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MEASUREMENT AND EVALUATION OF INSTANTANEOUS REACTIVE 
POWER USING NEURAL NETWORKS 

T.W.S.Chow and Y.F.Yam 

City Polytechnic of tiong Kong, Hong Kong 

ABSTRACT - 
The e r r a t i c  disturbance caused by an electric arc furnace 

requires a f a s t  and accurate  V A r  evaluation algorithm f o r  

compensation. This paper describes the  development of a 

novel method using the  approach of Artificial Neural 

Networks (ANN) t o  evaluate the  instantaneous VAr. 

Comparing t o  the conventional methods, t h i s  neural  network 

based algorithm i s  capable of operating at a much lower 

sampling rate and delivering an accurate  and f a s t  response 

output. By hardware  implementation of t h i s  algorithm using 

neuron chips, the erratic VAr fluctuation can be 

accurately estimated f o r  compensation. 

INTRODUCTION 

The electric arc furnace hitherto s t i l l  provides the most 

efficient way of producing alloy s teels  f rom sc rap  metals. 

In the  United States alone, between 1975 and 1981, some 15 

million tons of newly installed a r c  furnace capacity 

brought t he  arc furnaces  shares  up t o  one third of the 

total  production Ill. The arc furnace,  however, i s  a 

highly non-linear plant; i t  generates  a very fluctuating 

VAr caused by the rapid, large and e r r a t i c  variations in 

furnace current  which i s  always considered as a disturbance 

t o  the  electrical-supply network. This disturbance causes 

an unacceptable level of voltage fluctuation and, as a 

consequence, causes severe light flicker t o  other  loads 

connected t o  the same supply gr id  [21. To operate  such a 

rapidly fluctuating reactive plant requires a responsive 

s t a t i c  VAr compensation system. Although the  innovation in 

power electronics technology has  enabled the development of 

high speed s t a t i c  V A r  compensators t3-51, an advancement in 

compensators alone cannot provide a complete solution f o r  

an electr ic  arc furnace compensation. A s  the controller of 

t he  compensator must be capable of evaluating the  

instantaneous V A r  f lows into the  uncompensated supply gr id  
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accurately.  Overall success depends on accurate,  and f a s t  

convergence in the  instantaneous V A r  evaluation 

algorithm 161. 

Because the  a r c  furnace has  a highly fluctuating 

character is t ic ,  t he re  has  been an interest  in predicting 

the level of a r c  furnace disturbances by using s ta t is t ical  

methods. This paper describes a novel method, which i s  

based on ar t i f ic ia l  neural networks, t o  evaluate 

instantaneous VAr. With a more accurate  and f a s t  

converging real-t ime instantaneous VAr evaluation 

algorithm, the amount of disturbance generated by the  arc 

furnace can be bet ter  controlled and suppressed. 

The f i r s t  p a r t  of t he  paper presents  a mathematical model 

t h a t  will be used in l a t e r  sections f o r  the analysis of 

conventional methods and the development of t h i s  novel 

instantaneous VAr evaluation algorithm. The second p a r t  of 

t h i s  paper briefly discusses, and compares the  limitations . 
of conventional methods used f o r  real-time instantaneous 

VAr evaluation. The third p a r t  of this  paper introduces 

the  Back-propagation ANN and describes the formation of a 

real-time instantaneous VAr evaluation method based on th i s  

approach. 

Q ". G e n e r a t o r  

S o u r c e  
I n d u c t a n c e  

PCC 
.................................................. v I 

I n d u c t  l v e  
Arc Furnace 

Figure I Single phase equivalent c i rcui t  f o r  a n  arc 

furnace 

ARC FURNACE MODEL 

An a r c  furnace mathematical model i s  f i r s t l y  established 

f o r  t he  investigation of conventional V A r  evaluation 
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methods and the la ter  development of an A N K  based 

instantaneous V A r  evaluation a1gori:hm In Fig. 1 .  a 

single phase inductive load with varying resistance fed 

through a source impedance of negligible res is tance is used 

t o  represent a typical electric a r c  furnace connected t o  

the supply grid [ 6 ] .  The e r r a t i c  fluctuation of the 

furnace resistance caused by the melting of metal s c raps  is 

modelled by R L .  The system parameters  a r e  defined as: 

v = V sin(wt) * *  

By solving the following differential equation 

d iL  i L R L  V 
- + - = sin(wt) dt  L L  LL 

" s  [ s i n ( w t - # 2 )  + sin($ -wt e-' 
i L  = 

2 1  1 
V 

+ 2 sin(wt - 6 e-A 
I 1  

Z L  I 

R L Z (  t - t i )  
A = -  

L L  

v = v - i L X s  
p c c  5 

where v is the voltage a t  the point of common coupling, 

L 1  
t is the  time a t  which the load impedance varies f rom Z 

t o  ZL2 because of the change in the a r c  furnace resis tance 

from R t o  R . Where Z L 1 ,  ZL2. 9, and # a r e  defined a s  

f 01 lows: 

P C C  

L 1  L 2  

z 
L 1  

ZL2=/ RL:+ X L 2  

Based on the above equations, Fig. 2 a r e  the simulation of 

the variation of the v and load current  i  due t o  R 

varying a t  pseudo-random in the range between 50Q t o  2502. 

and the frequency of variation ranged from 2 H z  t o  100 H z .  

P C C  

In l a t e r  sections of t h i s  paper, analysis and development 

of different  types of real-time V.4r evaluation algorithms 

will all be based on this a r c  furnace model. 

400 
I 

0 0.1 0.2 0 3 0.4 0.5 0.6 0.7 0.8 

Time (ms)  

Figure 2a Variation in a r c  furnace current  with t ime 

0 0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  

Time (ms)  

Figure 2b Variation in v with time 
P C C  

STATEMENT OF PROBLEMS 

There a r e  fou r  conventional methods commonly used fo r  t he  

evaluation of V A r  161. The instantaneous V A r  can be 

evaluated by A)  cur ren t  sampling at voltage cross  over, B) 
volt-ampere product, C) parameter  cross product .and D) r a t e  

of change of parameters .  ..Using Eqtns. (1-31, the  

performance of each V A r  evaluation algorithms will be 

discussed and compared. 

A )  

The output of this  algorithm is a quantised level 

corresponding t o  the inductive component of the load 

current  given by 

Current sampling a t  voltage Cross Over 

(4) I  x = I Lm s in(x n - 6 X + dc component 

where I zero 

cross  over, and I is the peak value of the load current .  

To minimise the  e f f ec t  of current  harmonics and t ransients ,  

the average value is used. The load VAr over M cycles is 

then proportional t o  

is  the load current  measured a t  the xth v 
P C C  

Lm 

In Fig. 3c. it shows t h a t  the output response of this  

algorithm has a noticeable delay. Although the response 

seems t o  be f a s t ,  i t  has  a significant overshoot. 

Apparently, t he  overall s tep response of this  algorithm 

cannot cope with an abrupt  change in load current  

sat isfactor i ly .  This algorithm is not suitable f o r  the 

application of a r c  furnace V A r  compensation. 
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B) 
The integral over one period of t he  product of voltage and 

a qua r t e r  of cycle delayed current  can be used t o  evaluate 

the  steady state V A r  flow. 

V A r  evaluation by volt-ampere product 

Q = - - O v p c c  ( u t )  i L [ u ( t - G ) ] d ( u t )  ( 6 )  

-T 

where T i s  t he  period of supply. This Volt-Ampere Product 

algorithm can be implemented by the  voltage and current  

samples as given by 

i - - pr 'pcc,x L,x-n/4 
n 

x = P + 1  
. QL,Pn- 

(7) 

where Q L , P n  corresponds t o  the running average of the 

volt-ampere product and n i s  the number of samples per 

cycle of supply voltage. 

The integral properties of this  algorithm has an effect  of 

reducing the bandwidth and resul ts  in attenuating higher 

order  harmonics. The output of this  algorithm shown in 

Fig. 3d i s  a closer approximation t o  the  steady state 

fundamental V A r  flowing in the  network because of t he  

reduced bandwidth. The output response of t h i s  algorithm 

i s  slightly sluggish. This may not be acceptable t o  a f a s t  

response compensation system. 

C) 
The reactive power flow in the system may also be evaluated 

by obtaining the differential cross  product of the 

alternately delayed voltage and current  parameters  as given 

VAr evaluation by parameter  cross  product 

by 

1 Q =-(P - P )  
L 2 2 1  

where 

P = v ( u t )  iL[u(t - -I_)] 
1 pcc  

( 8 )  

(9) 

(10) 

This can be represented by discrete  parameter  samples and 

implemented as follows, 

V 1 - v  i 
(11) pcc,x-n/4 L,x pcc,x L.x-n/4 

= 2 

To implement th i s  technique as a running average and hence 

reduce the  distortion due t o  isolated voltage and current  

spikes, we have 

i 
(12) pcc.x L.x-n/4 i - v  

pcc,x-n/4 L,x 
n 

P+N V 

f am aac ao6 am ai aiz ai4 ais ai8 Qz 

i I 

" (8) 

nc= 
Figure 3a & 3b - Camputer simulation of V ~ C C  and 1, 

3c - The output of algorithm A 

3d - The output of algorithm B (N=25) 
3e - The output of algorithm C (N=25) 
3f - The output of algorithm D (N=25) 

where P represents  t he  running average summation point and 

N i s  t he  number of samples representing the  summation 

period. 

Fig. 3e shows t h a t  t he  response of t h i s  algorithm converges 

much f a s t e r  than the  previous two, but i t  has  a significant 

overshoot and undershoot. 
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D) V A r  evaluation as a function of t he  r a t e  of change of 

parameters .  

The s teady s t a t e  value of VAr-flow in the electrical supply 

network’can be evaluated by the function shown below 

(13) 

where k i s  t he  desired integration interval and Q, is 

defined by 

(14) 

and Q can be simplified t o  

(15) 
1 Q = - V I  s i n 6  

L 2 m L m  

By using the  voltage and current  samples, Eqtn. (14) is  

given as 

(16) 

where T i s  t he  sampling period. 

i s  t he  running average of Q aver the  integration 
Q L p N  L . X  

period k. 

P + N  

(17) 

k = Nr 

where P represents  t he  running average summation point and 

N is the  number of samples representing the summation 

point. 

Figure 3f shows t h a t  t he  response of this  algorithm is  

capable of providing a very good balance in response time 

and damping. Because of i t s  different ia l  -property,  this  

algorithm has  a n  e f f ec t  on increasing the bandwidth and 

resul ts  in higher order  harmonics amplification. Although 

this  algorithm has the drawback of high frequency noise 

amplification, i t  can generally be compensated by the  

system low-pass f i l t e r .  

In accordance with the above analysis, algorithm D i s  

selected f o r  t he  development of an ANN based algorithm. 

From Eqtn. (17), t he  evaluated Q can be assumed as an 

instantaneous V A r  by reducing the integration interval k.  

I t  is also noticed t h a t  the evaluation accuracy is  affected 
by the  number of sampling point N. In order  t o  achieve a 

very small integration interval, k .  and a very large 

L . P N  

sampling point, N ,  a very high sampling frequency, l / ~ ,  is  

required. In la ter  section, the development of a new V A r  

evaluation algorithm, based on back-propagation neural 

networks, will be thoroughly described. With a special 

t ra ining procedure, the output of this  neural network based 

algorithm can be very close t o  the  instantaneous V A r  and is  

capable of delivering a higher accuracy without the 

requirement of operating a t  a higher sampling frequency. 

BACK-PROPAGATION NEURAL NETWORKS 

A neural network is a parallel, distributed information 

processing s t ructure  consisting ot processing elements 

known as neurons interconnected together with 

unidirectional signal channels called connections. Each 

neuron has  a single output connection t h a t  branches into as 

many collateral connections as desired. Each collateral 

connection carr ies  the same signal. The s t rength of 

connection between neurons is represented by a value called 

a weight. Each neuron can have its local memory, which 

represents  the s t a t e  of neuron. The neuron output depends 

only upon the current  values of the input signals arriving 

a t  the neuron via impinging connections and upon values 

s tored in the  neuron’s local memory. The input t o  output 

character is t ics  of each neuron a r e  described by the  

activation function and local memory of each neuron. 

Neural net models a r e  specified by the  net topology, node 

character is t ics ,  and t ra ining or learning rules. In our  

application, a neural network of a feedforward archi tecture  

was  used. This network i s  made up of s e t s  of neurons 

arranged in three or more layers. These a r e  an input 

layer, an output layer and one or more hidden layers. In 

this  network, the output of neurons in a layer a r e  

t ransmit ted to  neurons in the upper layers. A neuron of 
t he  feedforward network does not interact  with other 

‘neu rons  in the same layer. Except f o r  t he  input layer 

neurons, the net input t o  each neuron is  the sum of the  

weighted outputs of t he  neurons in the  pr ior  layer. 

Therefore, the net input t o  neuron j , i s  described by 

(18) 

w . .  i s  t he  weight of connection f rom neuron i t o  neuron j ,  

0 ,  is  the output of neuron i in t he  previous layer, (3 is  

the local memory (threshold) of neuron j .  The output of 

neuron j i s  then obtained by the  operation of a nonlinear 

function on the net input. This can be described a s  

J I  

j 

o = f ( n e t . 1  (19) 
J J 

The function f ( n e t  ) is the nonlinear activation function 

of t he  neurons, given by the  sigmoidal function: 
J 
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1 

1 + e x p ( - x )  
f (x1  = (20) 

The learning ability of neural networks is mainly due to  

i t s  capability t o  ad jus t  the  weights. Back-propagation 

training algorithm devised by Rumelhart I71 is  used t o  

modify t h e  weights of multilayer feedforward neural 

network. In our application, i t  i s  appropriate t o  consider 

back-propagation neural networks a s  a method t o  solve 

nonlinear function approximation problems. The output of a 

feedforward neural network can be considered a s  a function 

f (x ,W) of input vector x and weight matrix W. Assume a 

feedforward network is used t o  approximate a bounded 

function f ( x )  : A c R"+ Rm. In the  training stage,  

examples (x y 1, (x2 ,y2) ,  ..., ( x  .y 1, ... of the  mapping 

yk = f ( x  ) a r e  presented t o  t h e  neural network. The neural 

network can approximate the  function by adjusting i t s  

weights W so t h a t  the  error E can be reduced, where E is  

defined as 

1 '  1 k k  

E = 1 (y - &x I)', X ~ E  A (21) 2 1 i  

The weights are updated in the  gradient descent direction 

of E, i.e. 

a E  
Aw = - r) F, where w E w 

J I  J i  J I  
(221 

where Aw i s  t h e  amount of change f o r  the  weight component 

w J , ,  and t h e  positive constant n determines t h e  learning 

r a t e  of t h e  neural  network. The larger t h e  constant q is, 

t h e  f a s t e r  t h e  change in the  weights is. However, a large 

n may lead t o  oscillation in weight space. For a 

feedforward neural network with sigmoidal activation 
a E  function, the  evaluation of - has been determined 171. 

In order t o  speed up the  convergence of the  training 

process without leading t o  oscillation, Rumelhart suggested 

t o  modify t h e  training algorithm in Eqtn. (22) t o  include 

momentum te rm,  such t h a t  

J I  

aw 
J i  

(231 

where n labels the  i teration in the  learning process and a 

is  a constant which determines the  e f fec t  of past  weight 

changes on the  cur ren t  direction of movement in weight 

space. This momentum te rm provides a damping ef fec t  and 

reduces the  amount of oscillations during the  training 

process. 

INSTANTANEOUS V A r  EVALUATION VIA ANN 

The back-propagation neural network is  applied t o  model t h e  

Eqtns (16) & (17) f o r  the  evaluation of instantaneous VAr. 

OUTPUT b Y E R  

0 
HIDDEN LAYER .......... 

INPUT IAYER 

Figure 4 Back-propagation neural network f o r  VAr 

evaluation 

The learning capability of ANN is exploited to  develop a 

special training procedure such tha t  the modified algorithm 

is capable of delivering a be t te r  performance than the 

conventional approaches. 

The network topology is shown in Fig. 4. The network 

inputs a r e  m pairs of v p c c ( x )  and i L ( x ) ,  and the  output is 

the 'corresponding instantaneous V A r .  Before the  neural 

network can %e applied for  V A r  evaluation, a large number 

L , PN' of training patterns,  which include the  v p c c ,  i L  and Q 

a r e  generated using the model. The special training 

procedure is explained in Fig. 5. In this. example, 101 

pairs of v and i L  a r e  sampled from one cycle of voltage 

and cur ren t  variation. A-sampling frequency of 5000 Hz is 

required f o r  a 50 Hz line frequency. The V A r ,  Q,,,,,, is 

evaluated from these samples by the algorithm D. This 

shown in Fig. 5 is used a s  a ta rge t  value f o r  the 

P C C  

Q,, P I 0 0  
network training. Instead of using the  101 pai rs  of v 

and i samples a s  inputs t o  the  neural network, Fig. 5 

shows t h a t  only 5 pairs of v and i a r e  sub-sampled from 

the  same sample t ra in  a s  the  101 se t s  for  the  network 

inputs (i .e.  m=5). W i t h  this arrangement,  the output of 
L.Pl00 + c ,  where c is the the trained network is equal t o  Q 

network e r r o r  inherited from the training procedure. 

Throughout this investigation, th i s  network e r r o r  has 

always been kept below 2%. Apparently, a very small 

network error is preferred but its corresponding training 

t ime will be much longer. This method has two advantages. 

First ly,  the network size is much smaller because the 

number of input neuron is reduced from 202 to 10. 

Secondly, the  sampling frequency can be much lower. In 

th i s  neural network approach, the  sampling frequency is 

only 250 Hz. Although the da ta  a r e  sampled from one cycle 

in Fig.5, da ta  can be collected from a fraction of the 

cycle to  reduce the integration period k ,  so tha t  the 

evaluated result  can be closer t o  the instantaneous VAr. 

P C C  

P C C  
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Figure 5 Neural network t ra ining mechanism 

RESULTS 

Figure 4 shows a three-layer back-propagation network 

employed f o r  t h i s  application. The input layer contains 10 

neurons f o r  5 pairs  of v and iL samples. The output 

layer has  one neuron, which gives the instantaneous VAr. 

The number of neurons in the  hidden layer was chosen t o  be 

50. The learning r a t e  1) and momentum t e rm a were chosen t o  

be 0.2. I t  was  found tha t  t he  network worked well with 
this  number of hidden neurons and parameters. In this  

investigation, all simulations were carr ied out using a 

33MHz 80386 PC AT with 80387 coprocessor. 

P C C  

Each t ra ining set contains numerous patterns. Each pat tern 

consists of a QL,p,oo 

and iL samples. The t ra ining s e t  was  generated so t h a t  t he  

values of QL,P1OO were evenly distributed in the  range of 

V A r  variation. After having been trained, the network was  

applied t o  evaluate the  V A r  using inputs samples different  

f rom t h a t  f o r  training. i t  was  found t h a t  t he  network i s  

f rom any 5 sets of very capable of generating Q 

inputs. 

P C C  
and 5 pairs  of corresponding v 

L . P l O 0  

Very promising resul ts  have been obtained and are shown in 

Fig. 6. In these simulations, t he  v and iL samples f o r  

were collected in one cycle as discussed in 

the l a s t  section. Using the  algorithm D, t he  mean 

percentage e r r o r  between the evaluated V A r  based on 101 

sets and 5 sets d a t a  sub-sampled from the same 101 sets of 

current  and voltage samples was  found t o  be about 20 %. 

This i l lustrates  t h a t  five samples per cycle is 

insufficient t o  represent one cycle. After 100,000 

training iterations, the neural network i s  applied to 

evaluate VAr. The dotted line in Figure 6 represents  t he  

output of t ra ined neural network using 5 sets of d a t a  

sub-sampled from the  same sample t r a in  as the  101 sets. 

The mean percentage e r r o r  between the  output of neural 

network and the  evaluated V A r  based on 101 sets of current  

and voltage samples i s  below 2%. 

P C C  

each Q L . P l 0 0  

Conventional calculation using 101 sets of 
inputs per cycle 

Conventional calculation using 5 sets of 
inputs per cycle 

- - - - - - - 

...................... Output using neural network model and 5 
sets of inputs per cycle 

X I 0 6  
I .6 1 

0.2' I 
0 50 100 150 200 250 300 350 400 450 500 

Tmie (s) 

Figure 6 Output comparison based on samples collected in  

one cycle 

1 :i 
1 .  

' 0  100 300 400 500 600 700 800 900 

Time (s) 

Figure 7 Output comparison based on samples collected in 

114 cycle 

L,P100 
In Fig. 7, the voltage and current  samples f o r  each Q 

were collected in one-quarter of a cycle and the  neural 

network was  t ra ined with the  same number of t ra ining 

iterations. A sampling frequency of 20,000 Hz i s  required. 

With a f a s t e r  sampling frequency and the  same N, t he  

response t o  the  changing V A r  is f a s t e r .  Fig. 7 shows t h a t  



t he  t ra ined neural nktwork can deliver a n  accurate  VAr with 

sampling frequency of 1000 Hz. The mean percentage e r r o r  

between the  evaluated VAr using 101 sets and 5 sub-sampled 

sets of da t a  i s  about 2 %. The mean percentage e r r o r  

between the  output of neural network model and t h e  

evaluated VAr using 101 s e t s  of samples is  less than 2%. 

Figure 7 also shows tha t  using 5 samples t o  represent  1/4 

cycle i s  more acceptable in conventional approach. 

The effect  of t ra ining i terat ions on network performance is  

illustrated in Fig. 8. When the  number of t ra ining 

i terat ions is 5,000, Fig. Sa shows t h a t  t he  VAr generated 

from the  output neuron cannot converge t o  the i r  t a rge t  

values. In addition, a f t e r  a change in furnace resistance, 

t he  mean values of VAr do not converge t o  the t a rge t  value. 

Figure. 8 b  shows the comparison between VAr output by the 

neural network a f t e r  100.000 i terat ions and t h a t  evaluated 

by conventional approach using 101 sets of samples. The 

e r r o r  and fluctuation between the  VAr output f rom the  

neural network and the t a rge t  values i s  negligible. The 

relationship between error and number of training 

i terat ions is shown in Fig. 9. By increasing the  number of 

training iterations, i t  is possible t o  fu r the r  reduce the  

e r r o r  in the  network output. 

DISCUSSIONS 

Eqtn. (17) can only evaluate the  VAr a t  a cer ta in  instant  

a f t e r  t he  voltage and current  samples are captured. The 

evaluated VAr lags the  sampling process. By reducing the  

Conventional calculation using 101 sets of 
inputs  pe r  cycle 

.-_---I------ Output using neural  network model and  5 
sets of inputs per  cycle 

4 Y 
0 100 200 300 400 500 800 700 800 900 1000 

Time (ms) 

Figure 8a Output comparison a f t e r  t h e  network h a s  been 

t ra ined for 5,000 i terat ions 
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Conventional calculation using 101 sets of 
input pe r  cycle 

_____________Output using neural network model and 5 
sets of inputs per  cycle 

X I 0 8  

zt  F i 
0 100 200 300 400 500 600 io0  BOO 900 1000 

Time (ms) 

Figure 8 b  Output comparison after t h e  network h a s  been 

t ra ined .for 100,000 i terat ions 

0 ' .  . * ' .  ' * * I 
0 I 2  3 4 5 6 7  8 0 10 

1 1 0 4  Training Iterations 

Figure 9 Variation in error wi th  d i f f e ren t  number of 

i terat ions 

portion of each cycle taken f o r  samples, the evaluated VAr 

will approach t o  the t r u e  VAr flowing in the power supply 

network. In the  present investigation, although samples 

were only taken in one-quarter of a cycle. In pract ice  i t  

i s  possible t o  reduce the  portion of t he  cycle down t o  

1/400 cycle. In addition, t he  new algorithm can deliver 

t he  same accuracy as conventional methods with 

substantially less voltage and current  samples. Thus, t he  

evaluation system can be operated at a lower sampling rate. 

The ,long computational time required by ser ia l  computers 

can be eliminated by hardware implementation of this  

algorithm using neuron chips . Recently, t he  VLSI 

technology allows 8 neurons with 8 synapses each ( the  

number of synapses can be expanded by adding external  
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hardwares)  t o  be fabricated in a single MD1220 Neural Bit 

Slice. This neuron chip has  an equivalent processing power 

of 55 MIPS [SI. The compensation system constructed by 

these neuron chips can evaluate the  instantaneous V A r  with 

negligible processing time a f t e r  the weights obtained from 

the learning process a r e  download t o  the RAM of these 

chips. This performance can never be achieved by the  

conventional methods. 

In this  study, i t  has a lso been demonstrated tha t  the 

neural network model using only 5 s e t s  of input can deliver 

an equivalent accuracy of 101 input sets .  This suggests 

t ha t  the performance of this  algorithm can be fu r the r  

enhanced by selecting appropriate  s e t s  of input f o r  

training. The e r r o r  of t he  network output is found t o  be 

decreased by increasing the number of pat terns  in the 

training set .  In addition, Fig. 9 i l lustrates  the e r r o r  

can substantially be decreased by increasing the number of 

iterations. 

CONCLUSIONS 

By introducing back-propagation neural network f o r  

approximating the VAr evaluation function, i t  is possible 

to  estimate the instantaneous V A r  a s  accurately as tha t  

obtained by conventional methods operating at a very high 

sampling r a t e .  The methodology developed in this  paper is 

successful and resul ts  a r e  promising. The neural network 

model and training mechanism developed in this  paper a r e  

very flexible and versatile t o  provide any specified output 

requirement. Because of t he  f a s t  convergence and high 

accuracy properties of this  ANN based algorithm, the 

e r r a t i c  fluctuation of V A r  generated by an electric a r c  

furnace can be accurately estimated f o r  compensation. 
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