

0.9V-Step-Up White LED Driver PR4401 Requires Only One External Component

The PR4401 is a single cell step-up converter for white LEDs operating from a supply voltage of less than 0.9V. Only one external inductor is needed for operation of up to three white LEDs. This makes the PR4401 ideal for use in low-cost or small-sized applications such as LED flashlights or LCD backlighting for portable devices.

Features

- Minimum operating voltage 0.9V
- 300mA peak output current
- only one external component required
- Battery deep discharge protection

Typical Application

Applications

- Small-sized LED torches
- LCD backlighting
- LED displays

The inductance L1 can be varied between 10 and 22 μ H:

Recommendation for inductance L1

Inductance L1	For
22 µH	Maximum efficiency
10 µH	Maximum brightness

Approximate Battery Lifetime

one white LED connected, measured with single 1.5V TDK Alkaline battery

Battery	Battery Lifetime, typical L1= 22µH, LED mean current 12mA	Battery Lifetime, typical L1= 10µH, LED mean current 23mA
AA	55 h	27 h
AAA	22 h	8 h

Pin Description

PIN Name	PIN Function Description
Vcc	Supply voltage
Vout	Output voltage, LED connection
Gnd	Ground connection

Package SOT23-3 or COB on request

Absolute Maximum Ratings

Parameter		Тур	Max	Units
V _{cc}	-0.3		8	V
Peak Output Current			300	mA
Operating Temperature Range			85	°C
Storage Temperature Range	-55		150	°C
Electrostatic Discharge (ESD) Protection	2			kV

Electrical Characteristics

Vcc=1.5V, Ta = 25° C, one LED connected, unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage, min. operating min. startup max. operating			0.7 0.9 2.0		V V V
LED Mean Current measured with L1 type LQH32CN Murata	L1 = 22 μH L1 = 10 μH		12 23		mA
Switching Frequency			500		kHz
Quiescent supply current	Vcc > 950mV Vcc = 600mV Vcc = 400mV		4 50 10		mΑ μΑ μΑ
Efficiency			80		%
Vout		Vcc		16	V

Block Diagram

Oscilloscope Displays

LED voltage (CH1) and LED current (CH2, over 0.5 Ohm resistor)

Typical Characteristics

 $(Ta = 23^{\circ}C, one LED connected)$

LED Peak Current vs. Supply Voltage

Typical Applications Demo boards in chip on board technique

Board Size: 95 x 17 mm

Connecting two LEDs in Series

Connecting three LEDs in Parallel

Available Packages

PR 4401 SOT23 package (PR4401 in die form on request)

Disclaimer

Information provided by PREMA is believed to be accurate and correct. However, no responsibility is assumed by PREMA for its use, nor for any infringements of patents or other rights of third parties which may result from its use. PREMA reserves the right at any time without notice to change circuitry and specifications.

Life Support Policy

PREMA Semiconductors products are not authorized for use as critical components in life support devices or systems without the express written approval of PREMA Semiconductor. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PREMA Semiconductor GmbH

Robert-Bosch-Str. 6 55129 Mainz Germany Phone: +49-6131-5062-0 Fax: +49-6131-5062-220 Email: <u>prema@prema.com</u> Web site: www.prema.com