AVR 8-bit GNU Toolchain: Release
3.4.0.663

The AVR 8-bit GNU Toolchain supports all AVR 8-bit devices. The AVR 8-bit
Toolchain is based on the free and open-source GCC compiler. The toolchain

includes compiler, assembler, linker and binutils (GCC and Binutils) and Standard C
library (AVRLIibC).

AIMEL

AIMEL

®

8/32-bit AVR

Microcontrollers

Release 3.4.0.663

file:/home/tools/hudson/workspace/avr8-gnu-toolchain/tmp/readme//wiki/Documentation:AVR8_GNU_Toolchain/AVR8_GCC

Installation Instructions

System Requirements
AVR 8-bit GNU Toolchain is supported under the following configurations:

Hardware requirements

e Minimum processor Pentium 4, 1GHz
¢ Minimum 512 MB RAM
e Minimum 500 MB free disk space

AVR 8-bit GNU Toolchain has not been tested on computers with less resources, but may run satisfactorily
depending on the number and size of the projects and the user's patience.

Software requirements

* Windows 2000, Windows XP, Windows Vista or Windows 7 (x86 or x86-64).

» Fedora 13 or 12 (x86 or x86-64), RedHat Enterprise Linux 4 or 5, Ubuntu Linux 10.04 or 8.04 (x86 or x86-64), or
SUSE Linux 11.2 or 11.1 (x86 or x86-64). AVR 8-bit GNU Toolchain may as well work on the other distributions.
However those would be untested and unsupported.

AVR 8-bit GNU Toolchain is not supported on Windows 98, NT or ME.

Downloading and Installing
The package comes in two forms:

» As part of a standalone installer (avr-toolchain-installer)
e As part of Atmel Studio 6 Installer

This can be downloaded from Atmel's website at http://www.atmel.com
Installing on Windows

Atmel Studio 6 installation procedure will also install AVR Toolchain. See Atmel Studio 6 release notes for more
information.

In order to install using standalone installer, the AVR Toolchain installer can be downloaded from Atmel website.
After downloading the installer, double-click the executable file to install. You may use "Custom Installation” in
order to install in a specific location.

Installing on Linux

On Linux AVR 8-bit GNU Toolchain is available as a TAR.GZ archive which can be extracted using the 'tar' utility.
In order to install, simply extract to the location where you want the toolchain to run from.

Upgrading from previous versions

If it is installed via Atmel Studio 6 it will be upgraded through the Atmel Studio 6 upgrade. See Atmel Studio 6
release notes for more details.

2 AVR 8-bit GNU
Toolchain

http://www.atmel.com

AVR 8-bit GNU
Toolchain

If you used the standalone installer on MS-Windows, you might do a clean upgrade by first un-installing the old
version or just upgrade using the latest installer.

On Linux, if you have it unpacked to a local folder, you just delete the old folder and unpack the latest version in a
new folder.

Manifest

1. AVR 8-bit GNU Binutils 2.22

» Binary utilities for AVR 8-bit target (including assembler, linker, etc.).
2. AVR 8-bit GNU Compiler Collection (avr-gcc) 4.6.2

» Clanguage and C++ language compiler for AVR 8-bit target.
3. AVRLIbC 1.8.0

» C Standard Library for AVR 8-bit

Layout
Listed below are some directories you might want to know about.

“<install_dir>" = The directory where you installed AVR 8-bit GNU Toolchain.

<install_dir>\bin

* The AVR software development programs. This directory should be in your 'PATH" environment variable.
This includes:
* GNU Binutils
+ GCC

» <install_dir>\avr\lib
» avr-libc libraries, startup files, linker scripts,and stuff.
* <install_dir>\avninclude
» avr-libc header files for AVR 8-bit.
* <install_dir>\avninclude\avr
* header files specific to the AVR 8-bit MCU. This is where, for example, #include <avr/io.h> comes from.
* <install_dir>\lib
* GCC libraries, other libraries, headers and stuff.
» <install_dir>\libexec
* GCC program components
» <install_dir>\doc
» Various documentation.
» <install_dir>\source
» Documentation on where to find the source code for the various projects and source code patches that were
used to build the tools.

Toolset Background

AVR 8-bit GNU Toolchain is a collections of executable, open source software development tools for the Atmel
AVR 8-bit series of Micro Controller Units (MCU). It includes the GNU GCC compiler for C and C++.

Compiler

The compiler is the GNU Compiler Collection, or GCC. This compiler is incredibly flexible and can be hosted on
many platforms, it can target many different processors/operating systems (back-ends), and can be configured for
multiple different languages (front-ends).

http://gcc.gnu.org/

The GCC included in AVR 8-bit GNU Toolchain is targeted for the AVR 8-bit MCUSs, and is configured to compile C,
or C++.

CAUTION: There are caveats on using C++. See the avr-libc FAQ.

Because this GCC is targeted for the AVR 8-bit MCUs, the main executable that is created is prefixed with the
target name: “avr-gcc” (with '.exe' extension on MS Windows). It is also referred to as AVR GCC.

“avr-gcc' is just a "driver" program only. The compiler itself is called “ccl.exe” for C, or "cclplus.exe’ for C++. Also,
the preprocessor “cpp.exe” will usually automatically be prepended with the target name: “avr-cpp’. The actual set
of component programs called is usually derived from the suffix of each source code file being processed.

GCC compiles a high-level computer language into assembly, and that is all. It cannot work alone. GCC is coupled
with another project, GNU Binutils, which provides the assembler, linker, librarian and more. Since GCC is just a
"driver" program, it can automatically call the assembler and linker directly to build the final program.

Assembler, Linker, Librarian and More

GNU Binutils is a collection of binary utilities. This also includes the assembler, as. Sometimes you will see it
referenced as GNU as or gas. Binutils includes the linker, Id; the librarian or archiver, ar. There are many other
programs included that provide various functionality.

Note that while the assembler uses the same mnemonics as proposed by Atmel, the "glue" (pseudo-ops, operators,
expression syntax) is derived from the common assembler syntax used in Unix assemblers, so it is not directly
compatible to Atmel assembler source files.

Binutils is configured for the AVR target and each of the programs is prefixed with the target name. So you have
programs such as:

* avr-as: The Assembler.

e avr-ld: The Linker.

e avr-ar: Create, modify, and extract from archives (libraries).
e avr-ranlib: Generate index to archive (library) contents.

e avr-objcopy: Copy and translate object files.

e avr-objdump: Display information from object files including disassembly.
» avr-size: List section sizes and total size.

e avr-nm: List symbols from object files.

e avr-strings: List printable strings from files.

e avr-strip: Discard symbols.

e avr-readelf: Display the contents of ELF format files.

e avr-addr2line: Convert addresses to file and line.

e avr-c++filt: Filter to demangle encoded C++ symbols.

See the binutils user manual for more information on what each program can do.
C Library

avr-libc is the Standard C Library for AVR 8-bit GCC. It contains many of the standard C routines, and many non-
standard routines that are specific and useful for the AVR 8-bit MCUs.

NOTE: The actual library is currently split into two main parts, libc.a and libm.a, where the latter contains
mathematical functions (everything mentioned in <math.h>, and a bit more). Thus it is a good idea to always
include the “-Im" linker option. Also, there are additional libraries which allow a customization of the printf and scanf
function families.

4 AVR 8-bit GNU
Toolchain

http://sources.redhat.com/binutils/
http://www.nongnu.org/avr-libc/

AVR 8-bit GNU
Toolchain

avr-libc also contains the most documentation on how to use (and build) the entire toolset, including code
examples. The avr-libc user manual also contains the FAQ on using the toolset.

Debugging

Atmel Studio 6 provides a debugger and also provides simulators for the parts that can be used for debugging as
well. Note that "Atmel Studio 6° is currently free to the public, but it is not Open Source.

AIMEL :

New and Noteworthy

This chapter lists new and noteworthy items for the AVR 8-bit GNU Toolchain release.

AVR 8-bit GNU Toolchain

Supported Devices

AVR 8-bit GNU Toolchain supports the following devices:

Note:- Devices which are newly supported in this release are marked with *

at 90s2313
at 90s4414
at ab272*
at a6286*
attiny2313a
attiny828*
attiny261
attiny43u
at 76c711
at mregal6u?
at rega48
at mrega88p
at 90pwn2
at regal6
at regal64p
at regal68
at regal69a

at 90s2323
at 90s4433
at a5505*

at a6289
attiny24a
attiny84
attiny26la
attiny87

at regal03
at mega32u2
at rega48a
at rega88pa
at 90pwnb
at regal6a
at regal64pa
at regal68a
at regal69pa

at regal6hvbrevb at megal6u4

at rega324a
at nrega325pa
at mrega328p
at nrega3290a
at mrega32u6
at mrega644p
at nrega6450a
at nrega6490a
at nrega64hve
at 90pwnB16

6 AVR 8-bit GNU

at mrega324p
at mrega3250
at rega329
at mrega3290p
at mrega406
at nrega644pa
at mrega6450p
at nrega6490a
at rega32hvb
at mregal6cl

at 90s2333
at 90s4434
at a5790*
attinyl3
attiny4313
attiny25
attiny46la
attiny88
at 90usb82
attinyl634
at rega48pa
at rega8515
at 90pwn8
at regal6l
at regal65s
at regal68p
at regal6hva
at mrega32
at mrega325
at mrega3250p
at mrega329p
at mrega32cl
at mrega640
at mega645p
at rega649a
at rega64a

at mrega32hvbr evb

at mrega32cl

at 90s2343
at 90s8515
at a5795*
attinyl3a
attiny4d4
attiny45
attiny861
at 86rf 401
at 90usb162
at rega8

at rega88

at rega8hva
at 90pwn81
at regal63
at regal6ba
at regal68pa
at nregal6hva2
at rega32a
at rega325a
at mrega3250pa
at mrega329pa
at mega32mil
at rega644
at mrega645
at mrega649p
at mega64cl
at 90can64
at megal6mil

attiny22
at 90c8534
at a6285*
attiny2313
attinydda
attiny85
attiny861la
at 43usb355
at rega8u2
at nrega8a
at rega88a
at 90pwri
at 90pwril6l
at regal64a
at nregal65pa
at regal69
at regal6hvb
at mrega323
at mrega325p
at nrega328
at mrega3290
at rega32u4
at rega644a
at mrega6450
at mrega6490
at mega64mil
at 90pw216
at mega32mil

Toolchain

at regal6u4
at 94k

at regal284
at rega2560
at xnmega32a4
at xnega64a3u
at xmega64b3
at xmegal28b3
at xnegal92c3

at rega32u4
nB8000

at mregal284p
at mrega2561
at xnega32a4u
at xmega64d3
at xnmega64c3
at xmegal28d3
at xnega256a3

at 90scr 100

at regal28a

at negal28rfal
at xnmegal6a4
at xmega32d4
at xnega64alu
at xnegal28a3
at xmegal28d4
at xmega256a3b

at 90usb646

at regal280

at 90canl128

at xnegal6adu
at xnmega32x1

at xnega64a4du
at xnmegal28a3u
at xnegal92a3
at xmega256a3bu

at 90usb647

at regal28l

at 90usb1287
at xmegal6d4
at xnmega64a3
at xmega64bl
at xmegal28bi
at xnegal92a3u
at xnmega256a3u

AVR 8-bit GNU
Toolchain

at xmega256d3 at xmegal28al attiny4 attiny5 attiny9
attinyl0 attiny20 at 90s1200 attinyll attinyl2
attinyl5s

Component Upgrades

Binutils upgraded to 2.22 from 2.20.1
GCC upgraded to 4.6.2 from 4.5.1
AVR-LibC upgraded to 1.8.0 from 1.7.1

Known Issues

AVR Tiny Architecture (ATTiny 4/5/9/10/20/40) support has some limitations. This is expected to be fixed soon.
Some notable known issues are:

* libgcc implementation has some known limitations

» Standard C / Math library implementation are very limited or not present

 Attribute signal has some known issues

Support for ATtiny1634 does not include clock prescaler_set() and wdt_enable() macros

Program memory beyond 128KBytes is not efficiently supported for Mega and Xmega devices

Improvements

PR 259: Support for Xmega RMW instructions lat/las/lac/xch
PR 232: Dwarf2 CFI (Call frame information) generation

Issues Fixed

PR 441: Undefined Reference to __ BV error when set_sleep_mode is called for specific devices. This is now
corrected.

PR 424: Linker error "relocation truncated to fit: R_AVR_13 PCREL against symbol XXX defined in YYYY
section in ZZZ.0" issued as wrong candidates are taken for relaxation. This issue is now fixed.

PR 419: Segmentation fault when linker relaxation is enabled. This is caused since the relocations were not
read properly (side effect of a change done for binutils PR 1d/12161). This is now fixed.

PR 206: Incomplete support in power.h for specific devices are corrected.

PR 195: The clock_prescale_set function is implemented for tiny devices.

PR 381: Calling _delay_ms() function causes the compiler to crash after showing error for ATtiny10. This is now
fixed

PR 193: Support LDS/STS 16 bit variants as per AVR8L specifications in assembler, linker and disassembler
PR 444: Support .config section for ATTiny 4/5/9/10/20/40

8

AVR 8-bit GNU
Toolchain

AVR 8-bit GNU
Toolchain

Contact Information
For support on AVR 8-bit GNU Toolchain please contact avr@atmel.com.

Users of AVR 8-bit GNU Toolchain are also welcome to discuss on the AVRFreaks website forum for AVR
Software Tools.

Disclaimer and Credits

AVR 8-bit GNU Toolchain is distributed free of charge for the purpose of developing applications for Atmel AVR
processors. Use for other purposes are not permitted; see the software license agreement for details. AVR 8-bit
GNU Toolchain comes without any warranty.

Copyright 2006-2012 Atmel Corporation. All rights reserved. ATMEL, logo and combinations thereof, Everywhere
You Are, AVR, AVR32, and others, are the registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Windows, Internet Explorer and Windows Vista are either registered trademarks or trademarks

of Microsoft Corporation in the United States and/or other countries. Linux is the registered trademark of Linus
Torvalds in the United States and other countries. Built on Eclipse is a trademark of Eclipse Foundation, Inc. Sun
and Java are registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Mozilla
and Firefox are registered trademarks of the Mozilla Foundation. Fedora is a trademark of Red Hat, Inc. SUSE is a
trademark of Novell, Inc. Other terms and product names may be the trademarks of others.

http://www.avrfreaks.net/

