SBRF2060CT - SBRF20200CT ### Isolation 20.0 AMPS. Schottky Barrier Rectifiers **ITO-220AB** ### **Features** - Plastic material used carries Underwriters Laboratory Classifications 94V-0 - Metal silicon junction, majority carrier conduction - Low power loss, high efficiency - High current capability, low forward voltage drop - High surge capability - For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications - Guardring for overvoltage protection - High temperature soldering guaranteed: 260°C/10 seconds,0.25"(6.35mm)from case # Mechanical Data - Cases: ITO-220AB molded plastic - Terminals: Leads solderable per MIL-STD-750, Method 2026 Polarity: As marked **♦** - Mounting position: Any - Mounting torque: 5 in. lbs. max Weight: 0.08 ounce, 2.24 grams Dimensions in inches and (millimeters) ### **Maximum Ratings and Electrical Characteristics** Rating at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20% | Type Number | Symbol | SBRF
2060CT | SBRF
20100CT | SBRF
20150CT | SBRF
20200CT | Units | |--|-------------------|---|------------------------------|------------------------------|------------------------------|-------| | Maximum Recurrent Peak Reverse Voltage | V_{RRM} | 60 | 100 | 150 | 200 | V | | Maximum RMS Voltage | V_{RMS} | 42 | 70 | 105 | 140 | V | | Maximum DC Blocking Voltage | V_{DC} | 60 | 100 | 150 | 200 | V | | Maximum Average Forward Rectified Current at T _c =135°C Total device Per Leg | I _(AV) | 20
10 | | | | Α | | Peak Repetitive Forward Current Per leg (Rated V _R , Square Wave, 20KHz) at Tc=135°C | I _{FRM} | 20 | | | | А | | Peak Forward Surge Current, 8.3 ms Single Half
Sine-wave Superimposed on Rated Load (JEDEC
method) | I _{FSM} | 150 | | | | Α | | Peak Repetitive Reverse Surge Current (Note 1) | I_{RRM} | 0.5 | | | | Α | | $\begin{array}{ll} \text{Maximum Instantaneous Forward Voltage at} \\ \text{(Note 2)} & I_F = 10\text{A, } \text{Tc} = 25^{\circ}\text{C} \\ & I_F = 10\text{A, } \text{Tc} = 125^{\circ}\text{C} \\ & I_F = 20\text{A, } \text{Tc} = 25^{\circ}\text{C} \\ & I_F = 20\text{A, } \text{Tc} = 125^{\circ}\text{C} \\ \end{array}$ | V_{F} | 0.80
0.70
0.95
0.85 | 0.85
0.75
0.95
0.85 | 0.95
0.85
1.05
0.95 | 0.99
0.87
1.23
1.10 | V | | Maximum Instantaneous Reverse Current @ Tc=25 °C at Rated DC Blocking Voltage @ Tc=125 °C | I_R | 10 | 0.1 0.15
10 5 100 | | | mA | | Voltage Rate of Change, (Rated V _R) | dV/dt | 10 | 10,000 | | | V/uS | | Typical Thermal Resistance Per Leg (Note 3) | R _{θJC} | 3.5 | | | °C /W | | | Typical Junction Capacitance | Cj | 310 | | | | pF | | RMS Isolation Voltage (MBRF Type Only) from Terminals to Heatsink with t=1.0 Second, RH $\leq 30\%$ | V _{ISO} | 4500 (Note 4)
3500 (Note 5)
1500 (Note 6) | | | | V | | Operating Junction Temperature Range | T_J | -65 to +150 | | | | °C | | Storage Temperature Range | Tstg | -65 to +175 | | | | °C | Notes: 1. 2.0us Pulse Width, f=1.0 KHz - 2. Pulse Test: 300us Pulse Width, 1% Duty Cycle - 3. Thermal Resistance from Junction to Case Per Leg, with Heatsink Size (4"x6"x0.25") Al-Plate - 4. Clip mounting (on case), where lead does not overlap heatsink with 0.110" offset. - 5. Clip Mounting (on case), where leads do overlap heatsink. - 6. Screw Mounting with 4-40 screw, where washer diameter is \leq 4.9 mm (0.19") #### RATINGS AND CHARACTERISTIC CURVES (SBRF2060CT THRU SBRF20200CT) FIG.2- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PER LEG FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER LEG FIG.4- TYPICAL REVERSE CHARACTERISTICS FIG.5- TYPICAL JUNCTION CAPACITANCE PER LEG FIG.6- TYPICAL TRANSIENT THERMAL IMPEDANCE