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A more important set of instruction books will never be found by human beings. When finally
interpreted the genetic messages encoded within our DNA will provide the ultimate answers to
the chemical underpinnings of human existence.

James Watson

We consider here the design of a three-pole filter using only a single amplifier. This
would require us to solve third order equations which makes the calculation some-
what complex to carry out by hand, but the use of mathematical software pack-
ages now makes this relatively simple (Brokaw 1970: Rutschow 1998). Most active
filters of this form use unity, or very low, overall gain. This circuit is somewhat
unusual in that we have found it to be usable at very high gain; the matter of allow-
able gain will be discussed later. The circuit is shown in Fig. 5.13.1.
The general transfer function for a three-pole low-pass filter is given by:
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Fig. 5.13.1 Three-pole single amplifier low-pass filter.
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Table 5.13.1 Three-pole single amplifier filter parameter values for various
responses (after Rutschow 1998 )

Corner

attenuation
Filter type Features A, A, A, (dB)
Butterworth Maximally flat passband 2 2 1 3
Chebyshev Equal 1 dB passband ripples  2.52071 2.01164 2.03537 1

—1 dB ripple and very rapid cut-off
—3 dB ripple Equal 3 dB passband ripples 3.70466 2.38334 3.99058 3
and very rapid cut-off

Optimal (Papoulis) Rapid cut-off and monotonic  2.35529 2.27036 1.7331 3
in passband

Bessel (Thomson)  Approximates Gaussian 1 0.4 0.06667 0.84
response. Minimizes phase
delay distortion

Paynter Excellent time domain 3.2 4 3.2 10.4
response. Minimal overshoot

The gain can be normalized to unity by dividing through by 4. A difficulty in
determining the relationships between the components arises because there are
only three equations for six unknowns. For a corner frequency of /=, /27 and
gain K these are:

A,=[(1-K)(R,+R)C,+ R.C,+(R,+ R, + R)C o,
A2 =[(1— K)R6R4C5C3 + Ré(R2 + R4)C1C5 +R2(R4 + Rﬁ)CICJ]a%
4,=RR,R,CC,C

K=]+& (5.13.2)
Ry

Various types of response can be obtained according to the relationships
between the A’s as shown in Table 5.13.1 (the A values are normalized to 4,=1;
Kuo 1966). To find appropriate values it is necessary to select three and then to seek
the best values for the other three. This can be carried out with the aid of Mathcad
using the Given and Find commands, with the capacitors as variables, setting say
the three resistor values (set them to the same value to start: as in most circum-
stances 1n electronics, if in doubt use 10 k! — as with the three bears, it is not too
big, it is not too small and may be just right) and choosing the appropriate values
of the A’s for the desired filter type. Some nominal capacitor values also need to
be entered to provide a starting point for the search. This gives the calculated
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capacitor values. The nearest standard values for the capacitors are then set and
the resistor values determined instead in the same way. The nearest standard values
are then used. To show the frequency response the circuit is transferred to PSpice
to see if it is acceptable. It should be noted that, as with all circuits in which posi-
tive and negative feedback are counterbalanced, the response is somewhat sensi-
tive to gain K. It is difficult to provide an expression for the limit since all the
components themselves depend on the value of K chosen. Mathematically, the sim-
plest transfer function of the filter is obtained when all the R’s and all the C’s are
equal. Equation (5.13.1) then becomes:

v

ol ]'

V,, RCs+RCY5—K)2+2RC(3—K)s+1’

for A4,=1 (5.13.3)

and we may examine the stability using the Routh rules given in Section 1.12. The
values of the three variables are (dividing through by the coefficient of s%):

(5-K) 2(3-K) 1
RC ° rRC? ° T RC

(5.13.4)

so K'must be less than 3 otherwise 8 will change sign and by Rule 1 the system will
be unstable. If K<3 so that the first part of Rule 3 is fulfilled, then applying the
second part for the limit of equality:

23-K) 1 RC
RC* RC(5-K) (5.13.5)
or 2K2—16K+29=0 so K=5225 or 2.775

gives

_Y
B_af

using the standard formula for quadratics (Section 1.10). The higher value has
already been eliminated and thus the maximum value for K is 2.775 rather than 3.
This can now be examined using PSpice. The frequency response will show a large
peak around the corner frequency and a transient run, using a short pulse input to
nudge the system, will show oscillations. It is found that the K limit is accurate; a
gain of 2.8 gives growing oscillations, while a gain of 2.75 gives decaying oscilla-
tion. A gain of 2.775 gives effectively constant oscillation. It is instructive to apply
the T technique (Section 5.14) by applying a voltage generator at the (+) input of
the amplifier (this will mean that the open-loop response will follow T ). If you
examine the loop gain at zero phase shift you will find it very close to unity. You
should also note the change of phase of the signal at (+).

This limit of K=3 is not as restrictive as it appears. The result arises from the
arbitrary choice of the components without consideration of the resulting
response, but it at least reminds us that the system is capable of oscillation. The
Butterworth configuration has been investigated as a function of K up to 1000. It
is possible to achieve stability even at this very high gain but the system is now very
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sensitive to the value of C, and the frequency response is considerably rounded
(suitable values to try fora LM 6142 amplifier with 1 kHzcut-offare: R,=R, =R, =
10 k, C,=1189n, C;=235p, C;=101.5n with the feedback resistors 9.99 k and
10R). Increasing C, to 240 p results in oscillation while reduction to 200 p gives
better transient response. What has not been allowed for in the design equations is
the amplifier open-loop response which will become more significant as gain or
cut-off frequency increases. It is somewhat astonishing that such high gains are fea-
sible but you need to investigate the performance carefully. In carrying out the cal-
culations it is probably best to start with low gain and increase the gain in limited
steps, feeding back the new values as better approximations for the next step to
avoid convergence failure.

As an example Fig. 5.13.2(a) shows the Butterworth frequency response for a
gain of one hundred and a design corner of 1 kHz for two values of C,. The input
signal was 1 mV.

The cursors (set two decades apart) indicate a slope of about 60 dB/dec as
expected for a third order response. If the frequency response appears satisfactory
then the system should also be tested with a pulse input to examine the transient
response. Figure 5.13.2(b) shows the response for a 1 mV, 10 ps risetime pulse with
the same two values of C,; the decrease in overshoot is at the expense of risetime.
For better pulse response the Paynter configuration gives a fast risetime with only
a small overshoot. Increasing C| will remove the overshoot at the expense of
increased risetime. Even if the gain is low it is as well to use an amplifier with a
good gain—bandwidth product so that the amplifier roll-off does not significantly
affect the response.

For intermediate response between Butterworth and Bessel (Thomson) refer-
ence may be made to Al-Nasser (1972), Melsheimer (1967) or Van Valkenburg
(1982). These provide pole locations for variation between Butterworth (m=0) and
Thomson (m=1) but some sums are required to derive the equivalent A4
coefficients. If the real pole is |a| and the complex poles are |b = je| (i.e. ignore the
minus signs in the tables), then the denominator polynomial is given by:

s+ 5% a+2b) +s(2ab + b+ ) + a(b? + )

1 _ (a+2b) _@abt¥td) o

A S a T 5nd 3 9 ] 9 E)
AT+ T aprte) T at ) L

The references also give some advice on the GB product required for the amplifier.
Papoulis (1958) deals with the optimal filter.
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Fig. 5.13.2 (a) Frequency response of circuit of Fig. 5.13.1 with values as shown. () Transient
response for the circuit (the outputs have been offset for clarity).
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SPICE simulation circuits

Fig. 5.13.2(a) 3psalpf5.SCH Equal R’ and equal C’s
Fig. 5.13.2(a) 3psalpf7.SCH Gain= 100, values as 5.13.1
Fig. 5.13.2(6) 3psalpf6.SCH Gain= 100, pulse response
Paynter response 3psalpfd.SCH
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