine.

The bits on these registers can indicate errors and control the mode of the MSSP
module.

WCOL - is an error flag and indicates that a “Write Collision” has occurred.

SSPOV - is also an error flag. It indicates an “Overflow” condition.

SSPEN - stands for “Synchronous Serial Port Enable”. This enables the MSSP
module.

The last bits in this register are the SSPM bits 3 though 0. SSPM bits control if the
SSP module is in an I2C mode and whether it is in master or slave mode. It also can
control timing and other features. More details on all of these bits are in the device
datasheet.

32

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON)II22CC -- PICmicro (SSPCON)PICmicro (SSPCON)

l WCOL stands for Write COLlision and is set
when the user tries to write to SSPBUF, but
the I2C bus is not ready

l Generally used for debugging or for “Multi-
Master Mode.”

l WCOL stands for Write COLlision and is set
when the user tries to write to SSPBUF, but
the I2C bus is not ready

l Generally used for debugging or for “Multi-
Master Mode.”

WCOL - is an error flag and indicates that a “Write Collision” has occurred.

A Write collision occurs when the I2C module tries to output to the bus and it was
found to be in use. This should never happen in our example or when commanding
an EEPROM, but this bit is useful for error checking and handling. It is also used
when more than one master is controlling the I2C bus. Multi-master communication
is not discussed in this presentation.

When using many I2C devices, it is important that your code check this bit to handle
the condition of devices writing to the bus when you do not expect it.

33

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON)II22CC -- PICmicro (SSPCON)PICmicro (SSPCON)

l SSPOV stands for SSP OVerflow and is set
when there is an overflow error

l Read data in SSPBUF before new data
comes in to prevent this error

l SSPOV stands for SSP OVerflow and is set
when there is an overflow error

l Read data in SSPBUF before new data
comes in to prevent this error

As mentioned previously, SSPOV means “Synchronous Serial Port OVerflow” and
is set by the microcontroller whenever there is an overflow error.

An overflow error occurs whenever an I2C transfer finishes, but the previous data
had not been read from the SSPBUF.

If SSPOV is set, it must be cleared by the user program. The user program should
check to ensure SSPOV remains clear. This is part of good error checking in
program design.

Note, data in the SSPBUF will not be updated until the overflow condition is
cleared.

34

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON)II22CC -- PICmicro (SSPCON)PICmicro (SSPCON)

l SSPEN stands for SSP Enable

l Set SSPEN to 1 to turn on the MSSP
module

l Leave on for the entire time the MSSP
module is in use

l SSPEN can be cleared to 0 to disable the
MSSP module and to help conserve power

l SSPEN stands for SSP Enable

l Set SSPEN to 1 to turn on the MSSP
module

l Leave on for the entire time the MSSP
module is in use

l SSPEN can be cleared to 0 to disable the
MSSP module and to help conserve power

SSPEN is the “Synchronous Serial Port Enable” bit.

SSPEN is set to 1 to turn on the SSP module, such as when it is to be used for I2C
communications.

The SSP module must be left on for the entire time the SSP module is in use.

SSPEN can be cleared to 0 to disable or reset the SSP module.

35

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON)II22CC -- PICmicro (SSPCON)PICmicro (SSPCON)

l SSPM3:SSPM0 control the MSSP mode.

l To enable Master Mode use the binary value
of 1000.

l SSPM3:SSPM0 control the MSSP mode.

l To enable Master Mode use the binary value
of 1000.

SSPM3:SSPM0 are 4 bits that yield 16 different Synchronous Serial Port modes.

These bits control whether the MSSP module is configured for SPI or I2C, whether
it is in slave or master mode and other options. Full details can be found in the
device data sheet.

The MSSP module has one important feature that no other SSP module has. It
provides a “Hardware Master Mode”. It is this mode that is used in this presentation
for I2C communications. This mode allows the MSSP module to handle all of the
details of generating conditions, and sending and receiving data.

This mode is also known as “Master Mode” but it is NOT firmware master mode.
Firmware mode means your code will handle the timing, but the MSSP or SSP
module will detect the conditions, but not generate them for you.

To use “Hardware Master Mode” set these control bits to a binary value of 1000.

36

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l Here are the bits in the SSPCON2 Register:
l GCEN General Call Enable
l ACKSTAT ACK Bit Status
l ACKDT ACK Transmit Data
l ACKEN ACK Transmit Enable
l RCEN Receive Enable
l PEN Stop Condition Enable
l RSEN Restart Condition Enable
l SEN Start Condition Enable

l Here are the bits in the SSPCON2 Register:
l GCEN General Call Enable
l ACKSTAT ACK Bit Status
l ACKDT ACK Transmit Data
l ACKEN ACK Transmit Enable
l RCEN Receive Enable
l PEN Stop Condition Enable
l RSEN Restart Condition Enable
l SEN Start Condition Enable

The SSPCON2 register is other register that controls the I2C engine on the PICmicro
microcontroller.

All 8 bits in this register are used for this I2C mode and are the following:

GCEN - indicates “General Call ENable”

ACKSTAT - stands for “ACKnowledge bit STATus”

ACKDT - refers to the “ACKnowledge bit DaTa”

ACKEN - controls the “ACKnowlege ENable”

RCEN - is the “ReCeive ENable”

PEN - is the bit for “stoP condition ENable”

RESEN - is the control for a “ReStart condition ENable”

SEN - is the bit for “Start condition ENable”

We will look at these in more detail in a moment. Remember, more information on
all of these bits is located in the device datasheet.

37

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l GCEN allows an interrupt to be generated
when an I2C “general Call Address” is
generated.

l This feature is almost never used in I2C
systems.

l This feature is not used in the example in
this presentation

l GCEN allows an interrupt to be generated
when an I2C “general Call Address” is
generated.

l This feature is almost never used in I2C
systems.

l This feature is not used in the example in
this presentation

GCEN is a feature of I2C that allows the MSSP module to be backward compatible
with older and/or slower systems. It is almost never used in an I2C system and is not
used for our example. For more information on the “General Call” feature of I2C,
consult the I2C specification.

38

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l ACKSTAT indicates whether an ACK
(acknowledge) or NACK (not acknowledge)
was sent by the slave

l When talking to an I2C device (a slave), the
device will return either an ACK or NACK for
each byte transferred

l The user must read and interpret these
conditions in their program

l ACKSTAT indicates whether an ACK
(acknowledge) or NACK (not acknowledge)
was sent by the slave

l When talking to an I2C device (a slave), the
device will return either an ACK or NACK for
each byte transferred

l The user must read and interpret these
conditions in their program

The ACKSTAT bit is set when an ACK or NACK has been received from the
peripheral device. Remember, the peripheral must acknowledge all data bytes, and
this is done by sending an ACK or NACK condition. This bit can be polled or
tested to determine if an ACK or NACK condition has occurred. Its usage will be
shown in our example program, which we will see later in this presentation.

39

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l ACKDT is the data the master will transmit
when “ACKing” an I2C device.

l When responding to an I2C device, there are
only 2 possibilities: ACK and NACK, this bit
controls which of the two is sent.

l ACKDT is the data the master will transmit
when “ACKing” an I2C device.

l When responding to an I2C device, there are
only 2 possibilities: ACK and NACK, this bit
controls which of the two is sent.

ACKDT indicates the data that will be transmitted if it is desired to send an
acknowledge bit to the peripheral device. Remember, when the master reads data
from a device, it must acknowledge the transfer by sending an ACK or NACK
condition. This bit holds the value of the condition to be sent. If loaded with a 0, an
ACK is sent, and if loaded with a 1, a NACK will be sent.

40

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l ACKEN controls WHEN the PICmicro MCU
will send the ACK or NACK signal.

l Once the user program has set or cleared
ACKDT to set up an ACK or NACK
condition, set this bit to start sending it.

l ACKEN controls WHEN the PICmicro MCU
will send the ACK or NACK signal.

l Once the user program has set or cleared
ACKDT to set up an ACK or NACK
condition, set this bit to start sending it.

ACKEN controls exactly when the acknowledge bit is sent. Regardless of the state
of ACKDT, it is not sent until ACKEN is set. This allows one to set up the desired
acknowledge bit to be sent, then send it when ready.

41

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l RCEN enables I2C receive mode.

l When the PICmicro MCU must listen to data
from another device, set RCEN

l RCEN automatically clears when one
receive byte completes. This will cause the
MSSP to revert back to transmit mode

l set each time more data is to be received

l RCEN enables I2C receive mode.

l When the PICmicro MCU must listen to data
from another device, set RCEN

l RCEN automatically clears when one
receive byte completes. This will cause the
MSSP to revert back to transmit mode

l set each time more data is to be received

RCEN places the MSSP module into I2C receive mode.

In order to get a data byte from a peripheral, the PICmicro device must be put in
receive mode. To activate this mode, the RCEN bit is set. Note that when one byte
of data is received, this bit automatically clears and the PICmicro device returns to
transmit mode. If you would like to receive another byte, set this bit again, but
don’t forget to ACK or NACK the data first!

42

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l PEN sends a STOP condition

l Remember, “P” refers to a stoP condition
l Set this to start sending a stop condition on

the I2C bus.
l PEN automatically clears when the STOP

condition completes.

l PEN sends a STOP condition

l Remember, “P” refers to a stoP condition
l Set this to start sending a stop condition on

the I2C bus.
l PEN automatically clears when the STOP

condition completes.

Setting the PEN bit will send a stop condition.

This stop condition will be sent automatically by the microcontroller. Once it
completes you may send the next condition as the bit is automatically cleared at the
end of the start condition.

43

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l RSEN sends a RESTART condition

l Remember, “R” refers to a Restart condition
l Set this to start sending a restart condition

on the I2C bus.
l RSEN automatically clears when the STOP

condition completes.
l A restart condition is used when a start bit is

needed, but there was no stop before it.

l RSEN sends a RESTART condition

l Remember, “R” refers to a Restart condition
l Set this to start sending a restart condition

on the I2C bus.
l RSEN automatically clears when the STOP

condition completes.
l A restart condition is used when a start bit is

needed, but there was no stop before it.

RSEN allows the user to send a restart condition on the I2C bus.

To send a restart condition, set this bit, then wait for the transfer to complete. This
bit will also reset to 0 automatically, simply wait for the condition to complete
before sending another condition or data.

44

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPCON2)II22CC -- PICmicro (SSPCON2)PICmicro (SSPCON2)

l SEN sends a START condition

l Remember, “S” refers to a Start condition
l Set this to start sending a start condition on

the I2C bus.
l SEN automatically clears when the START

condition completes.

l SEN sends a START condition

l Remember, “S” refers to a Start condition
l Set this to start sending a start condition on

the I2C bus.
l SEN automatically clears when the START

condition completes.

SEN is the “Start condition ENable” bit.

Just like sending a stop or restart condition, set the SEN bit to send a start condition.
Wait for it to complete before sending another condition. Just like the other bits we
just mentioned, the SEN bit will reset to 0 after the start condition completes.

45

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPSTAT)II22CC -- PICmicro (SSPSTAT)PICmicro (SSPSTAT)

l Looking at the SSPSTAT Register, three bits
help to control master mode I2C transfers:
l SMP Slew Rate Control
l CKE Signal Level Control
l BF Buffer full

l Note: The other bits in this register are used
for I2C, but not in the mode discussed for this
presentation.

l Looking at the SSPSTAT Register, three bits
help to control master mode I2C transfers:
l SMP Slew Rate Control
l CKE Signal Level Control
l BF Buffer full

l Note: The other bits in this register are used
for I2C, but not in the mode discussed for this
presentation.

The next register that controls I2C is the SSPSTAT register. SSPSTAT stands for
“Synchronous Serial Port STATus” and provides a few bits for controlling the I2C
communication.

Three bits in the SSPSTAT register control I2C. They are called “SMP”, “CKE”
and “BF”. The bits are named after their functions in SPI, but they are used for I2C
control.

SMP - enables the slew rate control of the I2C stream

CKE - controls the I2C levels.

and

BF - is the “Buffer Full” bit.

More details on all of these bits are in the device datasheet, and they will be
discussed next.

46

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPSTAT)II22CC -- PICmicro (SSPSTAT)PICmicro (SSPSTAT)

l SMP enables a Slew rate control to reduce
EMI in 400 kps mode.

l The slew rate is enabled by the user when
using 400 kbps on I2C.
l If using 400 kbps on I2C, clear this bit to enable

the slew rate control.
l If other rates, set SMP to 1 to disable the slew

rate control.

l SMP enables a Slew rate control to reduce
EMI in 400 kps mode.

l The slew rate is enabled by the user when
using 400 kbps on I2C.
l If using 400 kbps on I2C, clear this bit to enable

the slew rate control.
l If other rates, set SMP to 1 to disable the slew

rate control.

SMP enables the slew rate control of the MSSP module.

Depending on your desired I2C bus speed, you may want to enable the slew rate
control. It is a filter that controls the slew rate on the I2C waveform to improve
performance of 400 kbps I2C transmissions. If the I2C speed is too high, this filter
will squelch the output, if the I2C speed is too slow, it will have little effect. Speeds
around 400 kbps will have the sharp transitions replaced with a smooth waveform
which generates less ElectroMagnetic Interference (EMI).

47

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPSTAT)II22CC -- PICmicro (SSPSTAT)PICmicro (SSPSTAT)

l CKE controls the I2C input levels

l When using standard I2C, this bit is cleared
to meet I2C levels.

l When using SMBus (similar to I2C), the
voltage levels are different. This bit is set to
1 to conform to SMBus levels.

l CKE controls the I2C input levels

l When using standard I2C, this bit is cleared
to meet I2C levels.

l When using SMBus (similar to I2C), the
voltage levels are different. This bit is set to
1 to conform to SMBus levels.

CKE controls the voltage range used by the PICmicro microcontroller when
receiving I2C signals.

This bit allows the choice between standard I2C signal levels and SMBus signal
levels. SMBus shares many of the features of I2C, but one major difference is the
signal levels are a different range to be valid. This bit allows the MSSP module to
handle SMBus peripherals.

This presentation will demonstrate communicating with a standard I2C device and
so will not discuss SMBus further. If you need more information on SMBus,
consult the specification.

48

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPSTAT)II22CC -- PICmicro (SSPSTAT)PICmicro (SSPSTAT)

l BF stands for Buffer Full
l BF is set when the SSPBUF needs to be

read
l BF is set and cleared by the PICmicro MCU

l BF stands for Buffer Full
l BF is set when the SSPBUF needs to be

read
l BF is set and cleared by the PICmicro MCU

The “BF” bit stands for “Buffer Full”.

When this bit is set, it means that the SSPBUF contains data that has not yet been
read. SSPBUF holds data that is received via I2C. The data should be read before
any more data is written or received. This is true whether the device is a master or a
slave.

The BF flag is set and cleared by the PICmicro. Note that if the SSPBUF is not read
before another byte of data is exchanged, the SSPBUF will overflow and the
SSPOV bit will get set.

As previously mentioned, when SSPOV is set, it indicates an overflow condition has
occurred and the module must be reset to clear this condition. Toggling the SSPEN
bit will reset the SSP module.

49

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPADD)II22CC -- PICmicro (SSPADD)PICmicro (SSPADD)

l The SSPADD register controls the speed of
the I2C bus transmissions. It controls the
baud rate generator.

l Calculating I2C Baud Rate:

l The SSPADD register controls the speed of
the I2C bus transmissions. It controls the
baud rate generator.

l Calculating I2C Baud Rate:

Fosc
4 * (SSPADD + 1)

The the last register to be discussed that controls I2C is the SSPADD register.
SSPADD stands for “Synchronous Serial Port ADDress”, but in master mode this
register has a different function. This register controls the speed of the I2C bus. The
I2C bus speed is a calculation based on Fosc, which is the clock speed of the
microcontroller, and the value loaded into SSPADD.

The formula is shown here. Lets try a sample calculation.

50

Getting Startred: I2C Master Mode © 2001

I2C - PICmicro (SSPADD)II22CC -- PICmicro (SSPADD)PICmicro (SSPADD)

l Baud Rate Calculation:
l Fosc = 4 MHz SSPADD = 9 (decimal)
l Baud Rate Calculation:
l Fosc = 4 MHz SSPADD = 9 (decimal)

Fosc
4 * (SSPADD + 1)

l = 4 MHz / (9 + 1) * 4
l = 4 MHz / 10 * 4
l = 4 MHz / 40
l = 100 kHz or 100 kbps

l = 4 MHz / (9 + 1) * 4
l = 4 MHz / 10 * 4
l = 4 MHz / 40
l = 100 kHz or 100 kbps

If Fosc were 4 MHz, and SSPADD were 9 (decimal), then lets calculate the I2C
speed:

Calculating the denominator first, we add the SSPADD value of 9 to 1 giving us 10.
Then 10 is multiplied by 4 to yield 40.

4 MHz divided by 40 is 100 kHz or 100 kbps.

We use this value in our code example which we will look at shortly.

51

Getting Startred: I2C Master Mode © 2001

I2C - Code ExampleII22CC -- Code ExampleCode Example

l Code Example
l Send data from a PIC16F877 (or other

PIC16F87X device) to a 24x01x I2C
EEPROM.

l The data is written to the EEPROM, then
read. The read data is then displayed on the
LEDs on PORTB.

l Code works on PICDEM™2, or build a
circuit.

l Code Example
l Send data from a PIC16F877 (or other

PIC16F87X device) to a 24x01x I2C
EEPROM.

l The data is written to the EEPROM, then
read. The read data is then displayed on the
LEDs on PORTB.

l Code works on PICDEM™2, or build a
circuit.

Next we will show you a code example to demonstrate I2C on the PICmicro device.
This example uses a Microchip PIC16F877 device connected to a 24x01x I2C
EEPROM. We happened to use a 24C01C, but many different devices could be
used.

These items were chosen since the PICDEM-2 will support the PIC16F877 and it
comes with a 24C01C or newer serial EEPROM already soldered to it. Plus, this
code outputs the value read on PORTB. On the PICDEM-2, there are LEDs already
connected to this port. If you use a PICDEM-2 with a PIC16F877, you will not
need to build any hardware at all to test this sample code.

52

Getting Startred: I2C Master Mode © 2001

I2C - Code ExampleII22C C -- Code ExampleCode Example

l Code Example - Schematicl Code Example - Schematic

Master Slave

LEDs

Clock

Data

I2C Link

SDA

SCL

SDA

SCL

8
PORT B

PIC16F877 24C01C

+5V

R R

If you prefer, you can also build the hardware yourself. Here is a simplified schematic of what is
done in this example. An I2C link is set up between PICmicro MCU, in this case the PIC16F877 and
the EEPROM. As mentioned earlier the EEPROM is a 24C01C or newer device, and many
substitutions are viable. Pull-ups will be needed on the clock and data lines of the I2C, the values of
which will depend on the desired speed. 2.2k is quite sufficient for the example but if you desire
higher speed for later experimentation, consider using a 1k resistor for each pull-up.

As shown here, PORTB is used to drive 8 LEDs. These LEDs will display the value that is read from
the EEPROM, after we have written and then read back from it with the sample code.

Data is sent from the master to the slave on the I2C link. The slave is our EEPROM and it will store
some sample data that we send to it. Next, we will read the data back and then display it on the
LEDs. Once this is done the code is finished.

We happen to write to the address “12” (hex), the value “34” (hex) and then read it back. If you see
“34” (hex) on the LEDs, the system is working correctly. Any value could have been used, but these
were arbitrarily chosen to prove you could write any data desired to any valid location of the
EEPROM.

It is also recommended that you observe the I2C data on an oscilloscope. Doing so will show you the
transfer in action. You can then compare the data that you found with the scope traces that will be
shown at the end of this presentation.

53

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - WriteII22CC -- Code Example Code Example -- WriteWrite

l Flowchart for Writing (read on next slide)l Flowchart for Writing (read on next slide)

Setup Ports

Setup Variables

Configure I2C

Send START condition

Send Address byte
and wait for ACK

Start

Send Control In byte
and wait for ACK

Send Data byte
and wait for ACK

Done

Send STOP condition

Next we will look at some example code.

Here is the flowchart for the EEPROM Write portion of our example code.

[pause]

Notice that the first few steps are used to configure the device, including the I2C port. After that is
done, A start condition is sent to indicate we wish to begin sending data. Then, the control in byte is
sent to indicate what we want to talk to, in this case an EEPROM, and that we want to write to its
registers.

After that occurs, the address byte is sent. This tells the EEPROM which address we intend to write
data too. Following the address is the data byte. The data byte contains the 8 bits of data that is to be
written to the requested address. A Stop condition is then sent to close the transfer. Note that an
ACK must occur after each byte. In this case, after the control in, address and data bytes, there is an
ACK from the EEPROM. The sample code will look for the ACK and ensure that it is an ACK, not a
NACK that is being sent. This helps to ensure the data is correct.

54

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead

l Flowchart for Reading (flowchart continued)l Flowchart for Reading (flowchart continued)

Setup Ports

Setup Variables

Configure I2C

Send START
Condition

Send Address byte
and wait for ACK

Start

Send Control In byte
and wait for ACK

Send STOP
Condition

Send Control Out
byte, wait for ACK

Get Data Byte

Send NACK
Condition

Done

Send Restart
Condition

Here is the flowchart for the EEPROM Read portion of our example code.

[pause]

Once again, the first few steps are used to configure the device, including the I2C port. After that is
done, A start condition is sent to indicate we wish to begin sending data. Then, the control in byte is
sent to indicate we wish to communicate with the EEPROM again and that we want to write to its
registers. We want to write because we need to tell it what address we want to read from.

As before, we will then send the address byte. Since we wish to read from the address we just wrote
to, we will set this address to be the same value as before. Once this is done, we send a restart
condition to indicate that we want to send new commands to the EEPROM.

When the restart completes, the Control OUT byte is sent, which will tell the EEPROM that we now
want it to send data to the PICmicro microcontroller. The data byte is then clocked out of the
EEPROM and once that finishes we reply with a NACK. The NACK tells the EEPROM in this case,
that we do not need any more data. A stop condition is then sent to complete the transfer.

As before, after each transfer of a byte, an ACK or NACK is sent. ACK is sent from the EEPROM
after the control in and Address byte. It also replies with an ACK after the control out byte, which
follows the restart condition. When the data is clocked out of the EEPROM, the PICmicro device
replies with a NACK to indicate it is finished. If it replied with an ACK, it would be telling the
EEPROM that it wants the EEPROM to increment the address and send the next data byte. Since we
only want to read one byte we send a NACK.

55

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - WriteII22CC -- Code Example Code Example -- WriteWrite
; Configure Baud Rate

BANKSEL SSPADD
movlw (FOSC / (4 * BAUD)) - 1 ; Calculates SSPADD Setting for
movwf SSPADD ; desired Baud rate and sets up SSPADD

; *** Begin I2C Data Transfer Sequences ***
I2CWrite
; Send START condition and wait for it to complete

BANKSEL SSPCON2 ; BANK 1
bsf SSPCON2,SEN ; Generate START Condition

call WaitMSSP ; Wait for I2C operation to complete

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input mode)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load Address Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check DATA BYTE, wait for it to complete
movlw LC01DATA ; Load Data Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check the STOP condition, wait for it to complete
BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

; The WRITE has now completed successfully. Begin the Read Sequence

; I2C connected to 24C01C (or similar) EEPROM.
; Write to location 0x12, data 0x34 and read it back.
; The MSSP module is used in I2C MASTER mode.

#define LC01CTRLIN H'A0’ ; I2C value for CONTROL BYTE when
; INputing data to the EEPROM

#define LC01CTRLOUT H'A1’ ; I2C value for CONTROL BYTE when
; requesting OUTput from the EEPROM

#define LC01ADDR H'12’ ; Sample value for ADDRESS BYTE

#define LC01DATA H’34’ ; Sample data to write to EEPROM

#define BAUD D'100’ ; Desired Baud Rate in kbps
#define FOSC D'4000’ ; Oscillator Clock in kHz

#include <p16F877.inc> ; Processor Include file, for standard names

__CONFIG _CP_OFF & _DEBUG_OFF & _WRT_ENABLE_OFF & _CPD_OFF & _LVP_OFF &
_BODEN_OFF & _PWRTE_ON & _WDT_OFF & _XT_OSC

ORG 0 ; Start of code (location 0)

; *** Setup I/O ***
clrf PORTB ; PORTB pins set to drive low when enabled
BANKSEL TRISC ; BANK 1
movlw B'00011000’ ; RC3, RC4 are inputs for PORTC
movwf TRISC ; Remaining PORTC I/O lines are outputs

clrf TRISB ; all PORTB pins configured for output mode
; (enables all PORTB drivers for driving LEDs)

; *** Setup Registers for I2C ***
; Configure MSSP module for Master Mode

BANKSEL SSPCON
movlw B'00101000’ ; Enables MSSP and uses appropriate

; PORTC pins for I2C mode (SSPEN set) AND
; Enables I2C Master Mode (SSPMx bits)

movwf SSPCON ; This is loaded into SSPCON

; Configure Input Levels and slew rate as I2C Standard Levels
BANKSEL SSPSTAT
movlw B'10000000’ ; Slew Rate control (SMP) set for 100kHz
movwf SSPSTAT ; mode and input levels are I2C spec,

; loaded in SSPSTAT

This is an overview of the write portion of the sample code. It looks complex, but
we will be breaking it up into portions shortly.

56

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead
; Send NACK bit for Acknowledge Sequence

BANKSEL SSPCON2
bsf SSPCON2,ACKDT ; ACK DATA to send is 1, which is NACK.
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, the ACKEN is automatically cleared by the MSSP

; Send and Check the STOP condition and wait for it to complete.
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

; I2C Write and Read have both finished, the value is output on LEDs.
BANKSEL SSPBUF ; BANK 0
movf SSPBUF,W ; Get data from SSPBUF into W register
movwf PORTB ; Output W register to LEDs on PORTB

; Program has finished and completed successfully.
goto $; Wait forever at this location

; *** SUBROUTINES & ERROR HANDLERS ***
; I2C Operation Failed code sequence - This will normally not happen,
; but if it does, a STOP is sent and the entire code is tried again.
I2CFail

BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL PORTB ; BANK 0
movlw 0xFF ; Turn on all LEDs on PORTB
movwf PORTB ; to show error condition
goto $; Wait forever at this location

; This routine sends the W register to SSPBUF, thus transmitting a byte.
; Then, the SSPIF flag is checked to ensure the byte has been sent successfully.
; When that has completed, the routine exits, and executes normal code.
Send_I2C_Byte

BANKSEL SSPBUF ; BANK 0
movwf SSPBUF ; Get value to send from W, put in SSPBUF
retlw 0 ; Done, Return 0

; This routine waits for the last I2C operation to complete.
; It does this by polling the SSPIF flag in PIR1.
WaitMSSP

BANKSEL PIR1 ; BANK 0
btfss PIR1,SSPIF ; Check if done with I2C operation
goto $-1 ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C module is ready, clear flag.
Retlw 0 ; Done, Return 0

END

I2CRead
; Send RESTART condition and wait for it to complete

BANKSEL SSPCON2
bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitMSSP ; Wait for I2C operation to complete

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

; Now check to see if I2C EEPROM is ready
BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CRead ; ACK Poll waiting for EEPROM write to complete

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load ADDRESS BYTE
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send REPEATED START condition and wait for it to complete
bsf SSPCON2,RSEN ; Generate REPEATED START Condition
call WaitMSSP ; Wait for I2C operation to complete

; Send and Check CONTROL BYTE (out), wait for it to complete
movlw LC01CTRLOUT ; Load CONTROL BYTE (output)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Switch MSSP module to I2C Receive mode
bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)

; Get the DATA BYTE and wait for it to complete. Data is in SSPBUF when done.
; The receive mode is disabled at end automatically by the MSSP module.

call WaitMSSP ; Wait for I2C operation to complete

This is the other half of the sample code which controls the read of the EEPROM.
Again, it looks complex, but this is the complete example. You will soon see the
code is lengthy, but not complex.

57

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - WriteII22CC -- Code Example Code Example -- WriteWrite
; Configure Baud Rate

BANKSEL SSPADD
movlw (FOSC / (4 * BAUD)) - 1 ; Calculates SSPADD Setting for
movwf SSPADD ; desired Baud rate and sets up SSPADD

; *** Begin I2C Data Transfer Sequences ***
I2CWrite
; Send START condition and wait for it to complete

BANKSEL SSPCON2 ; BANK 1
bsf SSPCON2,SEN ; Generate START Condition

call WaitMSSP ; Wait for I2C operation to complete

; I2C connected to 24C01C (or similar) EEPROM.
; Write to location 0x12, data 0x34 and read it back.
; The MSSP module is used in I2C MASTER mode.

#define LC01CTRLIN H'A0’ ; I2C value for CONTROL BYTE when
; INputing data to the EEPROM

#define LC01CTRLOUT H'A1’ ; I2C value for CONTROL BYTE when
; requesting OUTput from the EEPROM

#define LC01ADDR H'12’ ; Sample value for ADDRESS BYTE

#define LC01DATA H’34’ ; Sample data to write to EEPROM

#define BAUD D'100’ ; Desired Baud Rate in kbps
#define FOSC D'4000’ ; Oscillator Clock in kHz

#include <p16F877.inc> ; Processor Include file, for standard names

__CONFIG _CP_OFF & _DEBUG_OFF & _WRT_ENABLE_OFF & _CPD_OFF & _LVP_OFF
& _BODEN_OFF & _PWRTE_ON & _WDT_OFF & _XT_OSC

ORG 0 ; Start of code (location 0)

; *** Setup I/O ***
clrf PORTB ; PORTB pins set to drive low when enabled
BANKSEL TRIS ; BANK 1
movlw B'00011000’ ; RC3, RC4 are inputs for PORTC
movwf TRISC ; Remaining PORTC I/O lines are outputs

clrf TRISB ; all PORTB pins configured for output mode
; (enables all PORTB drivers for driving LEDs

; *** Setup Registers for I2C ***
; Configure MSSP module for Master Mode

BANKSEL SSPCON
movlw B'00101000’ ; Enables MSSP and uses appropriate

; PORTC pins for I2C mode (SSPEN set) AND
; Enables I2C Master Mode (SSPMx bits)

movwf SSPCON ; This is loaded into SSPCON

; Configure Input Levels and slew rate as I2C Standard Levels
BANKSEL SSPSTAT
movlw B'10000000’ ; Slew Rate control (SMP) set for 100kHz
movwf SSPSTAT ; mode and input levels are I2C spec,

; loaded in SSPSTAT

1

2

3

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input mode)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load Address Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check DATA BYTE, wait for it to complete
movlw LC01DATA ; Load Data Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send and Check the STOP condition, wait for it to complete
BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

; The WRITE has now completed successfully. Begin the Read Sequence

4

5

6

We will break the write code example into 6 parts which we will look at shortly.

58

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead
; Send NACK bit for Acknowledge Sequence

BANKSEL SSPCON2
bsf SSPCON2,ACKDT ; ACK DATA to send is 1, which is NACK.
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, the ACKEN is automatically cleared by the MSSP

; Send and Check the STOP condition and wait for it to complete.
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

; I2C Write and Read have both finished, the value is output on LEDs.
BANKSEL SSPBUF ; BANK 0
movf SSPBUF,W ; Get data from SSPBUF into W register
movwf PORTB ; Output W register to LEDs on PORTB

; Program has finished and completed successfully.
goto $; Wait forever at this location

I2CRead
; Send RESTART condition and wait for it to complete

BANKSEL SSPCON2
bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitMSSP ; Wait for I2C operation to complete

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

; Now check to see if I2C EEPROM is ready
BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CRead ; ACK Poll waiting for EEPROM write to complete

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load ADDRESS BYTE
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Send REPEATED START condition and wait for it to complete
bsf SSPCON2,RSEN ; Generate REPEATED START Condition
call WaitMSSP ; Wait for I2C operation to complete

; Send and Check CONTROL BYTE (out), wait for it to complete
movlw LC01CTRLOUT ; Load CONTROL BYTE (output)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit to see if I2C
goto I2CFail ; failed, skipped if successful

; Switch MSSP module to I2C Receive mode
bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)

; Get the DATA BYTE and wait for it to complete. Data is in SSPBUF when done.
; The receive mode is disabled at end automatically by the MSSP module.

call WaitMSSP ; Wait for I2C operation to complete

; *** SUBROUTINES & ERROR HANDLERS ***
; I2C Operation Failed code sequence - This will normally not happen,
; but if it does, a STOP is sent and the entire code is tried again.
I2CFail

BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation to complete

BANKSEL PORTB ; BANK 0
movlw 0xFF ; Turn on all LEDs on PORTB
movwf PORTB ; to show error condition
goto $; Wait forever at this location

7

8

9 ; This routine sends the W register to SSPBUF, thus transmitting a byte.
; Then, the SSPIF flag is checked to ensure the byte has been sent.
; When that has completed, the routine exits, and executes normal code.
Send_I2C_Byte

BANKSEL SSPBUF ; BANK 0
movwf SSPBUF ; Get value to send from W, put in SSPBUF
retlw 0 ; Done, Return 0

; This routine waits for the last I2C operation to complete.
; It does this by polling the SSPIF flag in PIR1.
WaitMSSP

BANKSEL PIR1 ; BANK 0
btfss PIR1,SSPIF ; Check if done with I2C operation
goto $-1 ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C module is ready, clear flag.
Retlw 0 ; Done, Return 0

END

10

11

12

As you can see, we have also done the same to the read example code. It has been
broken down into sections numbered 7 though 12, while the earlier code was broken
into sections 1 though 6. There are only 12 sections to look at to study the entire
code example.

59

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - WriteII22CC -- Code Example Code Example -- WriteWrite

l Plan for EEPROM Write

l Send Start.
l Send Control (input mode). Get Ack.
l Send Address. Get Ack.
l Send Data. Get Ack.
l Send Stop.

l Plan for EEPROM Write

l Send Start.
l Send Control (input mode). Get Ack.
l Send Address. Get Ack.
l Send Data. Get Ack.
l Send Stop.

S Data P

A

AddressControl In

A A

Lets begin looking at the example code now. Remember that to write to the
EEPROM, the sequence goes like this:

The PICmicro microcontroller sends a Start bit, followed by the Control In byte.
This is then ACKed by the EEPROM. The PICmicro device waits for the ACK and
ensures it received an ACK. Then the Address byte is sent. The ACK is again
waited for and tested. Finally, the data to write to the EEPROM is sent, which is
also ACK’ed by the EEPROM. Again the PICmicro microcontroller waits for the
ACK and tests it. Once all of this has completed it sends a STOP condition to end
the transfer.

60

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 1 of 12II22CC Code Code -- Section 1 of 12Section 1 of 12

; I2C connected to 24C01C (or similar) EEPROM.
; Write to location 0x12, data 0x34 and read it back.
; The MSSP module is used in I2C MASTER mode.

#define LC01CTRLIN H'A0’ ; I2C value for CONTROL BYTE when
; INputing data to the EEPROM

#define LC01CTRLOUT H'A1’ ; I2C value for CONTROL BYTE when
; requesting OUTput from EEPROM

#define LC01ADDR H'12’ ; Sample value for ADDRESS BYTE

#define LC01DATA H’34’ ; Sample data to write to EEPROM

#define BAUD D'100’ ; Desired Baud Rate in kbps
#define FOSC D'4000’ ; Oscillator Clock in kHz

Comments

Defines

In section 1 of our code, we set up the basics similar to other programs.

The first part of the program is like any other. Some comments at the top state what
the program is and what it does. Having well documented and commented code is
good general coding practice.

Several #define statements follow which define items like the value of a CONTROL
IN byte, and the value of a CONTROL OUT byte. We have also defined the
address that we will write to, in this case the address of 0x12 (hex). The sample
data value is also defined here, 0x34 (hex). Finally, we have also defined the
intended I2C baud rate (100 kbps) and the oscillator frequency, Fosc. As you can
see, we are assuming a 4 MHz oscillator. If you wish to use other values, they can
be changed in this section.

Using #define statements prevent the need to change large numbers of literal values
thought the program. Instead of changing countless values, you need only change
the defined values. This is again good coding practice for any programming.

61

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 2 of 12II22CC Code Code -- Section 2 of 12Section 2 of 12

#include <p16F877.inc> ; Processor Include file

__CONFIG _CP_OFF & _DEBUG_OFF & _WRT_ENABLE_OFF &
_CPD_OFF & _LVP_OFF & _BODEN_OFF & _PWRTE_ON & _WDT_OFF &
_XT_OSC

ORG 0 ; Start of code (location 0)

; *** Setup I/O ***
clrf PORTB ; PORTB pins set to drive low
BANKSEL TRISC ; BANK 1
movlw B'00011000’ ; RC3, RC4 are inputs for PORTC
movwf TRISC ; Remaining PORTC I/O is output

clrf TRISB ; all PORTB pins in output mode
; (enables all PORTB drivers)

Code Start
Port Setup

Processor Setup

Configuration Bits

The next section is the processor setup, and indicates the processor used for the
code. This example uses a PIC16F877, but many other devices could be used.

Next, the _ _CONFIG directive is used to set the configuration bits. Doing this
prevents mistakes during programming. The configuration bits can be changed at
program time, but this directive changes the default state. As a general rule this
should be used in your program. The values for configuration bits are found in the
include file for your processor. For this example, see the bottom of file
“P16F877.inc” in your MPLAB directory.

The code starts at “ORG 0”. The ORG is a directive to MPLAB and stands for
“ORiGin” and tells the assembler where in program memory to locate the next
instruction. Any time an “ORG” is encountered, the next program memory
instruction will begin at the new location. In this example, the program will begin
at 0, while the next instruction will be at program memory location 1, then 2 and so
on.

The directive BANKSEL is used so that the registers TRISC and TRISB can be
accessed. Remember that the PICmicro microcontroller uses banked registers, and
so care must be taken to be in the correct bank at all times. If you build this
program and others like it in MPLAB, it will warn you whenever a register is not in
bank 0. It does this to provide a helpful reminder of this issue.

62

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 3 of 12II22CC Code Code -- Section 3 of 12Section 3 of 12

; *** Setup Registers for I2C ***
; Configure MSSP module for Master Mode

BANKSEL SSPCON
movlw B'00101000’ ; Enables MSSP and uses

; PORTC pins for I2C mode
; (SSPEN set) AND
; Enables I2C Master Mode
; (SSPMx bits)

movwf SSPCON ; This is loaded into SSPCON

; Input Levels and slew rate as I2C Standard Levels
BANKSEL SSPSTAT
movlw B'10000000’ ; Slew Rate control (SMP) 100kHz
movwf SSPSTAT ; mode and input levels are I2C

; loaded in SSPSTAT

I2C Configuration

Now we begin the code to set up the I2C control registers.

SSPCON is loaded with the value to set I2C Hardware Master Mode, which we use
to make communication with the EEPROM easy. We simply request an action and
wait for it to complete. The MSSP module is also enabled here as we set the
SSPEN bit to turn it on.

Next SSPSTAT is configured. The slew rate control is set for 100 kbps use and
input levels are set to standard I2C levels.

63

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 4 of 12II22CC Code Code -- Section 4 of 12Section 4 of 12

; Configure Baud Rate
BANKSEL SSPADD
movlw (FOSC / (4 * BAUD)) - 1 ; Calculates SSPADD
movwf SSPADD ; for desired Baud rate

; and sets up SSPADD

; *** Begin I2C Data Transfer Sequences ***
I2CWrite
; Send START condition and wait for it to complete

BANKSEL SSPCON2 ; BANK 1
bsf SSPCON2,SEN ; Generate START Condition

call WaitMSSP ; Wait for I2C operation

I2C Configuration (continued)

Start of I2C Communications

S

In this section, the baud rate is set up. Using features of MPLAB allows the baud
rate configuration value to be calculated automatically. The values that we defined
earlier (see section 1), are used in the formula to calculate a value to load into
SSPADD. The value in SSPADD controls the baud rate. Details of this were
discussed in this presentation and are found in the device data sheet.

At this point, the I2C configuration registers are set up. It is now time to begin our
write to the EEPROM.

Setting bit SEN will begin our start condition, we want to wait for it to complete, so
a subroutine, named “WaitMSSP”, is called. This subroutine will test for when the
start condition or other action is finished.

The “WaitMSSP” call will run a subroutine that we will look at in detail later. This
subroutine polls a flag repeatedly until the flag indicates that the MSSP action has
finished. Once the flag indicates the MSSP action is done, the subroutine ends and
the next instruction is executed.

64

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 5 of 12II22CC Code Code -- Section 5 of 12Section 5 of 12

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input mode)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CFail ; failed, skipped if successful

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load Address Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CFail ; failed, skipped if successful

Control In

A

Address

A

The next few lines of code send a control in byte. This is needed to tell the
EEPROM we want to send data to it. Call WaitMSSP is used again to wait for this
to complete.

The EEPROM will send an ACK or a NACK to respond to this. To read the
condition, we read the ACKSTAT bit. In this code, if the EEPROM responds with a
NACK, the code will go to the “I2CFail” location of the code to handle the error. If
it responds with an “ACK”, the next line executes.

The next few lines send the address byte to the EEPROM and wait for an ACK.
Notice how these lines look very similar to the sending of the control in byte.

[pause]

You should start to see a pattern by now. When sending a byte in I2C, W is loaded
with the value to send and a subroutine “Send_I2C_Byte”, is called to send it. Then
the “WaitMSSP” subroutine waits for the byte or other condition to finish. These
subroutines will be looked at in detail at the end of the program.

To check for ACK, the ACKSTAT bit is checked in SSPCON2 and a decision is
made from there as to what the program does next.

65

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 6 of 12II22CC Code Code -- Section 6 of 12Section 6 of 12

; Send and Check DATA BYTE, wait for it to complete
movlw LC01DATA ; Load Data Byte
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CFail ; failed, skipped if successful

; Send and Check the STOP condition, wait for it to complete
BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation

; The WRITE has now completed successfully.
; Begin the Read Sequence

P

Data

A

Next, the data byte is sent. Notice that since we are sending a byte, W is loaded
with the value, the Send_I2C_Byte code is run, and we wait for it to complete.
Then the ACK bit is checked.

The EEPROM write is now almost finished. All that remains is to send a stoP
condition and wait for it to complete. This is what the next few lines do.

Much like sending a start condition, instead of setting SEN, the PEN bit is set. This
tells the MSSP module to send a stop condition. After waiting for that to complete,
the EEPROM Write is finished.

66

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead

l Plan for EEPROM Read

l Send Start.
l Send Control (input mode). Get Ack.
l Send Address. Get Ack.
l Send Restart and Control (output mode).
l Get Ack. Get Data.
l Send Nack.
l Send stoP.

l Plan for EEPROM Read

l Send Start.
l Send Control (input mode). Get Ack.
l Send Address. Get Ack.
l Send Restart and Control (output mode).
l Get Ack. Get Data.
l Send Nack.
l Send stoP.

S

A

RAddressControl In Control Out P

DataA A

N

Here is what is needed to read the data from the EEPROM. Remember, a start
condition is sent, followed by the control in byte. The EEPROM responds with an
ACK and the PICmicro then sends the address information. Again the EEPROM
responds with an ACK. The address is now loaded, so a restart condition is initiated
followed by a control out byte to indicate to the EEPROM that a read is required
next. The EEPROM ACK’s this and sends the data. NACKing this data indicates
no more data is needed and a stop condition follows. Lets quickly review the code
step by step. We will also review the subroutines “Send_I2C_Byte” and
“WaitMSSP”, at the end of this code.

[pause]

67

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead

l ACK Polling

l When the EEPROM ACK’s the control byte, it is
ready for new commands

l EEPROM will NACK data if busy, so test again

l ACK Polling

l When the EEPROM ACK’s the control byte, it is
ready for new commands

l EEPROM will NACK data if busy, so test again

S

N

Control In

N

Control InR

N

Control InR

A

Control InR

There is one problem with the approach we just discussed. If the EEPROM is busy, it will NACK
the next command. This NACK will occur after we send the control byte. See the diagram here. If
it is still busy, it will NACK again. If one were to keep sending a control byte, one could discover
exactly when the EEPROM was ready. Doing this allows the fastest access time and is called “ACK
Polling”.

In order to perform ACK polling, one sends the control byte, in this case control in, and checks the
ACK or NACK response from the EEPROM. If it is a NACK, the EEPROM is busy, so we send a
restart to reset the EEPROM and then try again by sending another control byte. This is done over
and over until an ACK is returned.

When an ACK is returned, then we can continue the transfer.

68

Getting Startred: I2C Master Mode © 2001

I2C - Code Example - ReadII22CC -- Code Example Code Example -- ReadRead

l Plan for EEPROM Read - with ACK Polling

l The EEPROM may still be busy writing
l When EEPROM is busy it will NACK

commands
l ACK Polling keeps asking “Are you ready?”
l RESTART is substituted for START

l Plan for EEPROM Read - with ACK Polling

l The EEPROM may still be busy writing
l When EEPROM is busy it will NACK

commands
l ACK Polling keeps asking “Are you ready?”
l RESTART is substituted for START

A

RAddressControl In Control Out P

DataA A

NR

Notice in this diagram the start condition has been changed to a restart condition.
This is done because a restart is simply a stop followed by a start condition. So,
even if we just had a stop before the restart, we get two stops, followed by a start.
Two stop conditions in a row is not a problem and perfectly legal in I2C. So, the
start has been replaced with a restart.

Now the EEPROM can be tested if it is ready for commands by looping. First a
restart is sent, then the control in byte, then the ACK or NACK is checked. If it is
an ACK, the program loops back to try again. If it is an ACK, it can continue. This
handles the possibility of the EEPROM being busy after the next command.

69

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 7 of 12II22CC Code Code -- Section 7 of 12Section 7 of 12

I2CRead
; Send RESTART condition and wait for it to complete

BANKSEL SSPCON2
bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitMSSP ; Wait for I2C operation

; Send and Check CONTROL BYTE, wait for it to complete
movlw LC01CTRLIN ; Load CONTROL BYTE (input)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

; Now check to see if I2C EEPROM is ready
BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CRead ; ACK Poll waiting for EEPROM

; write to complete

Control In

A

R

Here is the continuation of the I2C sample code. This code performs a read of the
EEPROM.

To start the read sequence, a restart condition is used. A restart is sent by setting bit
“RSEN”. After the restart sequence completes, the control in byte is sent to tell the
EEPROM we want to send data to it. The EEPROM will reply with either a NACK
if busy, or an ACK if ready for more data.

The code handles both conditions. The ACK bit is tested, and if it is a NACK, the
instruction at the bottom “goto I2C read”, is executed. This is the heart of the ACK
polling. When the code is sent to “I2C read”, it returns to the top and runs the
sequence again. This will happen repeatedly until the EEPROM answers with an
ACK.

When the EEPROM answers with ACK, the data transfer continues.

70

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 8 of 12II22CC Code Code -- Section 8 of 12Section 8 of 12

; Send and Check ADDRESS BYTE, wait for it to complete
movlw LC01ADDR ; Load ADDRESS BYTE
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CFail ; failed, skipped if successful

; Send REPEATED START condition and wait for it to complete
bsf SSPCON2,RSEN ; Generate RESTART Condition
call WaitMSSP ; Wait for I2C operation R

A

Address

Now it is time to send the address to the EEPROM. The address is sent by the next
few lines and again we wait for this action to finish. When it has finished, it is again
ACK’d by the EEPROM.

Next the restart condition is sent. To send a restart, RSEN is set. When that
completes, the program continues.

71

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 9 of 12II22CC Code Code -- Section 9 of 12Section 9 of 12

; Send and Check CONTROL BYTE (out), wait for it to complete
movlw LC01CTRLOUT ; Load CONTROL BYTE (output)
call Send_I2C_Byte ; Send Byte
call WaitMSSP ; Wait for I2C operation

BANKSEL SSPCON2
btfsc SSPCON2,ACKSTAT ; Check ACK Status bit
goto I2CFail ; failed, skipped if successful

; Switch MSSP module to I2C Receive mode
bsf SSPCON2,RCEN ; Enable Receive Mode (I2C)

; Get the DATA BYTE and wait for it to complete.
; Data is in SSPBUF when done.
; The receive mode is disabled at end automatically by the
; MSSP module.

call WaitMSSP ; Wait for I2C operation

Control Out

A

Data

Its time now to send the control out byte. This tells the EEPROM to send data out
to the PICmicro MCU. After we check for the ACK condition, it is time to receive
the data.

To receive data, the MSSP module must be put in receive mode. This is done by
setting the receive mode bit “RCEN”. The line “bsf SSPCON2,RCEN” sets this bit
to enable the receive mode. The data byte is automatically clocked out of the
EEPROM by the PICmicro and is in SSPBUF register when finished.

Note that once that the one byte of data has be transferred, receive mode
automatically ends. It can take some time to receive a byte, so the “WaitMSSP”
code is called again to allow the byte to fully transfer before continuing.

72

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 10 of 12II22CC Code Code -- Section 10 of 12Section 10 of 12

; Send NACK bit for Acknowledge Sequence
BANKSEL SSPCON2
bsf SSPCON2,ACKDT ; ACK DATA to send is 1 (NACK)
bsf SSPCON2,ACKEN ; Send ACK DATA now.

; Once ACK or NACK is sent, ACKEN is automatically cleared

; Send and Check the STOP condition and wait for it
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation

; I2C Write and Read have both finished, value is on LEDs
BANKSEL SSPBUF ; BANK 0
movf SSPBUF,W ; Get data from SSPBUF into W
movwf PORTB ; Output W register to LEDs

; Program has finished and completed successfully.
goto $; Wait forever at this location

N

P

End of I2C CommunicationsOutput on LEDs

After the data byte is received, we must reply to the EEPROM with an ACK or NACK condition.
The EEPROM expects an ACK, when more data is desired and a NACK to say that no more data is
required. Since this example only reads one byte of data, a NACK is sent.

To send an ACK or NACK condition, see the code at the top of this slide.

[pause]

The desired data, a 0 for ACK, a 1 for a NACK reply, is loaded into the ACKDT bit. Recall this is
the ACK data bit. Once this is done, the ACK or NACK condition is sent by setting ACKEN, which
is the ACK enable bit.

Just like when sending a start, stop or restart condition, when the ACK or NACK is finished, the
ACKEN bit is automatically cleared. Once the code waits for it to complete (using the WaitMSSP
routine), it is time to send the stop condition to indicate the end of the transfer.

The stop condition code should look very familiar. The PEN bit is set, and we wait for the condition
to complete with WaitMSSP.

Finally, this code sends the result of the read to PORTB for display on LEDs. Recall the data that
was received was loaded into SSPBUF from the read earlier. So, this code copies SSPBUF data into
PORTB for display.

At this point, the main code is finished, so to prevent the program counter from advancing further,
the “goto $” code forces the the PICmicro to freeze at that line. “$” means “this line” so “goto $”
means “go to this line”, where this, is the current line.

73

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 11 of 12II22CC Code Code -- Section 11 of 12Section 11 of 12

; *** SUBROUTINES & ERROR HANDLERS ***
; I2C Operation Failed code sequence - This will normally not
; happen, but if it does, a STOP is sent and the entire code
; is tried again.
I2CFail

BANKSEL SSPCON2
bsf SSPCON2,PEN ; Send STOP condition
call WaitMSSP ; Wait for I2C operation

BANKSEL PORTB ; BANK 0
movlw 0xFF ; Turn on all LEDs on PORTB
movwf PORTB ; to show error condition
goto $; Wait forever at this location

Error Handler

Its now time to look at the error handling code and subroutines.

This code is used to handle any error that results from the I2C main code.

You may recall seeing “goto I2CFail” lines in the earlier code. They were placed after we tested the
ACK or NACK status. If the ACK or NACK status was not what was expected, the “goto I2CFail”
line would execute and this code would run. Lets see what it does.

This code is known as an error handler. As you can see, this error handler sends a stop condition and
then waits for it to complete. This is important to release the I2C bus. Then it goes to PORTB and
puts 0xFF (hex) on it. This will light all of the LEDs on PORTB. This is done to provide a very easy
indication to you that something is wrong.

Since the code has been proven, it could be hardware related, or perhaps an error has been placed in
your code. No errors have been placed in this code on purpose and it has been tested extensively.

If you would like to see this code run, try removing the EEPROM or ground the SCL or SDA line.
This will force an error which is handled by this code.

You should recognize the “goto $” code. It prevents further execution past that line.

You may have noticed that this code is not “called” and “returned” from so it is not technically a
subroutine. It has been separated from the main code and placed here to make the code explanation
easier to understand.

74

Getting Startred: I2C Master Mode © 2001

I2C Code - Section 12 of 12II22CC Code Code -- Section 12 of 12Section 12 of 12

; This routine sends the W register to SSPBUF, thus
; transmitting a byte. The SSPIF flag is checked to ensure
; the byte has been sent. On completion, the routine exits.
Send_I2C_Byte

BANKSEL SSPBUF ; BANK 0
movwf SSPBUF ; Get value to send put in SSPBUF
retlw 0 ; Done, Return 0

; This routine waits for the last I2C operation to complete.
; It does this by polling the SSPIF flag in PIR1.
WaitMSSP

BANKSEL PIR1 ; BANK 0
btfss PIR1,SSPIF ; Check if I2C operation done
goto $-1 ; I2C module is not ready yet
bcf PIR1,SSPIF ; I2C ready, clear flag
retlw 0 ; Done, Return 0

END End of Program

Send Byte Subroutine

Wait Subroutine

This is the last slide to review for this code example. It contains two very small
subroutines that we have used extensively in the main code. Lets look at them now.

“Send_I2C_Byte”, simply takes the value currently in W and places it in SSPBUF.
If all other conditions are correct, this will send a byte. Remember that W was
loaded with a value, which you probably noticed was from one of the #defines used
at the beginning of the code. It ends with “retlw 0” which writes 0 to W and then
exits the subroutine. The 0, indicates “no errors”, but is not important in this case.

The “WaitMSSP” subroutine waits for an MSSP action to complete. To do this, we
poll the “SSPIF” flag. SSPIF stands for “Synchronous Serial Port Interrupt Flag”.
This flag is set by the MSSP module when any MSSP action completes. So, polling
this flag is used to wait thought this code. However, notice that the flag is cleared
again after we discover it has been set. This must be done in order to use it again.
The PICmicro will only set this flag, it is up to the user code to clear it. This is the
case with many interrupt flags. Check the data sheet for details on these flags.
Again, since it is a subroutine, “retlw 0” is used to end the routine and return to the
main code.

This completes the code review. Next, we will look at the waveforms you should
see, complete with sample oscilloscope traces.

75

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l The following slides show the waveforms
produced from the sample code.

l Writing to EEPROM
l Reading from EEPROM
l I2C Bus Conditions (Start, Stop, Restart)
l Waveform Close-ups

l The following slides show the waveforms
produced from the sample code.

l Writing to EEPROM
l Reading from EEPROM
l I2C Bus Conditions (Start, Stop, Restart)
l Waveform Close-ups

The next slides in this presentation will look at what you should see if you look at
the SCL and SDA lines during the data transfer. It is recommended that you try this
as it will be helpful to learning I2C.

76

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Complete Transferl Complete Transfer

SDA

SCL

SDA

SCL

Data

Clock

Here is an overview of the transfer. It is not easy to understand what is happening
yet, but if your results look like this, you are probably doing well.

77

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Close-up of Waveformsl Close-up of Waveforms

SDA

SCL

SDA

SCL
Pulled Up

Driven Low

Here is a greatly magnified look at a high and a low. When the I2C lines are driven
low, the signal falls, and often quite rapidly. There may be some ringing as you can
see, but this can be tweaked in your system if needed. Note that when a signal floats
high, the slope is quite gentle. This slope will depend on your pull-up resistor. It is
a result of the pull-up resistor and the capacitance of the I2C line. If you choose too
large of a pull-up resistor for your application, you may notice the slope is so slow,
the signal never becomes high, or the results may be ambiguous. If the pull-up is
too small, the I2C drivers may have trouble driving enough current to compensate
and your average current consumption will rise as well.

Pull-up values were suggested earlier in this presentation, but the results were only a
suggestion, it is these waveforms that will determine the success of your I2C. It is
also this that limits your distance and speed. As you try to increase distance, you
will increase capacitance. As capacitance increases, so will the time constant and
the rise curve will get longer. If it gets too long, the data can not be read reliably as
the signal will not rise high enough. This also limits speed, as to go faster, this rise
must happen faster.

As a general rule, I2C is not made for long distances. Keep it on one PCB or at least
in one box. If you want to go longer distances, slow down and use smaller pull-ups,
and remember there are limits to its drive capabilities.

78

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Writing a Data Byte To the EEPROMl Writing a Data Byte To the EEPROM

S

A

AddressControl In PData

A A

SDA

SCL

SDA

SCL

Here is a close-up of the writing to the EEPROM. The diagram points to the various
conditions that make up the write transfer sequence. Note, even though the arrows
appear to only point to the SDA or SCL signals, both the SDA and SCL are part of
each condition. For example, data is not data unless there is a clock for it, and a
Start condition is made up of the timing of both SDA and SCL.

If you look at the results on your oscilloscope, you should be able to see a similar
result here and be able to recognize each condition.

Have you noticed those spikes near clock pulse number 9? Consider them as a low
for now. We will look at them in detail shortly.

79

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Start Condition and First (Control In) Bytel Start Condition and First (Control In) Byte

S

A

Control In

SDA

SCL

SDA

SCL

Here is a close up of a start condition, the control in byte and its ACK. You can
clearly see the data now. After the start, SDA goes high, then low, then high again.
Then it remains low until the spike. This translates into a data bit at each clock
pulse. At the first SCL pulse, SDA is high, so this bit is a 1, then it goes low for the
next pulse so this is a 0, and so on. You should be able to recognize the binary
value of 1010 0000, or 0xA0 (hex).

Have you seen this before? It is used in the code used to define a “Control In”.
Remember the first thing we did when sending a byte was to send a control in byte.
A control in byte was defined in the “#define” section of the code as 0xA0 hex.
Clearly things are working well.

The 9th bit is the ACK from the EEPROM. The reason for the spike is that the
PICmicro MCU releases the data line so that the EEPROM can answer. If the
EEPROM pulls the line low, its an ACK, if it floats high, its a NACK. The spike is
caused due to the fact that as soon as the PICmicro MCU releases the data line, it
starts to go high. A very short time later, the EEPROM pulls it low. This happens
to be a short time, but this is the reason you see a spike here. The important thing to
I2C is that the line is low when the clock is high, and this condition is satisfied.
What it does until then is not very important.

80

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Close-up of ACK Signalingl Close-up of ACK Signaling

A

SDA

SCL

SDA

SCL

Here is a close up of the ACK pulse and the nearby spike we have mentioned.
Notice that it only happens when SCL is low. Remember that data only has to be
valid when SCL is high. This is part of the definition of I2C protocol. As you can
see, this does happen and so the ACK will be correctly recognized. If you have
trouble with your I2C system, be sure to check this. The data must be valid when
SCL goes high.

81

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Restart Conditionl Restart Condition

R

SDA

SCL

SDA

SCL

Here is a look at the restart condition. This is the first restart that occurs in the waveform. It
happened after the write to the EEPROM completed and we begin the first part of the ACK polling.
You can see the start and stop conditions contained within it.

82

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Close-up of Restart Conditionl Close-up of Restart Condition

R

SDA

SCL

SDA

SCL

Here is a closer look at the same restart condition. You can now clearly see the stop
and start condition contained within it. Remember, a stop condition is a release of
the SCL line followed by a release of the SDA line. A start condition is when SDA
is pulled low, followed by SCL. Restart conditions may sometimes look different
from each other, but they must contain a stop followed by a start condition by
definition.

83

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Reading a Data Byte From the EEPROMl Reading a Data Byte From the EEPROM

A

RAddressControl In Control Out P

DataA A

NR

SDA

SCL

SDA

SCL

Here is a look at our EEPROM read waveform. Shown here is the first control byte that is ACKed
by the EEPROM. None of the ACK polling is shown here. You can see the Control in byte, which
has the value of 0xA0 (hex). You can also see the address byte and data byte. Remember we wrote
0x34 (hex) to address 0x12 (hex).

84

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l ACK Pollingl ACK Polling

A

SDA

SCL

SDA

SCL

Here is a look at the ACK polling results. Its a bit hard to see from this diagram, but each of the polls
has returned a NACK from the EEPROM. Only the one being pointed to returned an ACK, thus
ending the polling. The polling when tested went for many cycles, many more than shown here, and
will vary. However, ACK polling gives you the fastest possible response from the EEPROM
because you can know immediately when it is no longer busy.

Lets take a closer look at the ACK polling now.

85

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l Close-up of ACK Pollingl Close-up of ACK Polling

R Control Out

N

R Control Out

N

R Control Out

N

SDA

SCL

SDA

SCL

Here is another look at the ACK polling. Each write of the control out byte is
returning a NACK, thus indicating the EEPROM is not ready for new commands at
this time.

86

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l ACK Polling - Device Returned NACKl ACK Polling - Device Returned NACK

R Control Out

N

SDA

SCL

SDA

SCL

Here we have zoomed in on one loop. You can clearly see the restart, the control
out byte, and the NACK. The NACK is now easy to see. Notice that one the 9th
clock pulse the SDA line goes high. This indicates the bit is a 1, which signifies a
NACK response.

If this bit were low, it would signify a 0, which is an ACK response.

87

Getting Startred: I2C Master Mode © 2001

I2C - Example WaveformsII22CC -- Example WaveformsExample Waveforms

l NACK and STOP at End of Transferl NACK and STOP at End of Transfer

P

Data

N

SDA

SCL

SDA

SCL

This slide has zoomed in on the last byte in the transfer. It contains the data that
was retrieved from the EEPROM, the NACK sent by the PICmicro and the stop
condition. Once these signals have finished, the bus is idle as there is no more data
or conditions on the bus. This can be seen from the right of the stop condition.
Once the stop condition completes, we have finished communicating with the
EEPROM.

88

Getting Startred: I2C Master Mode © 2001

I2C - For More InformationII22CC -- For More InformationFor More Information

l More I2C Resources:

l PICmicro Data Sheet, (example: “PIC16F87x
Data Sheet,” MSSP Chapter).

l Reference Manuals (MSSP Chapter).

l Application Notes AN734, AN735 and
AN578.

l More I2C Resources:

l PICmicro Data Sheet, (example: “PIC16F87x
Data Sheet,” MSSP Chapter).

l Reference Manuals (MSSP Chapter).

l Application Notes AN734, AN735 and
AN578.

Listed here are some more resources that you can take a look at. These items are all
available on the Microchip Technology web site. Visit:
“http://www.microchip.com” to locate these documents.

AN578 - Description: Use of the SSP Module in the IIC Multi-Master Environment

AN734 - Description: Using the PICmicro SSP for Slave I2C Communication

AN735 - Description: Using the PICmicro MSSP Module for [Master Mode] I2C
Communications

