
PC Keyboard FAQ
Contents:

Chapter 1) Mark Schultz's AT keyboard interface
 1.1) About the Author
 1.2) Disclaimer & Feedback Request
 1.3) Introduction
 1.4) Description
 1.5) Schematic
 1.6) Keyboard to system protocol
 1.7) System to keyboard protocol
 1.8) Commands - Host to keyboard
 1.9) Keyboard response codes
 1.10) References
Chapter 2) Assorted info on XT/AT/PS2 Keyboard Interface
 2.1) Introduction
 2.2) Booting PC without keyboard
 2.3) IBM Keyboard Interfact Project
 2.3.1) Special Commands the Keyboard can Send to the Controller
 2.3.2) Special Commands the Controller can Send to the Keyboard
 2.4) IBM keyboard port specs wanted
 2.5) AT Keyboard Interface INFO
 2.6) Pinout for PS/2 keyboard
 2.6.1) 5 Pin DIN (AT/XT)
 2.7) XT vs. AT keyboard
 2.8) BIOS code modifications
 2.9) IBM-PC keyboard interfacing
Chapter 3) Richard Steven Walz's IBM PC Keyboard ScanCode FAQ
 3.1) About the Author
 3.2) Introduction
 3.3) The XT Scancodes
 3.4) The AT Scancodes
 3.5) Plea
Chapter 4) Anthony Berkow's Keyboard Basics
 4.1) About the Author
 4.2) Basics
Chapter 5) Nick Toop's AT/XT keyboard info
 5.1) About the Author
 5.2) Connector
 5.3) AT Keyboard
 5.4) PC-XT Keyboard
 5.5) Keys to Keycodes
Chapter 6) 6502 assembly code for controlling an AT keyboard
 6.1) About the Author
 6.2) Introduction
 6.3) Definitions
 6.4) The Code

[Document Version: 1.01a] [Last Updated: 6/29/97]

Chapter 1) Mark Schultz's AT keyboard
interface

 1.1) About the Author
Author: Mark Schultz
E-Mail: mschultz@wctc.net
Version: 1.00
Date: 16 Aug 1995

Corrections from Stuart Ferguson (www.microwizard.com)

 1.2) Disclaimer & Feedback Request
This writeup is by far from complete. As I mentioned earlier, I originally started this as a 'simple' (!)
response to a query posted here. Little did I know that I'd be here typing away for better than an hour.
Given the trouble I had in acquiring info as to how to control and utilize PC keyboards in non-PC
applications (which is still incomplete), I can appreciate the frustration experienced by others in obtaining
this info. If the demand justifies it, I would be willing to create a more formal, detalied description of the
PC/AT keyboard protocol along with code samples in 68HC05 assembly language. If you are interested in
such a writeup, respond to this message indicating your wishes or (preferably) respond via E-mail to
mschultz@wctc.net

 1.3) Introduction
I might be able to help you out with a few general pointers, as I have built a few homebrew projects that
have employed AT-style PC keyboards. I appreciate your plight; getting the AT keyboard to work in my
first project that employed it was a gut-wrenching, hair-pulling experience.

 1.4) Description
The AT keyboard transmission protocol is clocked serial (with the keyboard as clock source or 'master'),
11 bits in length. One start bit (logic 0), 8 data bits (LSB first), one odd parity bit and a stop bit (logic 1).
The clock rate is approx. 10-20 KHz and can vary from keyboard to keyboard. The keyboard data format
resembles 8-odd-1 asynchronous transmission format. However, the bit rate from keyboard to keyboard
can vary significantly so it is necessary to use a clocked serial interface (SPI in Motorola parlance) or a
async (SCI) interface with a 1x receive clock input. For MPUs that cannot accomodate this transmission
protocol directly using a hardware subsystem (SPI or SCI) I have found it useful to tie the CLOCK input
to a IRQ (external interrupt) line and read the data bits one-by-one on the falling edge of each clock pulse.

Both CLOCK and DATA lines are implemented on the keyboard end as open-collector outputs with pull-
up resistors to +5V. It is possible (and sometimes necessary) for the host system to actively pull these
lines LOW. In the systems I have built, I have used 4 MCU I/O lines to control the keyboard: Two inputs

(for clock and data in) as well as two outputs connected via limiting resistors to NPN transistors to allow
the MCU to drive the CLOCK and DATA lines of the keyboard. The following crude diagram attempts to
illustrate the basic circuit:

 1.5) Schematic

 MCU
--------------+
 |
(IRQ)Data In <|-------------o-------------- Kbd DATA
 | |
 Clock In <|-------------|--------o----- Kbd CLOCK
 | c | |
 | |/ 2N3904 |
 Data Out <|---/\/\/---|b (NPN) |
 | |\ |
 | e | |
 | --- |
 | Gnd |
 | c _________/
 | |/ 2N3904
 Clock Out <|---/\/\/---|b (NPN)
 | |\
 | e |
 | ---
 | Gnd
--------------+

 1.6) Keyboard to system protocol
The keyboard will transmit keystroke data to the host system as soon as a key is pressed (or released) if
both the DATA and CLOCK lines are HIGH. If the CLOCK line is LOW, the keyboard will buffer
keystroke data until the CLOCK line goes HIGH again (the clock line acts as a -RTS signal). If the DATA
line is LOW, the keyboard prepares to accept a 11-bit control message from the host (see below).

If the CLOCK line is pulled LOW by the host while the keyboard is transmitting data (up to the 10th bit)
for at least 60 uS, the keyboard will suspend transmission and prepare to receive a system message. The
keyboard will eventually re-transmit the data byte that was interrupted, unless the keyboard was
successful in transmitting the 10th bit, in which case the keyboard considers the data byte as successfully
sent. It is generally a bad idea to interrupt keyboard transfers this way.

 1.7) System to keyboard protocol
AT-style keyboards are capable of accepting control messages from the system in addition to sending scan
code information to the host. In this way, the status LEDs may be controlled and the keyboard typematic
parameters (repeat delay and rate) can be set. Command transmission to the keyboard is initiated by
bringing the keyboard CLOCK line LOW for at least 60 uS. After the 60 uS delay, the DATA line should
be brought LOW and the CLOCK line released (HIGH). Make sure to bring the DATA line LOW before
releasing the CLOCK line. Some time later (up to 10 milliseconds) the keyboard will start to generate
clock signals. At each HIGH to LOW clock transition the keyboard will clock in a new bit. The data
stream from the system (on the DATA line) should conform to the serial protocol described above.

After the parity bit has been clocked out, the host should release (bring HIGH) the DATA line and wait
for the keyboard to send another CLOCK pulse (this will be the 10th HIGH to LOW transition, not
counting the initial H->L transition generated by the host). The KEYBOARD will then bring the DATA
line LOW sometime before the 11th HIGH to LOW transition of the CLOCK line to acknowledge
reception of the command byte.

If the DATA line is not released (allowed to go HIGH) after the 10th CLOCK bit then the keyboard will
continue to issue clock pulses until the DATA line is released. In this event, the keyboard will (after some
delay) pull the DATA line LOW and transmit a RESEND status byte (FEh).

 1.8) Commands - Host to keyboard
(all numeric values are in HEX)

I will present these command bytes briefly here. I will be happy to expand on their function and purpose if
asked. This started out as a simple reply to a question and has almost turned into a FAQ <g>. Depending
on demand, I just might expand this impromptu reply into a full-fledged FAQ.

F5
Default Disable. Resets keyboard, returns ACK and suspends scanning, waiting for another
command. Does not affect the indicator LEDs.

EE
Echo. Responds with ECHO code (EE).

F4
Enable. Clears output buffer, enabled kbd, returns ACK.

F2
Read ID. Responds with ACK and two ID bytes (83,AB). Resumes scanning even if previously
disabled.

FE
Resend. Retransmit last sent scan code.

FF
Reset. Resets keyboard CPU, starts power-on test. Responds with power-on-test byte.

F0
Select scan code set. Responds with ACK, then waits for host to send a byte (01,02 or 03)
specifying the scan code set to use. If 00 is sent, keyboard responds with ACK followed by the
scan code set in use.

F7
'Set all keys typematic'

F8
'Set all keys make/break'

F9
'Set all keys make'

FA
'Set all keys typematic/make/break' I am not certain what these commands do. I suspect they
control the way the keyboard transmits scan codes. All of the above commands respond with an
ACK code.

F6
Set default. Responds as the 'Default Disable' command, but does not inhibit scanning. Does not
affect LED indicators.

FB
'Set key type typematic'

FC

'Set key type make/break'
FD

'Set key type make' Again, I'm not sure what these do. Unlike the 'set all' commands, these
commands presumably act on single keys. The keyboard sends the ACK code, then waits for
keyboard scan code(s). ACK is set after each scan code is received. Keyboard remains in the 'set
type' state until a new command is received.

ED
Set/reset status indicators. This command allows you to control the status LEDs on the keyboard.
Keyboard responds with ACK and waits for a option byte, bitmapped as follows: b0-Scrollock,
b1-Numlock, b2-Capslock, b3..7=0. A '1' bit turns the indicator ON.

F3
Set autorepeat rate/delay. Responds with ACK, then waits for an option byte that specifies the
autorepeat delay and rate, bitmapped as follows: b7-unused. b6..5-Repeat delay (00=250 mS,
11=1000mS). b4..0-Repeat rate (00000=30x/sec, 11111=2x/sec). Keyboard responds with ACK
after reception of the option byte.

 1.9) Keyboard response codes
FA

ACK (acknowledge), response to most commands.
AA

Poweron test successful.
EE

Echo. Response to the ECHO command (EE).
00 or FF

Key detection error, also indicates buffer overflow.
FE

Resend. Sent in response to the receipt of a invalid command code or code with a bad parity bit.

The keyboard can, of course, send key scan make/break codes as well as numeric responses to certain
commands as outlined above.

 1.10) References
Portions of the information contined here were taken from _101/102RX Series Electrical Specifications,
Honeywell Keyboard Specifications_ published by Honeywell Keyboard Division, 4171 N. Mesa, Bldg.
D, El Paso, TX 79902.

Chapter 2) Assorted info on XT/AT/PS2
Keyboard Interface

 2.1) Introduction
(From the Editor)

Here's some assorted information about the PC keyboard. Look through the index and see if you see
anything interesting. Be aware that sometimes the Index entry doesn't entirely describe the article! That's
life. Sorry.

If you have anything that doesn't quite fit into an existing keyboard FAQ, please send it to me and I'll
include it here.

 2.2) Booting PC without keyboard
(From Tony Snyder)

A few days ago someone needed information about booting a PC without a keyboard. I didn't see much
posted, that directly satisfied his needs, other than some advice regarding reworking his bios etc. I just ran
across an ad in the September, 1993 Circuit Cellar INK, The Computer Applications Journal, issue
number 38, that could help. On page 93, Verta Systems Corporation, 27 Newtown Rd, Plainview, NY, tel
(516)454-6469, advertises a keyboard eliminator which plugs into the keyboard port. Its called the
Phantom Keyboard. That's all I have for now.

 2.3) IBM Keyboard Interfact Project
(From Eric Rudolph)

IBM Keyboard Interfact Project, by Eric Rudolph, 1991.
No Copyright Whatsoever, but I would like credit where it's due.

A little background on the IBM AT keyboard:

The keyboard I used for this circuit was a BTC 5339sx. It costs about $40 Lucky Computers, 1-800-348-
5825. I have also tested the circuit on a standard PC keyboard, and an HP Vectra AT keyboard.

The AT keyboard DIN connector has 5 pins. Pin 3 is called Reset, but it's reserved, so we can't use it.
Forget it exists on the AT keyboard. They just charge you money for it. (joke) Open collectors drive the
clock and data pins, so when they are not driven low, they float at 5 volts.

The keyboard transmits data by bits, each synchonous somehow with the clock line. They keyboard when
clocking in or out data, always runs the clock. The controller can drive the clock line, but not with
reference to data.

When the Keyboard sends data, it first sets the data, then drives clock low, then high, and then changes
the data to the next value.

The AT uses 11 bits for a transmission, 1 start bit (0), 8 data bits, 1 parity bit-set if the number of 1's in
the data bits is even, and a stop bit (1). When the keyboard sends it's last bit, the stop bit, the controller
must drive clock line low as a handshake and to tell the keyboard not to send until clock goes high again.

Theoretically, the controller could interrupt the sending of the bits, but I consider this unnecessary, and
don't bother with it. When the computer needs to send a command to the keyboard, it sets clock line high
and the data line low. When the keyboard sees this, it will start clocking pulsed on the data line.

Then, the controller must look for the clock line going low, set the data bit, wait for the clock to go high,
then wait for the clock to go low again, and then change the bit. Thus, it changes the data in the middle of

the clock low pulse. When the keyboard has received it's 10th bit, it will drive the data line low while at
the same time clocking out an extra clock low pulse. Then, it expects a handshake of the clock line low
from the controller.

0 1 2 | 7 stop extra
Clock:------------___/---___/---___/---___/---___/---___/---___/end

Data:-------_______00000001111111122222|6677777777PPPPPPPP1111xxxxxxxx_____

Notice there is NO start bit when the controller sends data to the Keyboard.

 2.3.1) Special Commands the Keyboard can Send to the Controller

00 Keyboard buffer overflowed
AA Selftest passed
FA The command sent was received correctly
FE The command sent was received poorly. Please resend.

 2.3.2) Special Commands the Controller can Send to the Keyboard

ED Set the LEDs according to next byte I send
 bit 0=Scroll lock 1=on
 bit 1=Num lock
 bit 2=Caps lock
 bits 3-7 must be 0
F4 clear the key buffer and start scanning
F6 restore default values
FE retransmit last character, please
FF Reset, you stupid keyboard!

Whew! That about raps it up for the AT keybard! Enough said, right?

XT keyboards transmit much the same way except they only use 10 bits. Two start bits (both high) and 8
data bits, transmitted in order 0-1-2...-7 The last bit is a make/break bit which is 1 to signify a break.

The XT can have no commands sent to it. The way to reset it is to drive the Clock line low for some
longish period of time. The keyboard will not send data (it will hold off) if the data line is being held low
by an external source (the controller)

 2.4) IBM keyboard port specs wanted
(From Tomi H Engdahl)

The only data I have left from hacking at my keyboard when it died a couple of years ago are some timing
diagrams recorded from a 'scope (wretched ASCII graphics follow):

__ _ _ _ _ _ _ _
 | Clock / | / | / | / | / | / | / | (2 more)
 |_________/ |_____/ |_____/ |_____/ |_____/ |_____/ |_____/ |_____

 |<- 36uS->|<-32uS->|12| 20 | | | | | |

 \ \ / \ / \ / \ / \ / \ / \
Data \ 0 X 1 X 2 X 3 X 4 X 5 X 6 \
 ______/_______/_______/_______/_______/_______/__________

This is for an XT keyboard.

The clock and data lines are both normally high. When a key is pressed, Clock goes low for 36uS. This is
followed by 9 clock pulses, each 12.5uS low and 20uS high; on the 10th rising edge the clock stays high
until the next sequence. The Data line changes on the rising edge of the clock. There are only 7 data bits
(the last two bit times on the Data line are always low). The ~32uS clock period gives a ~31KHz bit rate.
At least, this is how I interpret my drawings...

 2.5) AT Keyboard Interface INFO
(From Bill Mayhew)

The IBM-PC-compatible keyboard interface is fairly nasty to duplicate. I've thought several times about
using PC keyboards as input devices, but have just fallen back to ASCII parallel keyboards or making my
own scanning matricx with something like a KR2376.

The problem with the IBM-PC keyboard is that it uses a bidirectional protocol with both the PC's on-
board 8741 (or equivalent) keyboard controller single-chip microprocessor and the keyboard toggling the
clock line and exchanging pulses and scan codes with relatively strict timing requirements.

I figured my time to design my own version of the handshake would be more expensive than obtaining a
more easily dealt-with keyobard. If you are talking volume use or have to use the keyboard input for some
reason, than you can nix the timing argument.

What would be real handy would be for somebody to produce an 8741 that is programmed to deal with
the keyboard and output the eqiivalent ASCII decoded from the scan codes along with a strobe pulse. It
would make a nice handy experimenter's aid. Maybe somebody already has one?...

If you want the gory timing details, obtain an IBM PC-AT technical refrence manual. It should have a lot
of details on the keyboard interface. I've got the Model-80 technical ref and it has a lot of info on the
keyboard interface. IBM has many technical manuals for fairly reasonable prices. My old book listed thier
number as 800-IBM-PCTB. Taht is several years old, so the number may well have changed by now.

(From Lance Bresee)

I probably should have Replied to the original poster, but I thought others might be interested as pc
keyboards are cheap.

MicroCornucopia
No 52
March-April 1990
Page 36 - 43
An AT Keyboard Interface
Don Rowe

Includes description of AT Keyboard serial data transfer and a circuit to interface to an AT keyboard.

Here is the wiring for both:

 2.6.1) 5 Pin DIN (AT/XT)

1 CLK
2 DATA
3 NOT RESET
4 GND
5 +5V

6 Pin PS2

(From Tomi Engdahl)

I have always been in impression that PS/2 keyboard pin numbering goes like this (but I might be also
wrong).

 4 u 6
 1 . 2
 3 5

1. GND
2. +5V
3. DATA
4. CLOCK
5. Not used
6. Not used

The PS2 is numbered as follows:

 ^
 6 5
 4 3
 > 2 1 <

1 DATA
2 No connection
3 GND
4 +5V
5 CLK
6 No connection

The <>'s indicate the position of the triangular cutouts. The 5 Pin DIN is standard universal layout.

Also, see the "Pinouts for various connectors in Real Life(tm)" (Sub-ToC) for other pinouts.

 2.7) XT vs. AT keyboard
(From Bruce Adler)

The XT and AT keyboards are NOT compatible. The only way a XT keyboard will work on an AT
computer is if you've got a motherboard and BIOS which are specifically designed to support both
keyboard types.

The keyboards differ in at least the following ways:

1. The XT kb. generates 2 start bits, 8 data bits, make/break bit, and a stop bit. The AT kb. is 1 start
bit, 8 data, 1 parity, and a stop bit.

2. The XT uses a make/break bit to indicate key up/down. The AT sends one byte for keydown and
two bytes for keyup.

3. The XT keyboard scan codes have different values than then AT keyboard make/break codes (for
corresponding key locations).

4. The XT keyboard doesn't accept any of the command strings accepted by the AT keyboard.
5. The XT keyboard is reset by fiddling the clock and data lines; the AT keyboard accepts a reset

command string.

In the same manner plugging an AT keyboard into an XT computer won't work either, unless you have
one of those clone keyboards which allow you to select XT compatible mode.

 2.8) BIOS code modifications
(From Byron A Jeff)

On any SimTel archive you can find BIOS for the keyboard controller. Look in directory:

...msdos/sysutl

For file:

bios-asm.zip "Public domain generic PC BIOS (MASM source)"

 2.9) IBM-PC keyboard interfacing
(From Brad Siim)

[...] The PS2 keyboard interface is not a very friendly or easy to understand interface. The best place to get
information is in IBM's technical reference manual. All of the documentation that I have seen on this
interface is the same/similar (ie. Compac's Technical Reference spec) and almost seems to be a direct
copy of IBM's reference manual.

The core of ALL/most PS2 keyboard interfaces is the Intel 8042 microcontroller or some derivative of it.
You will need to get a copy of this datasheet as well as IBM's keyboard spec.

Basic Description:

1. The 8042 side of the interface is two bidirectional open collector lines called CLOCK and DATA.
2. The KEYBOARD side of the interface is identical.
3. Both sides can drive the lines and often do so at the same time. Each side has to figure out what is

going on if the other side has decided to interrupt.
4. When the system CPU wants to send something to a KEYBOARD device it writes a command to

the 8042 which tells the 8042 that the next command written to the 8042 should be passed on to the
KEYBOARD device across the serial DATA line.

5. Assume that when idle both the DATA and CLOCK lines are high.
6. The 8042 pulls the clock line low to inhibit any transmission from the KEYBOARD.

7. The 8042 pulls the data line low to get the KEYBOARD's attention to the fact that it wants to
transmit.

8. The 8042 release the CLOCK line and waits for the KEYBOARD to pull the clock line low. When
the CLOCK line has been pulled low the 8042 places its first bit of data on the DATA line.

9. The keyboard toggles the clock line and clocks data across on the data line. The 8042 controller
will place a new bit on the data line each time the clock is pulled LOW by the KEYBOARD.

The following picture will explain better:

CK HHllllHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHllll
DA HHHllllll000000111111222222333333444444555555666666777777ppppppssssssLLLLHHH
 ^ ^
 start bit important bit

where: l = 8042 driving the line
 L = KEYBOARD driving the line
 1..7 data
 = Parity 8042 driving
 s = stop 8042 driving
 = PARITY KEYBOARD driving the line
 S = STOP KEYBOARD driving the line

10. The last bit in the last clock cycle is a data bit that is returned by the KEYBOARD. The keyboard
may also be required to return a whole byte/bytes to the controller depending upon the data that was
sent by the controller to the KEYBOARD. After the controller has seen the last bit it usually will
inhibit the keyboard by yanking the clock line low. Please note that if the keyboard has to return
data to the 8042 it will do so under the following protocal after the 8042 has released the clock line.

11. During the above transmission the contoller may abort the operation by holding the CLOCK line
low. The keyboard has to montitor the CLOCK line and stop clocking if it sees that the CLOCK
line is not going high.

12. If the KEYBOARD wants to send data: Assume both lines are high. If they are not high the
keyboard can't send. If the clock line is being held low by the controller, the controller does not
want data. If the data line is being held low by the controller the controller wants to send data and
the keyboard must start clocking it.

13. So the lines are high: The keyboard pulls the data line low and then pulls the clock line low and
then back to high. The data line is changed while the clock is HIGH. The KEYBOARD pulls the
clock line low and high and repeats the operation as follows:

CK HHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLLHHHLLlllll
DA HLLLLLL000000111111222222333333444444555555666666777777PPPPPPssssssLLLLLHHHH
 ^
 start bit

I have explained this in detail because the documentation is VERY hard to decripher. I hope this is
accurate and helps you. I have not discussed timing, implementation or voltage levels as I'm sure you will
not have trouble with these aspects.

Chapter 3) Richard Steven Walz's IBM PC
Keyboard ScanCode FAQ

 3.1) About the Author
IBM Keyboard/Scancode FAQ
Author: Richard Steven Walz
Email: rstevew@armory.com
Ver: 0.9a
Rel: 10 June 1994
Note: Please retain this banner

 3.2) Introduction
The IBM keyboard was designed to be completely reconfigurable short of giving you keycaps with
replacable transparencies under a clear top!!! Any key can be interpreted by a program as anything. They
needed more than the ASCII codes for this (what's the ASCII code for 'left shift" and 'alt'?!), so they
assigned scancodes whose values were arbitrary, except perhaps from a PC board layout and trace routing
or keyboard controller firmware perspective. Thus these scancodes are sent by the keyboard, in time to its
own clock, both of which go to the 8255 PIA port chip on the motherboard, after a bit of serial to parallel
work by a couple other chips.

The keyboard clock and data lines are open collector, meaning that they are pulled up with resistors and
can be pulled down by either end of the line to for communication in either direction. Thus there is a
protocol that each end observes about their logic states.

The keyboard monitors the state of the data and clock lines prior to any send to the computer. If the clock
line is LO, (TTL LO or near 0 Volts), then the keyboard is disabled and will not send. If the clock line is
high, (TTL HI or getting close to but not greater than 5 Volts), and the data line is LO, then input TO the
keyboard is accepted FROM the computer!

Finally it should be mentioned that the keyboard only starts a send to the computer when the data line and
the clock line are high. This means that the computer is not trying to talk to the keyboard or trying to
make the keyboard wait to send. When the two lines are high, since the lines are open collector and pulled
up passively, the keyboard can take them over and start the clock and pull the data line low. On the
falling edge of the 10 kHz clock, the keyboard again raises the data line to form two start bits of .2 ms
duration, signaling the start of the byte send. Then the bits are sent in LSB first (D0) and then on up
through the eight bit byte to the MSB (D7), and then the line returns to the LO state!

This is an unusual setup compared to most types of serial communications, as usually the line remains HI
when not being pulled LO to make a start bit or bits, and THEN the data is sent using its correct logical
value as a HI '1' or a LO '0'. Here the data is sent with its logical sense preserved, but the start bits are
suddenly HI from a inactive but ready LO data line, and the bits are read by timing off the received clock
on the clock line, which is also taken over by the keyboard and pulled LO to signify time to start a bit, a
start bit OR a data bit.

The diagram is thus:

HI 10 kHz
--------------| |-| |-| |-| |-| |-| |-| |-| |-| |-| |-| |------------------
 clock line | bits start on
LO |-| |-| |-| |-| |-| |-| |-| |-| |-| |-| |-| falling edges

HI
-----| |-------| |-----------| |---|
 | data | start | 0 | 1 1 1 | 0 | 1 | 0 0
LO |--------| | |---| | | |---| |---|---|-----------------
 line s s D0 D1 D2 D3 D4 D5 D6 D7 stop/idle

As was noted above, there is a state of the two lines where the computer can send data to the keyboard,
and my documentation on this was more vague. If anyone can add to it, I would appreciate it. My BTC-
5060 "el cheapo" terminal/AT-type keyboard manual shows a timing diagram which I believe to be
fallacious, as they even have the bits in reverse order. I will want to test this keyboard with the scope to
see the real story. The manual DOES, however, indicate that this keyboard will correctly operate either an
XT or an AT computer and up, and it truly does! I would like to know how to make it shift to the other
mode and how to control its LED states as well. This paragraph is a call for more info from out there, and
more research on my part, as I see conflicting information. This should be considered a preliminary
release.

This keyboard sends data not just of occurence of a key press and release but it scans the keyboard keys
thousands of times a second and sends data to the computer as to whether a key has been pressed and
whether it has been released, and in the order these occurred, and it stores this change data in a buffer
waiting to send it as soon as the computer will accept it. This makes this keyboard extremely
configurable, as we always know then what has occurred and the key presses and releases can be noted
with great complexity and interpreted to our heart's content. All keys are on an equal footing and are not
simply super-shift keys in the case of control, alt, and shifts. These can be read as well and used in a
program. In addition, this keyboard has the IBM "typematic" action, whereby if a key is held down for
more than the assigned delay, the keyboard resends its 'make' code over and over till it is released or
another key takes its place as the repeater.

The scancodes for the XT are each different bytes with the 'make' byte given one hexadecimal number
and the 'break' byte given the same number with its high bit (MSB) set to "1", thus the break codes are all
derivable by adding 80 hexadecimal to the make code for each key. The codes have nothing to do with the
ASCII value of a character seen on the keycap. They are simply codes. All values below are hexadecimal,
which means to get the decimal, you can multiply the left number by 16, where the left number is a digit
such that 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F really mean numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, and 15 in decimal. Then you take the right digit and convert it straight away and add it to the
multiplication of the left digits's value which was multiplied by 16. Thus the decimal equivalent for the
hexadecimal for C9 is 'C' or 12 times 16, which is 192, plus '9', which is just 9, to make 201. Likewise 3F
converts to '3' or 3 times 16, which is 48, plus 'F' which is 15, which add to 63. And once more for good
measure, BD converts to decimal thus: 'B' is 11, and 11 times 16 is 176, and 'D' is 13, so added they make
189. The scancodes found at port 60H or 96 are the 'make' codes for those keys. In BASIC language, the
first INKEY$ byte is the ASCII interpretation in decimal, unless there are two bytes for the interpretation
of extended characters, then it is the second. These INKEY$ codes, while often called scancodes
mistakenly, are merely extended keycodes particular to BASIC language.

 3.3) The XT Scancodes

These are all hexadecimal: 'make' code top / 'break' below

F1 F2 ` 1 2 3 4 5 6 7 8 9 0 - = \ BS ESC NUML SCRL SYSR
----- --- ------------------
3B 3C 29 02 03 04 05 06 07 08 09 0A 0B 0C 0D 2B 0E 01 45 46 **
BB BC A9 82 83 84 85 86 87 88 89 8A 8B 8C 8D AB 8E 81 C5 C6

F3 F4 TAB Q W E R T Y U I O [] Home Up PgUp PrtSc
----- --- -------------------
3D 3E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 47 48 49 37
BD BE 8F 90 91 92 93 94 95 96 97 98 99 9A 9B C7 C8 C9 B7

F5 F6 CNTL A S D F G H J K L ; ' ENTER Left 5 Right -
----- -- ------------------
3F 40 1D 1E 1F 20 21 22 23 24 25 26 27 28 1C 4B 4C 4D 4A
BF C0 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8 9C CB CC CD CA

F7 F8 LSHFT Z X C V B N M , . / RSHFT End Dn PgDn +
----- -- ------------------
41 42 2A 2C 2D 2E 2F 30 31 32 33 34 35 36 4F 50 51 4E
C1 C2 AA AC AD AE AF B0 B1 B2 B3 B4 B5 B6 CF D0 D1 CE

F9 F10 ALT SPC CAPLOCK Ins Del
------ -- -------------
43 44 38 39 3A 52 53
C3 C4 B8 B9 BA D2 D3

Now I will explain the AT scan codes. They are done slightly differently. The AT keyboard response is a
different set of events. When the key is pressed, the scan code is sent, and when the key is released, two
bytes are sent, the keyboard sends F0 hex and then the scancode again, thus we will only need to list the
scancodes below for the AT keyboard activity.

 3.4) The AT Scancodes

Again, these are hexadecimal:

F1 F2 ` 1 2 3 4 5 6 7 8 9 0 - = \ BS ESC NUML SCRL SYSR
----- --- ------------------
05 06 0E 16 1E 26 25 2E 36 3D 3E 46 45 4E 55 5D 66 76 77 7E 84

F3 F4 TAB Q W E R T Y U I O [] Home Up PgUp PrtSc
----- --- -------------------
04 0C 0D 15 1D 24 2D 2C 35 3C 43 44 4D 54 5B 6C 75 7D 7C

F5 F6 CNTL A S D F G H J K L ; ' ENTER Left 5 Right -
----- -- ------------------
03 0B 14 1C 1B 23 2B 34 33 3B 42 4B 4C 52 5A 6B 73 74 7B

F7 F8 LSHFT Z X C V B N M , . / RSHFT End Dn PgDn +
----- -- ------------------
83 0A 12 1A 22 21 2A 32 31 3A 41 49 4A 59 69 72 7A 79

F9 F10 ALT SPC CAPLOCK Ins Del
------ -- -------------
01 09 11 29 58 70 71

And that's all I know about it. If you would like to add information to this small tutorial FAQ, please send
it to rstevew@armory.com for review and please don't add to this FAQ and republish it without my
consent. I will keep this up to date if you will be kind and handle it that way. Thanks.

 3.5) Plea
I have been looking for definitive doc on the keyboards, but everybody seems as wrong or contradicted or
unsure as do I. I haven't had time to actually diagnose the behavior of keyboards with a scope or logic
analyzer, so if anybody has anything that makes sense of this and the the bode.ee.ualberta.ca stuff, which I
HAVE looked at, to little avail, please let me know!

Chapter 4) Anthony Berkow's Keyboard Basics

 4.1) About the Author
Author: Anthony Berkow
E-Mail: aberkow@syfrets.co.za
Version: 0.50 (to be updated)

 4.2) Basics
The keyboard communicates on a character-by-character basis. Each key, including SHIFT, CTRL and
ALT, sends a specific code when depressed and another code when it is released (the break code is the
make code preceeded by F0h). ASCII is impractical for communication with a keyboard (especially with
special features such as typematic rate) so special scan codes are used and converted to ASCII by the
BIOS.

Certain keys produce series of scan codes called scan sets. There are 3 scan sets in use with set 2 being the
most common. (Sets 2 & 3 used on AT keyboards.)

The 101/102 keyboard is laid in a 16 row by 8 column matrix. With set 1 or 2, for cursor control keys:
ALT, CTRL, DEL, PgUp, PgDn, Ins, Home, End, the keyboard issues a series of codes dependant on shift
keys (alt, ctrl, shift) and on the status of the indicator of the Num lock key. Since these keys are
duplicated, the basic scan codes are identical - to identify the alternate key, an extra code E0h is added to
the basic code. With set 3, each key generates just one code unaffected by the status of other keys.

With set 1, the up code is obtained by adding 80h to the down code. For set 2 and 3, the 1st byte is F0h
and the 2nd byte is the down code for that key.

If a key is pressed, the keyboard acknowledges the key and issues the down key code. If a 2nd key is
pressed while the 1st is still depressed, the 2nd key is acknowledged and it's down code sent. If the 2nd
key is released before the first, the 1st key is deactivated. To reactivate the 1st key, it must first be
released.

If two or more keys are pressed simultaneously, all are validated and all codes are sent (no error is
generated).

With the exception of the pause key, all keys when held down for a certain time, auto-repeat. The down
code is repeated until the key is released. If two or more are pressed together, only the last key pressed is
repeated. The repeat stops when the last key pressed is released, even if the other keys are still depressed.
The delay is usually 500ms and the repeat 10/s and can be modified.

The interface is serial, using the KBCLK (generated by the keyboard) and KBDTA lines. KBDTA is
bidirectional! Data format is 11 bits for scan sets 2 & 3 - 1 start bit, 8 data bits (lsb 1st), 1 odd parity bit
and 1 stop bit.

Data from controller to keyboard always has priority. As long as the keyboard has not yet transmitted the
10th bit, the controller can take over the interface, which it does by pulling KBCLK low for 100ms.
Within 5ms the keyboard will start sending low clock pulses on KBCLK. KBDTA must be set to the
relevant logic level each time KBCLK is low and must remain there until KBCLK goes high then low
again. The keyboard reads this data bit when the clock pulse is high. If there is no clock within 20ms or
transmission takes more than 2ms assume a transmit time-out and send a resend command to the
keyboard (FEh).

For the keyboard to send the controller data, both KBCLK and KBDTA must be high. The keyboard
begins by pulling KBDTA low and then starts sending clock pulses on KBCLK. The data bit is output
while the clock is high and remains while it goes low then high again. The controller should read the data
while the clock is low. If the controller holds the clock low the transmission will be aborted and retried
once the line is free.

After the POST (power on self test) the keyboard issues a AAh to the system (FCh if failure).

The signals source is open-collector TTL (low <0.8V high>2.4V). Signals are on a 6-pin DIN or SDL (PS/
2) connector (5 wires - 1 supply, 2 gnd, dta and clk):

1. Data In/Out
2. N/C
3. Gnd
4. +5V
5. Clock
6. Test (not used / Gnd)

Chapter 5) Nick Toop's AT/XT keyboard info

 5.1) About the Author
Author: Nick Toop
Version: 1.00

I use both XT and AT keyboards with the MC68681 DUART in 68000 based microcomputer systems. I
hope the following information proves to be both correct and useful.

 5.2) Connector
The connector will be one of the following:

5pin 180 deg DIN 6pin MINIDIN
---------------- ------------

 _
 (2) 1 CLOCK (5) (6) 1 DATA
 (5) (4) 2 DATA | 2
 (3) (1) 3 (3) (4) 3 GND
 4 GND 4 +5V
 5 5V (1) (2) 5 CLOCK
 6

The signals are open drain and TTL compatible.

 5.3) AT Keyboard
The interface is bi-directional. I have not described the various setup options here; they include
controlling the LEDs, echoing, changing the key modes, autorepeat and delay parameters, reset. I find the
defaults work well enough.

After power up, a successful diagnostic test sends AA (hex).

The idle state is clock and data high. A code is sent when a key is first pressed (and when autorepeat is
active). The same code is sent; prefixed by F0 (hex), when the key is released The data bit time is
typically 50uS. The timing is as follows:

CLOCK
---___---___---___---___---___---___---___---___---___---___---___---

DATA
--______| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | PO |------
 START LSB MSB ODD STOP
 PARITY

NB: Some keys return an escape code sequence i.e. E014 (Rctrl on) and F0E014 (Rctrl off).

 5.4) PC-XT Keyboard
The idle state is clock high and data low. Take the clock low for > 6mS to get diagnostic test. Take data
low and issue >62uS clock to lock keyboard.

A code is sent when the the key is first pressed (and when autorepeat is active). The same code is sent
with D7 set as the key is released. The pulse widths are in the range 30->50uS. The timing is as follows:

CLOCK
---___---___---___---___---___---___---___---___---___---___--------

DATA
____-------| D0 | D1 | D2 | D3 | D4 | D5 | D6 | D7 |-----____
 START LSB MSB

NB: Some keys return an escape code sequence i.e. E014 (Rctrl on) and E094 (Rctrl off).

 5.5) Keys to Keycodes
Here are key numbers for a US-English 101 key keyboard.

,-------,---,---,---,---,,---,---,---,---,,---,---,---,---,
|ESC |F1 |F2 |F3 |F4 ||F5 |F6 |F7 |F8 ||F9 |F10|F11|F12|
|110 |112|113|114|115||116|117|118|119||120|121|122|123|
'-------'---'---'---'---''---'---'---'---''---'---'---'---'
,---,---,---,---,---,---,---,---,---,---,---,---,---,-----,
|~ |1 |2 |3 |4 |5 |6 |7 |8 |9 |0 |- |= |<- |
|1 |2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |15 |
|---',--',--',--',--',--',--',--',--',--',--',--',--',----|
|TAB |Q |W |E |R |T |Y |U |I |O | |[|] |\ |
|16 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28 |29 |
|----',--',--',--',--',--',--',--',--',--',--',--',--'----|
|CAPS |A |S |D |F |G |H |J |K |L |; |, |ENTER |
|30 |31 |32 |33 |34 |35 |36 |37 |38 |39 |40 |41 |43 |
|-----',--',--',--',--',--',--',--',--',--',--',----------|
|SHIFT |Z |X |C |V |B |N |M |, |. |/ |SHIFT |
|44 |46 |47 |48 |49 |50 |51 |52 |53 |54 |55 |57 |
|----,-',--'--,'---'---'---'---'---'---'--,'--,'-----,----|
|CTRL| |ALT | SPACE |ALT| |CTRL|
|58 | |60 | 61 |62 | |64 |
'----'--'-----'---------------------------'---'------'----'

,-----,-----,-----,
|PSCRN|SLOCK|BREAK|
|124 |125 |126 |
'-----'-----'-----'
,-----,-----,-----, ,-----,-----,-----,-----,
INS	HOME	PGUP		NLOCK	/	*	-
75	80	85		90	95	100	105
-----	-----	-----		-----	-----	-----	-----
DEL	END	PGDN		7	8	9	+
76	81	86		91	96	101	106
'-----'-----'-----' |-----|-----|-----|-----|
 |4 |5 |6 | |
 |92 |97 |102 | |
 ,-----, |-----|-----|-----|-----|
 |UP | |1 |2 |3 |ENTER|
 |83 | |93 |98 |103 |108 |
,-----|-----|-----, |-----------|-----| |
|LEFT |DOWN |RIGHT| |0 |. | |
|79 |84 |89 | |99 |104 | |
'-----'-----'-----' '-----------'-----'-----'

There are at least three options for the mapping of key numberss to keycodes. The common usage seems
to be as follows:

,---,-----,-----,,---,-----,-----,,---,-----,-----,,---,-----,-----,
KEY	PC-XT	AT		KEY	PC-XT	AT		KEY	PC-XT	AT		KEY	PC-XT	AT
#	(HEX)	(HEX)		#	(HEX)	(HEX)		#	(HEX)	(HEX)		#	(HEX)	(HEX)
---	-----	-----		---	-----	-----		---	-----	-----		---	-----	-----
1	29	0E		2	02	16		3	03	1E		4	04	26
5	05	26		6	06	25		7	07	2E		8	08	36
9	09	3D		10	0A	46		11	0B	45		12	0C	4E
13	0D	55		14	--	--		15	0E	66		16	0F	0D

17	10	15		18	11	1D		19	12	24		20	13	2D
21	14	2C		22	15	35		23	16	3C		24	17	43
25	18	44		26	19	4D		27	1A	54		28	1B	5B
29	2B	5D		30	3A	58		31	1E	1C		32	1F	1B
33	20	23		34	21	2B		35	22	34		36	23	33
37	24	3B		38	25	42		39	26	4B		40	27	4C
41	28	52		42	--	--		43	1C	5A		44	2A	12
45	--	--		46	2C	1A		47	2D	22		48	2E	21
49	2F	2A		50	30	32		51	31	31		52	32	3A
53	33	41		54	34	49		55	35	4A		56	--	--
57	36	59		58	1D	14		59	--	--		60	38	11
61	39	29		62	E038	E011		63	--	--		64	E01D	E014
65	--	--		66	--	--		67	--	--		68	--	--
69	--	--		70	--	--		71	--	--		72	--	--
73	--	--		74	--	--		75	E052	E070		76	E053	E071
77	--	--		78	--	--		79	E04B	E06B		80	E047	E06C
81	E04F	E069		82	--	--		83	E048	E075		84	E050	E072
85	E049	E07D		86	E051	E07A		87	--	--		88	--	--
89	E04D	E074		90	45	77		91	47	6C		92	4B	6B
93	4F	69		94	--	--		95	E035	E04A		96	48	75
97	4C	73		98	50	72		99	52	70		100	57	7C
101	49	7D		102	4D	74		103	51	7A		104	53	71
105	4A	7B		106	4E	79		107	--	--		108	E01C	E05A
109	--	--		110	01	76		111	--	--		112	3B	05
113	3C	06		114	3D	04		115	3E	0C		116	3F	03
117	40	0B		118	41	83		119	42	0A		120	43	01
121	44	09		122	57	78		123	58	07		124	*1	*2
125	46	7E		126	*3	*4		127	--	--		128	--	--
'---'-----'-----''---'-----'-----''---'-----'-----''---'-----'-----'

*1 is E02AE037
*2 is E012E07C
*3 is E11D45E19DC5
*4 is E11477E1F014F077

Chapter 6) 6502 assembly code for controlling an
AT keyboard

 6.1) About the Author
Author: Jim Rosemary
E-Mail: jsr@magpage.com

 6.2) Introduction
This code was taken from a terminal emulator that I wrote a while back. The entire program was written
in machine language and each revision was burned into an EPROM for the target system. Because of this,
I did not try to make the code too 'pretty' - I just wanted to get it running. Read at your own risk.

Also, be advised that not all keyboards work with my machine. The better of the two keyboards that I
have tried works fine, whereas the cheap one will not work at all.

It is advisable to obtain the keyboard docs from ftp.ee.ualberta.ca in the /pub/cookbook directory and read
them. Also, these texts contain similar (if not newer) information.

A 6522 is mapped at $fe30
PB0 goes to DATA
PB1 goes to CLOCK

Also, one of the control lines (CB1 or CB2, whichever corresponds to Interrupt enable $10)

No interrupt code is provided here; only the actual transfer.

$ff is used for passing data to/from the Get Byte and Write Byte routines. Reset has no parameters.

 6.4) The Code

Get Byte:

lda $fe32
and #fc
sta $fe32
jsr get_bit
ldy #$09

loop: jsr get_bit
ror $ff
dey
bne loop
jsr get_bit
lda $ff
rts

get_bit:

lda #$02
wait_for_hi bit $fe30

bne wait_for_hi
lda $fe30
pha
lda #$02

wait_for_low bit $fe30
bne wait_for_low
pla
lsr
rts

Write Byte:

lda $fe30
and #$fc
sta $fe30
lda $fe32
ora #03
sta $fe32
ldx #$c0

wait: dex
bne wait
lda $fe32 // Write start bit
and #$fd
sta $fe32
lda #$02

wait_for_hi bit $fe30 // Wait for clock line
beq wait_for_hi

wait_for_lo bit $fe30
bne wait_for_lo

ldx #$08
lda $fe32
ldy #$01

loop lsr $ff
jsr write_bit // Write data bits
dex
bne loop
tya
lsr // Write parity
jsr write_bit
sec // Write stop bit
jsr write_bit
lda #$01

wait_lo bit $fe30 // Wait for handshake from kbd
bne wait_lo
rts

write_bit

lda $fe32
and #$fe
bcs write_one
ora #$01
iny

write_one sta $fe32
lda #$02

wait_for_lo bit $fe30
bne wait_for_lo

wait_for_hi bit $fe30
beq wait_for_hi
rts

Reset Keyboard:

lda $fe30
and #$fc
sta $fe30
lda $fe32
ora #$03
sta $fe32
ldx #$c0

wait dex
bne wait
lda $fe32
and #$fd
sta $fe32
lda #$02

wait_for_hi bit $fe30
beq wait_for_hi

wait_for_lo bit $fe30
bne wait_for_lo
ldx #$08
lda $fe32
and #$fe
sta $fe32
lda #$02

wait_for_hi1 bit $fe30
beq wait_for_hi1

wait_for_lo1 bit $fe30
bne wait_for_lo1
dex
bne wait_for_hi1
lda #$02

wait_for_hi2 bit $fe30

beq wait_for_hi2
wait_for_lo2 bit $fe30

beq wait_for_lo2
lda #$01

wait_for_lo3 bit $fe30
bne wait_for_lo3
lda #$10
sta $fe3d
rts

Please check attribution section for Author of this document! [Feedback Form] [mailto]. The most
recent version is available on the WWW server http://www.repairfaq.org/filipg/ [Copyright] [Disclaimer]

