

AVR1309: Using the XMEGA SPI

Features
• Introduction to SPI and the XMEGA™ SPI module
• Setup and use of the XMEGA SPI module
• Implementation of module drivers

 Polled master
 Interrupt controlled master
 Polled slave
 Interrupt controlled slave

• Code examples for interrupt controlled and polled drivers

1 Introduction
This application note describes how to set up and use the SPI module in the AVR®
XMEGA. Both interrupt controlled and polled C code drivers and examples are
included for master and slave applications.

Serial buses are more and more preferred over parallel. The wiring is simpler, and
as the efficiency of serial interfaces increases, the speed advantage of a parallel
transmission gets less important. Typical peripherals that use a serial interface are
converters (A/D and D/A), memories (RAM and EEPROM), real time clocks,
sensors and other controllers for LCD, CAN USB etc.

Figure 1-1. Basic SPI implementation

MASTER SLAVE

SCK

MOSI

SS

MISO

8-bit
Microcontrollers

Application Note

Rev. 8057A-AVR-02/08

2 AVR1309
8057A-AVR-02/08

2 The SPI bus
The Serial Peripheral Interface (SPI) is mainly used in synchronous serial
transmissions in a master/slave relationship. The master initiates and controls the
transfer, while the slave responds.

SPI is a full duplex interface, and at a low cost enabling high-speed communication
between master and slave. SPI does not have a specific higher-level protocol, which
means there is almost no overhead. The drawback is that there is no
acknowledgement and flow control, and the master doesn’t even have to be aware of
the slave’s presence.

2.1 Data and control lines
The standard SPI configuration makes use of two control and two data lines. The data
lines are MOSI (Master Out, Slave In) and MISO (Master In, Slave Out), transferring
data in each direction. The control lines are SCK (SPI Clock) and SS (Slave Select). If
SS is used, the master selects a slave device by pulling this line low, and supplies the
clock signal. Data is now transferred in both directions simultaneously, and it is up to
a higher-level protocol to define the meaning of each byte.

Figure 2-1. Master/slave interconnection

MASTER SLAVE

8 BIT SHIFT REGISTER

MSB LSB

SPI CLOCK GENERATOR

8 BIT SHIFT REGISTER

MSB LSB
MISOMISO

MOSI MOSI

SCK SCK
SHIFT

ENABLE

SS SS
GPIO

If multiple slaves exists and should be independently addressed, the master must
generate a SS signal for each slave. This is illustrated in Figure 2-2.

 AVR1309

 3

8057A-AVR-02/08

Figure 2-2. Multi slave implementation

SCK

MOSI

MISO
MASTER

SS1

SS2

SS3

SCK

MOSI
 SLAVE #1
MISO

SS

SCK

MOSI
 SLAVE #2
MISO

SS

SCK

MOSI
 SLAVE #3
MISO

SS

2.2 Modes and configuration
There is no official specification for SPI communication, making flexibility of the
devices important. Clock polarity (CPOL) and clock phase (CPHA) determines the
data setup and sampling point, and must be configured the same for devices to
communicate.

Table 2-1. SPI modes
Configuration

SPI mode
CPOL CPHA

Leading edge Trailing edge

0 0 0 Rising Sample Falling Setup

1 0 1 Rising Setup Falling Sample

2 1 0 Falling Sample Rising Setup

3 1 1 Falling Setup Rising Sample

For more information about SPI modes and configuration, please see the XMEGA
SPI data sheet.

4 AVR1309
8057A-AVR-02/08

3 The XMEGA SPI module
The XMEGA SPI module is designed for high-speed data transfers between the
XMEGA and other SPI devices. The control bits allow flexible configuration to enable
a flawless connection.

3.1 Registers
The SPI module consists of the baud rate generator, status and control logic with
supporting registers listed in Table 3-1.

Table 3-1. SPI module registers.
Register name C struct and element

SPI Control Register SPIx.CTRL

SPI Interrupt Control Register SPIx.INTCTRL

SPI Status Register SPIx.STATUS

SPI Data Register SPIx.DATA

All control bits with exception of the interrupt level bits, are located in CTRL. The two
interrupt level bits are found in INTCTRL, and the SPI interrupt and write collision
flags in STATUS.

The DATA register is a read/write register for data transfers. Reading the registers
returns the data currently in the SPI shift register, while writing will initiate a data
transmission. The system is single buffered in the transmit direction and double
buffered in the receive direction. As a result, new data must not be written to the
DATA register before the entire shift cycle is complete. To avoid losing data, a
received character must be read from DATA before the next character has been
completely shifted in.

3.2 The SS pin
In master mode the SS pin is fully configurable from software, and typically used as
one of these three options:

• Input (interrupt) from other master(s) accessing the bus

• Output SS signal to slave

• General output

If the SPI module’s SS pin is configured as input, the function is like the first option
above. This SS input function is controlled from the SPI module hardware, and the SS
pin must be held logic high to ensure master SPI operation. If pulled low by other
master(s) using the SPI bus, the SPI module will avoid bus contention by entering
slave mode and consequently not driving the SCK and MOSI lines. Entering slave
mode is signaled by setting the SPI interrupt flag, generating an interrupt if enabled.

Configuring the SS pin as output enables the two last typical options, both controlled
from software and not affecting the SPI module operation. The SS pin is no different
than any other GPIO pins when it is configured as an output.

Often, several slaves are connected to the same bus, while the application would
address one slave at a time. As illustrated in Figure 2-2, this can be done using

 AVR1309

 5

8057A-AVR-02/08

several GPIO pins, one for each slave or through some external logic reducing the
number of pins needed.

4 SPI driver
The driver included in this application note supports both polled and interrupt-
controlled SPI operation for both master and slave. The driver is intended for rapid
prototyping and to get started with the XMEGA SPI module.

4.1 Files
The SPI driver source code consists of the following files:

• spi_driver.c – driver source file
• spi_driver.h – driver header file

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

5 Code examples
Two code examples are included that show how to use the SPI drivers for interrupt-
driven and polled operation. In both examples, SPIC is used as master, while SPID
serves as slave.

5.1 Files
The SPI code examples are contained in the following files:

• spi_interrupt_example.c – Example of interrupt-driven SPI operation
• spi_polled_example.c – Example of polled SPI operation

5.2 Interrupt-driven
The interrupt-driven code example uses the SPI driver to instantiate a master and a
slave. A data packet is then initialized and sent to the slave. When data is received at
the slave, an ISR increments the data before it is put back in the data register, ready
to be shifted back to the master. The master interrupt handler will transfer the number
of bytes contained in the data packet. When the complete flag for the data packet is
set, the master verifies that it has received the correct values.

5.3 Polled
The polled code example uses the SPI driver to instantiate a master and slave. The
example is split into two sections:

First, the master sends one byte at the time to the slave, the slave increments the
byte and puts it in the shift register. The master sends a dummy byte, in order to fetch
the byte from the slave. The master then verifies that it has received the correct
value.

In the second section, a data packet is initialized and sent to the slave. The slave
does not manipulate the data, which is shifted back to the slave as new bytes are

6 AVR1309
8057A-AVR-02/08

transferred. When the whole packet is sent, the master verifies that the received
bytes match the sent bytes (except for the last byte which is not shifted back to the
master).

6 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

8057A-AVR-02/08

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 The SPI bus
	2.1 Data and control lines
	2.2 Modes and configuration

	3 The XMEGA SPI module
	3.1 Registers
	3.2 The SS pin

	4 SPI driver
	4.1 Files

	5 Code examples
	5.1 Files
	5.2 Interrupt-driven
	5.3 Polled

	6 Doxygen Documentation

