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Clock jitter analyzed in the time  
domain, Part 1

Introduction
Newer high-speed ADCs come outfitted 
with	a	large	analog-input	bandwidth	(about	
three to six times the maximum sampling 
frequency)	so	they	can	be	used	in	under-
sampling applications. Recent advances in 
ADC design extend the usable input range 
significantly so that system designers can 
eliminate at least one interme diate fre-
quency stage, which reduces cost and power 
consumption. In the design of an undersam-
pling receiver, special atten tion has to be 
given to the sampling clock, because at 
higher input frequencies the jitter of the 
clock becomes a dominant factor in limiting 
the	signal-to-noise	ratio	(SNR).

Part 1 of this three-part article series 
focuses on how to accurately estimate jitter 
from a clock source and combine it with the 
aperture jitter of the ADC. In Part 2, that 
combined jitter will be used to calculate the 
ADC’s SNR, which will then be compared 
against actual measurements. Part 3 will 
show how to further increase the SNR of the ADC by 
improving the ADC’s aperture jitter, with a focus on opti-
mizing the slew rate of the clock signal.

Review of the sampling process
According to the Nyquist-Shannon sampling theorem, the 
original input signal can be fully reconstructed if it is sam-
pled at a rate that is at least two times its maximum fre-
quency.	Assuming	that	an	input	signal	of	up	to	10	MHz	is	
sampled	at	100	MSPS,	it	doesn’t	matter	whether	the	signal	
is	located	in	the	baseband	(the	first	Nyquist	zone)	at	0	to	
10	MHz	or	undersampled	in	a	higher	Nyquist	zone	at	100	
to	110	MHz	(see	Figure	1).	(Sampling	in	a	higher	[second,	
third, etc.] Nyquist zone is commonly referred to as under-
sampling	or	subsampling.)	However,	proper	anti-aliasing	
filtering is required in front of the ADC to sample the 
desired Nyquist zone and to avoid confusion when the 
original signal is being reconstructed.

Jitter in the time domain
Looking closely at one sampling point reveals how timing 
uncertainty	(clock	jitter	or	clock	phase	noise)	creates	
amplitude variation. As the input frequency increases due 
to	undersampling	in	a	higher	Nyquist	zone	(e.g.,	from	 
f1	=	10	MHz	to	f2	=	110	MHz),	a	fixed	amount	of	clock	jitter	
generates	a	larger	amount	of	amplitude	deviation	(noise)	
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Figure 1. Two input signals sampled at 100 MSPS show the 
same sample points due to aliasing

from the ideal sample point. Furthermore, Figure 2 sug-
gests that the slew rate of the clock signal itself has an 
impact on variations in the sampling instant. The slew rate 
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Figure 2. Clock jitter creates more amplitude 
error with faster input signals
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determines how fast the clock signal passes through the 
zero crossing point. In other words, the slew rate directly 
impacts the trigger threshold of the clock circuitry inside 
the ADC.

If there is a fixed amount of thermal noise on the internal 
clock buffer of the ADC, then the slew rate gets converted 
into timing uncertainty as well, which degrades the inher-
ent aperture jitter of the ADC. As can be seen in Figure 3, 
the aperture jitter is completely independent of the clock 
jitter	(phase	noise),	but	those	two	jitter	components	 
combine at the sampling instant. Figure 3 also shows that 
the aperture jitter increases as the slew rate decreases. 
The slew rate is usually directly dependent on the clock 
amplitude.

SNR degradation caused by clock jitter
There are several factors that limit the SNR of the ADC, 
such	as	quantization	noise	(typically	not	noticeable	in	
pipeline	converters),	thermal	noise	(which	limits	the	SNR	
at	low	input	frequencies),	and	clock	jitter	(SNRJitter)	(see	
Equation	1	below).	The	SNRJitter component, which is lim-
ited by the input frequency, fIN	(depending	on	the	Nyquist	
zone),	and	by	the	total	amount	of	clock	jitter,	tJitter, can be 
calculated as

Jitter IN JitterSNR 	 dBc 	= 20 log(2 f t ).− × π× ×    (2)

As expected, with a fixed amount of clock jitter, the SNR 
degrades as the input frequency increases. This is illus-
trated in Figure 4, which shows the SNR 
of a 14-bit pipeline converter with a fixed 
clock jitter of 400 fs. If the input fre-
quency increases by one decade, such as 
from	10	MHz	to	100	MHz,	the	maximum	
achievable SNR due to clock jitter is 
reduced by 20 dB.

As already mentioned, another major 
factor that limits the ADC’s SNR is the 
ADC’s thermal noise, which doesn’t 
change with input frequency. A 14-bit 
pipeline converter typically has a thermal 
noise of ~70 to 74 dB, also shown in 
Figure 4. The ADC’s thermal noise, which 
can be found in the data sheet, is equiva-
lent to the SNR at the lowest specified 
input	frequency	(10	MHz	in	this	exam-
ple),	where	clock	jitter	is	not	yet	a	factor.

Let’s analyze the 14-bit ADC with a 
thermal noise of ~73 dB and a clock cir-
cuitry with 400 fs of jitter. At low input 
frequencies	such	as	10	MHz,	the	SNR	of	
this ADC is pretty much defined by its 
thermal noise. As the input frequency 
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Figure 3. Clock jitter and ADC aperture jitter 
combine at sampling instant

increases, the 400-fs clock jitter gets more and more domi-
nant	until	it	completely	takes	over	at	~300	MHz.	Even	
though the SNR due to clock jitter at an input frequency 
of	100	MHz	is	reduced	by	20	dB	per	decade	compared	to	
the	SNR	at	10	MHz,	the	total	SNR	is	degraded	by	only	

 

Thermal Noise JitterQuantization Noise
2 2 2SNR SNRSNR

20 20 20
ADCSNR  dBc  = 20 log 10 10 10

− − −     
     − × + +         (1)
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~3.5	dB	(down	to	69.5	dB)	because	of	the	73-dB	thermal	
noise	(see	Figure	5):

JitterSNR 20 log(2 100 MHz 400 fs) 72 dBc= − × π× × =

2 273 dBc 72 dBc
20 20

ADCSNR 20 log 10 10 69.5 dBc
− −      = − × + =   

Now it becomes obvious that if the ADC’s thermal noise 
increases, the clock jitter will become very important 
when	higher	input	frequencies	are	sampled.	A	16-bit	ADC,	
for example, has a thermal noise floor of ~77 to 80 dB. 
According to the curves in Figure 4, in order to minimize 
the effect of clock jitter on SNR at an input frequency 
of	100	MHz,	the	clock	jitter	needs	to	be	on	the	order	of	
150 fs or better.

Determining the sample clock jitter
As demonstrated earlier, the sample clock jitter con-
sists	of	the	timing	uncertainty	(phase	noise)	of	the	
clock as well as the aperture jitter of the ADC. Those 
two components combine as follows:

2 2
Jitter Jitter,Clock _ Input Aperture _ ADCt (t ) (t )= +  (3)

The aperture jitter of the ADC can be found in the data 
sheet. It is important to remember that this value is 
typically specified in combination with either clock 
amplitude or slew rate. Lower clock amplitudes result 
in slower slew rates and increase the aperture jitter 
accordingly.

Jitter from the clock input
The	output	jitter	of	devices	in	the	clocking	chain	(oscil-
lator,	clock	buffer,	or	PLL)	is	typically	specified	over	a	
frequency range that is offset from the fundamental 

clock	frequency	by	10	kHz	to	20	MHz—either	in	picosec-
onds or as a phase-noise plot, which can be integrated to 
obtain the jitter information. However, 10 kHz on the low 
end	and	20	MHz	on	the	high	end	are	sometimes	not	the	
right boundaries to use, as they are highly dependent 
upon other system parameters, as will be explained later. 
The importance of setting the right integration limits is 
illustrated	in	Figure	6,	where	a	phase-noise	plot	is	overlaid	
with its jitter content per decade. It can be seen that the 
resulting jitter can be quite different if the lower limit is 
set to a 100-Hz or 10-kHz offset. Likewise, setting the 
upper	integration	limit	to	10	or	20	MHz	yields	a	drastically	
different	result	than	setting	it	to	100	MHz,	for	example.

100

90

80

70

60

50
100010010

f (MHz)IN

SN
R

( d
B

c)

Resulting ADC SNR

SNR for t = 400 fsJitter Jitter
14-Bit ADC

Thermal Noise
~~ 73 dBc

Figure 5. Resulting ADC SNR is limited by thermal noise 
and clock jitter
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Determining the proper lower integration limit
In the sampling process, the input signal gets mixed with 
the sampling clock’s signal, including its phase noise. When 
an FFT analysis of the input signal is performed, the pri-
mary FFT bin is centered over the input signal. The phase 
noise	around	the	sampled	signal	(either	from	the	clock	or	
the	input	signal)	determines	the	amplitude	of	the	bins	
adjacent to the primary bin, as illustrated in Figure 7. 
Therefore, all the phase noise with an offset frequency of 
less than half the bin size gets lumped into the bin of the 
input signal and doesn’t add to the noise. Hence, the lower 
limit of the phase-noise integration bandwidth should be 
set to half the FFT bin size. The FFT bin size is calculated 
as follows:

Sampling Rate
Bin Size

FFT Size
=

To further illustrate this point, an experiment using the 
ADS54RF63	was	set	up	with	two	different	FFT	sizes—
131,072	and	1,048,576	points.	The	sampling	rate	was	set	
to	122.88	MSPS,	and	the	clock	phase	noise	is	shown	in	
Figure	8.	A	6-MHz,	wide-bandpass	filter	was	added	to	the	
clock input to limit the amount of wideband noise contrib-
uted to the jitter. A 1-GHz input signal was chosen to 
ensure that the SNR degradation was due solely to clock 
jitter. Figure 8 shows that the jitter results of the phase-
noise	integration	from	half	a	bin	size	to	40	MHz	are	drasti-
cally different for the two FFT sizes, and the SNR mea sure-
 ments in Table 1 reflect that as well.

Setting the proper upper integration limit
The	phase-noise	plot	in	Figure	6	had	a	jitter	contribution	of	
~360	fs	with	the	frequency	offset	between	10	and	100	MHz.	
This	is	far	more	than	the	entire	jitter	contribution	of	~194	fs	
with	the	offset	between	100	Hz	and	10	MHz.	Therefore,	
the chosen upper integration limit can drastically affect 
the calculated clock jitter and how well the predicted 
SNR will match the actual measurement.

To determine the right limit, one has to remember 
something very important from the sampling process: 
Noise and spurs on the clock signal alias in-band from 
other Nyquist zones just like they would if they were 
present	on	the	input	signal	(see	Reference	1).	Hence,	 
if the phase noise of the clock input is not band-limited 
and doesn’t have a rolloff at a higher frequency, then the 
upper integration limit is set by the bandwidth of the 
transformer	(if	used)	and	the	clock	input	of	the	ADC	
itself. In some cases the clock input bandwidth can be 
very	large;	for	example,	the	ADS54RF63	has	a	clock	
input bandwidth of ~2 GHz to allow higher-order  
harmonics for very fast clock slew rates.

To verify that the clock phase noise needs to be 
integra ted all the way up to the clock input bandwidth, 
another	experiment	was	set	up.	The	ADS54RF63	was	
again	oper	ated	at	122.88	MSPS	with	an	input	signal	of	 
1 GHz to ensure that the SNR jitter was limited. Broad-
band	white	noise	of	50	MHz	to	1	GHz	was	generated	with	

Table 1. SNR measurements for two FFT sizes

FFT SIZE
(POINTS)

½ BIN SIZE
(Hz)

SNR AT 1 GHz
(dBFS)

131,072 469 60 .4

1,048,576 59 51 .9

fBin

½ fBin

Phase Noise
Signature from
Clock Signal

Input Signal

Figure 7. Close-in phase noise determines 
amplitude of FFT bins around primary bin
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an RF ampli fier and added to the sampling 
clock	as	shown	in	Figure	9.	Then	different	
low-pass	filters	(LPFs)	were	used	to	limit	
the amount of noise being added to the 
clock signal.

The clock input bandwidth of the 
ADS54RF63	is	~2	GHz,	but	since	the	RF	
amplifier and the transformer both have a 
3-dB bandwidth of ~1 GHz, the effective 
3-dB clock input bandwidth is reduced to 
~500	MHz.	The	measured	SNR	results	in	
Table 2 confirm that for this setup the 
clock input bandwidth indeed is around 
500	MHz.	A	comparison	of	the	FFT	plots	in	
Figure 10 further confirms how the wide-
band noise from the RF amplifier limits the 
noise floor and degrades the SNR.

This experiment showed that the phase 
noise of the clock needs to be either very 
low or band-limited, ideally through a tight 
bandpass	filter.	Otherwise	the	upper	inte-
gration limit, set by the clock bandwidth  
of the system, can degrade the ADC’s  
SNR substantially.

Conclusion
This article has shown how to accurately estimate the 
sampling-clock jitter and determine the proper upper and 
lower integration boundaries. Part 2 will show how to use 
this estimation to derive the ADC’s SNR and how this 
result compares against actual measurements.

Table 2. SNR measurements for setup in Figure 9

SETUP SNR (dBFS)

No filter 39 .9

300-MHz LPF 43 .6

100-MHz LPF 49 .4

1-MHz LPF 57 .7

50 

122.88 MHzSignal
Generator

Power
Combiner

Coupler
0.5 to 1000 MHz

Low-Pass
Filter
(LPF)

RF Amp
50 to 1000 MHz
Gain = 30 dB ADS54RF63f = 1 GHzIN

Data
Out

Figure 9. Test setup to verify clock input noise
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