

Data2BRAM

Data2BRAM

is compatible with the following families:

•

Virtex-II Pro™

•

Virtex™/-II/-E

•

Spartan-II™/-E

This document describes how the Data2BRAM software tool
automates and simplifies setting the contents of BRAM cells on
Virtex™ devices. It also shows how this is used with the 32-bit CPU
on the single-chip Virtex-II Pro devices.

The chapter contains the following sections:

•

“Introduction”

•

“Feature Summary”

•

“Input and Output Files”

•

“Usage Overview”

•

“Process Overview”

•

“BMM (Block RAM Memory Mapping) File Syntax”

•

“Command Line Tool Usage”

•

“Integrated Xilinx Implementation Tool Usage”

•

“Command Line Option Reference”

April 11, 2003 Xilinx Development System

Intr oduction

Data2BRAM is fundamentally a data translation tool. It translates
contiguous blocks of data across multiple Block RAMs, that
constitute a contiguous logical address space . With the combination
of Virtex series devices, and an embedded CPU into a single chip,
Data2BRAM incorporates CPU software images into FPGA
bitstreams. This allows CPU software to be executed from Block
RAM-built memory, from within a FPGA bitstream. This presents a
powerful and flexible means of merging parts of CPU software, and
FPGA design tool flows. Lastly, Data2BRAM can also be used as a
simplified means for initializing Block RAMs for non-CPU designs.

While Data2BRAM has automated a complicated process into
significantly simplified technique, it also accomplishes the following
goals:

•

Affect existing tool flows as little as possible, for both FPGA and
CPU software designers.

•

Limit the time delay one tool flow imposes on the other for
testing changes or fixing verification problems.

•

Isolate the process to a single step or as few steps as possible.

•

Reduce or eliminate the requirement for one tool flow user (for
example, CPU software or FPGA designer) to learn the other tool
flow steps and details.

Data2BRAM is supported on the following platforms:

•

Solaris 2.8

•

Windows 2000, with SP2 or higher

•

Windows XP, and Windows XP Home

Feature Summar y

Data2BRAM provides the following features:

•

Reads a new Block RAM memory map (.bmm

)

 file that contains a
textual syntax describing arbitrary arrangements of block RAM
usage and depth. This syntax also includes CPU bus widths and
bit (byte) lane interleaving.

Data2BRAM

April 11, 2003 Xilinx Development System

•

Easily adapts to the multiple data widths available from BRAM
models.

•

Reads Executable and Linkable Format (.elf) files, or DWARF
Debugging Information Format (.drf) files (DWARF is a play on
the ELF file format name) as input for CPU software code images.
No changes are required from any third party CPU software tools
to translate CPU software code from their natural file format.

•

Reads mem format (.mem) files as arbitrary input for Block RAM
contents. This simple text format can be either hand or machine
generated.

•

Can produce formated text dumps of the contents of Bit (.bit),
Executable and Linkable Format (.elf), and DWARF Debugging
Information Format (.drf) files.

•

Produces .v (for Verilog) and .vhd (for VHDL) initialization files
for pre- and post-synthesis simulation.

•

Seamlessly integrates initialization data into post-place and route
simulations.

•

Produces Memory definition (.mem) files for Verilog simulations
with third-party memory models.

•

Can replace the contents of Block Ram memory in Bit (.bit) files
directly without intervention of any other Xilinx implementation
tool. This avoids lengthly implementation tool runs.

•

Can be invoked as a command line tool, or as an integrated part
of Xilinx implementation tool flow.

•

Recognizes all common types of text line endings (Windows,
Unix, etc.), and uses them interchangeably.

•

Allows the free-form use of “//” and “/*...*/” commenting
syntax in all text input files.

April 11, 2003 Xilinx Development System

Input and Output Files

Data2BRAM utilizes a number of input and output files. Figure 1
portrays the range of files, and their input/output relationship to
Data2BRAM. Below is a description of each file type, and how they
are consumed or produced by Data2BRAM.

Figure 1 Data2BRAM Input and Output Files

Bloc k RAM Memor y Map (.bmm) fi les

A BMM file (Block RAM Memory Map) is a simple text file that has
syntactic description of how individual Block RAMs constitute a
contiguous logical data space. This is a fundamental input file which
Data2BRAM uses to direct the translation of data into the proper
initialization form. A BMM file can becreated by hand, or with
Data2BRAM facilities to generate BMM file templates. These
templates can then be customize to a specific design. A BMM file can
also be created by automated scripting means. Since a BMM file is a
simple text file, it is directly editable. BMM files can contain free-form
use of both “//” and “/*...*/” commenting styles. See section “BMM
(Block RAM Memory Mapping) File Syntax” for format and syntax
details.

Data2BRAM

updated_file.bit file.v file.memfile.vhd

file.bmmfile.bitfile.elf file.drf file.mem

x604_05_090501

Data2BRAM

April 11, 2003 Xilinx Development System

Executab le and Linkab le Format (.elf) fi les

An .elf file (pronounced “elf”) is a binary data file that contains an
executable CPU code image, ready for running on a CPU. These files
are produced by software compiler/linker tools. Please refer to the
proper software tools documentation for the details on creating .elf
files. Data2BRAM uses .elf files as it’s basic data input form. Since .elf
files are binary data, they are not directly editable. Data2BRAM also
provides some facilities for examining the content of .elf files. See
sections “Command Line Tool Usage”, and “Integrated Xilinx
Implementation Tool Usage” for usage details.

Debugging Inf ormation Format D WARF (.drf) fi les

A .drf file (pronounced “dwarf”) is a binary data file that also
contains the executable CPU code image, plus debug information
required by symbolic source-level debuggers. These files are
produced by the same software compiler/linker tools as .elf files.
Data2BRAM will input .drf files wherever .elf files can be used. Since
.drf files are binary data, they are not directly editable. Data2BRAM
provides some facilities for examing the content of .drf files. See
sections “Command Line Tool Usage”, and “Integrated Xilinx
Implementation Tool Usage” for usage details.

Memor y (.mem) fi les

A .mem file (memory) is a simple text file that describes contiguous
blocks of data. Since a .mem file is a simple text file, it is directly
editable. Data2BRAM allows the free-form use of both “//” and “/
.../” commenting styles. Data2BRAM uses .mem files for both data
input and output.

The format of .mem files is an industry standard, and consists of two
basic elements; hex address specifier and hex data values. An address
specifier is indicated by a “@” character followed the hex address
value. There are no spaces between the “@” character and the first
hex character.

Hex data values follow the hex address value, separated by spaces,
tabs, or carriage-return characters. Data values can consist of as many
hex characters as desired. However, when a value has an odd number
of hex characters, the first hex character is assumed to be a “0”.
Therefore, hex values:

April 11, 2003 Xilinx Development System

A, C74, and 84F21

Would be interpreted as the values:

0A, 0C74, and 084F21

Note

The common “0x” hex prefix is not allowed. Using this prefix on
.mem file hex values will be flaged as a syntax error.

There must be at least one data value following an address, up to as
many data values that belong to the previous address value. The
following is an example of the most common .mem file format:

@0000 3A @0001 7B @0002 C4 @0003 56 @0004 02
@0005 6F @0006 89...

Data2BRAM requires a less redundant format in that an address
specifier is only specified once, at the beginning of a contiguous block
of data. The previous example would be rewritten as:

@0000 3A 7B C4 56 02 6F 89...

The address for each successive data value is derived from its
distance from the previous address specifier. However, the derived
addresses depends whether the file is being used as an input or
output. See the description of the differances between input and
output memory files below.

A .mem file may have as many of these contiguous data blocks as
required. There can be any size gap of address range between data
blocks; however, no two data blocks can overlap an address range.

Memor y Files as Output

Output .mem files are used primarily for Verilog simulations with
third-party memory models. Therefore, the format follows industry
standard usage on three key points.

1. All data values must be the same number of bits wide, and must
be the same width as expected by the memory model.

2. Data values reside within a larger

array

 of values, starting at zero.
An address specifier isn’t a true

address

, but rather, it is an

index
offset

from the beginning of the larger array of where the data
should begin. For example, the following .mem fragment
indicates that data starts at the 655th hex location (given that
indexes start at zero), within an array of 16 bit data values:

Data2BRAM

April 11, 2003 Xilinx Development System

@654 24B7 6DF2 D897 1FE3 922A 5CAE 67F4...

3. If an address gap exists between two contiguous blocks of data,
then the data between the gaps still logically exists, but it is just
undefined. See section “BMM (Block RAM Memory Mapping)
File Syntax” for usage of the “OUTPUT” keyword to generate
output .mem files.

Memor y Files as Input

Input .mem files have format restrictions that do not conform to the
industry standard. There are six key differences to understand.

1. White space between adjacent data values is ignored. Rather, all
of the values in a contiguous blocks of data are treated as a
continuous stream of bits. Data2BRAM breaks up the bit stream
into data values according to the width the target Block RAMs
are configured. White space between adjacent data values is used
solely for readability.

2. An address specifier must reside within an address space range
defined in a BMM file.

Note

The specifier is not specifically a CPU memory address.
Rather, the specifier is any number that matches a BMM address
space.

3. Derived addresses for successive data values depends on a
value’s byte length, despite the fact that address specifiers are not
specifically CPU memory address. A eight bit value increments
the next derived address by one, a sixteen value by two, thirty
two bit value by four, and so forth.

Note

As was stated above, odd length data values are rounded
up to an even eight bit size, with the upper four bits assumed to
be zero.

4. If an address gap exists between two contiguous blocks of data,
then the address gap is assumed to be a non-existent memory.

5. No two contiguous blocks of data can overlap an address range.

6. A contiguous block of data must fit within a single address space
range defined in a BMM file.

April 11, 2003 Xilinx Development System

Bit (.bit) fi les

A .bit file (Bit Stream) is a binary data file that contains a bit image to
be downloaded to a FPGA device. Data2BRAM can directly replace
the Block RAM data in .bit files without the intervention of any Xilinx
implementation tools. Hence, Data2BRAM both inputs and outputs
.bit files. However, Data2BRAM can only modify existing .bit files. A
.bit file is initially generated by the Xilinx implementation tools.
Please refer to Xilinx implementation tools documentation for the
details on creating .bit files. Since .bit files are binary data, they are
not directly editable. Data2BRAM also provides some facilities for
examining the content of .bit files. See section “Command Line Tool
Usage” for usage details.

Verilog (.v) fi les

A .v file (Verilog) is a simple text file Data2BRAM outputs, that
contains “defparm” records to initialize Block RAMs. This file is used
primarily for pre- and post-synthesis simulation. Since a .v file is a
simple text file, it is directly editable. However, since this file is a
generated file, editing is not advised. Data2BRAM allows the free-
form use of both “//” and “/*...*/” commenting styles. See sections
“Command Line Tool Usage” for usage details.

VHDL (.vhd) fi les

A .vhd file (VHDL) is a simple text file Data2BRAM outputs, that
contains “bit_vector” constants to initialize Block RAMs. These
constants can then be used in “generic maps” to instance an
initialized Block RAM. This file is used primarily for pre- and post-
synthesis simulation. Since a .vhd file is a simple text file, it is directly
editable. However, since this file is a generated file, editing is not
advised. Data2BRAM allows the free-form use of both “//” and “/
.../” commenting styles. See sections “Command Line Tool Usage”
for usage details.

Data2BRAM

April 11, 2003 Xilinx Development System

UCF (.ucf) fi les

A .ucf file (User Constraints File) is a simple text file Data2BRAM
outputs, that contains “INST” records to initialize Block RAMs. Since
a .ucf file is a simple text file, it is directly editable. However, since
this file is a generated file, editing is not advised. Data2BRAM allows
the free-form use of both “//” and “/*...*/” commenting styles. This
file type is supported for legacy workflows. Its use for new designs or
workflows is discouraged.

Usage Overview

Figure 2 portrays simplified tool flow views for CPU software and
FPGA design. Some minor steps are left out of the diagrams for
clarity.

On the left side of Figure 2, CPU software source code is used in the
form of high-level .c files and assembly-level

.

s files. These files are
compiled into .o link files. The .o files, with prebuilt .o libraries, are
linked together into a single executable code image. A .map file is also
used in the link process to specify absolute address space locations,
enabling the placement of executable code at specific address
locations within system memory.

The output of the link process is either an .elf or a .drf file. The .elf
contents can either be downloaded to a target directly through its
JTAG debug port, or it can be programmed into the target's boot
flash. Alternatively, the executable portion of a .drf file can be
downloaded to a target via a symbolic debugger, and the debug
portion can be used to symbolically debug the executable code image.

On the right side of Figure 2, FPGA source code is used in the form of
.v, .vhd, and .edn files. These files are either used in various styles of
hardware simulation or are synthesized into .edn intermediate files.
A .ucf (user constraints file) and the intermediate .edn file are then
run through NGDBuild, MAP and PAR to produce an .ncd file. Bitgen
then converts the .ncd file into an FPGA .bit file that can be used to
configure the FPGA. The .bit file can be either downloaded to the
FPGA directly, or programmed into the FPGA's boot configure flash.

April 11, 2003 Xilinx Development System

Figure 2 Simplifi ed SW and HW Tool Flo ws

Although simplified, Figure 2 give an accurate representation of how
the two tool flows operate within discrete-chip CPU/FPGA designs:
two separate source bases, two separate bit images, and two separate
boot mechanisms.

x604_04_080701

Source
code

Compile

Link

CPU Code
Flash

CPU
Target

Debugger
Loader

Libraries

CPU Software Tool Flow

.c

.o .o

.elf

.drf .map

Download

.s

JTAG
interface

NGDBuild

FPGA Stream
Flash

FPGA
Target

Map

Par

FPGA Tool Flow

Bitgen

Configure
download

.ngd

.ncd

.ncd

.bit

.pcf

.ucf

Existing
IP

Simulation

.v
.vhd
.edn

Source
code

JTAG
interface

PROM
Formater

.mcs

Synthesis

.edn

Data2BRAM

April 11, 2003 Xilinx Development System

When integrating a discrete-chip CPU/FPGA designs into a single
FPGA chip, the source bases can remain separated, which means the
portion of the tool flows that operate on sources can also remain
separated. However, a single FPGA chip implies a single boot image,
which must contain the merged CPU/FPGA bit images. Also, the
tight integration of CPU and FPGA requires a much closer coupling
of the FPGA simulation process. To produce combined bit images,
Data2BRAM combines the CPU/FPGA tool flow outputs, while
leaving the two flows themselves unchanged.

There are three distinct Data2BRAM tool uses.

1. For software designers that utilizes Data2BRAM as a command
line tool to generate updated a .bit files. Refer to sections
“Command Line Tool Usage” for usage details.

2. For hardware designers that integrates Data2BRAM with the
Xilinx implementation tools. Refer to sections “Integrated Xilinx
Implementation Tool Usage” for usage details.

3. Utilizing Data2BRAM as a command line tool to generate
behavioral simulation files.

Process Over view

This section provides an overview of the data flow through
Data2BRAM, and summarizes the design factors necessary when
mapping CPU software code to a BRAM implemented address
spaces.

This overview represents only a logical layout and grouping. FPGA
logic must be constructed to translate CPU address requests into
physical BRAM selection. The design of that FPGA logic is beyond
the scope of this document.

Following are the design considerations for BRAM-implemented
address spaces:

•

BRAMs come in fixed-size widths and depths, and CPU address
spaces might need to be much larger in width and depth than a
single BRAM. Hence, multiple BRAMs need to be logically
grouped together to form a single CPU address space.

•

A single CPU bus access is often multiple bytes of data wide, for
example, 32 or 64 bits (4 or 8 bytes) at a time.

April 11, 2003 Xilinx Development System

•

CPU bus accesses of multiple bytes of data might also access
multiple BRAM to obtain that data. Hence, byte-linear CPU data
must be interleaved by the bit width of each BRAM and by the
number of BRAMs in a single bus access. However, the
relationship of CPU addresses to BRAM locations must be
regular and easily calculable.

•

CPU data must be located in a BRAM-constructed memory space
relative to the CPU linear addressing scheme, not to the logical
grouping of multiple BRAMs.

•

Address space must be contiguous and whole multiples of the
CPU bus width. Bus bit (byte) lane interleaving is only allowed in
the sizes supported by Virtex BRAM port sizes. 1, 2, 4, 8, and 16
bits for Virtex and Virtex-E devices and 1, 2, 4, 8, 16, and 32 bits
for Virtex-II and Virtex-II Pro devices. Refer to Table 1 and Table
2.

•

Addressing must account for the differences in instruction and
data memory space. Since instruction space is not writable, there
are no address width restrictions. However, data space is
writable and usually requires the ability to write individual
bytes. For this reason, each bus bit (byte) lane must be
addressable.

•

The size of the memory map and the location of the individual
BRAMs affect the access time. Evaluate the access time after
implementation to verify that it meets the design specifications.

Given these considerations, refer to the diagram in Figure 3. The
diagram graphically represents a 16 Kbyte address space from CPU
address 0xFFFFC000 to 0xFFFFFFFF, constructed from the logical
grouping of thirty-two 4 Kbit BRAMs. Each BRAM is configured to
be 8 bits wide, and 512 bytes deep. CPU bus accesses are 8 BRAMs (64
bits) wide, with each column of BRAMs occupying an 8 bit wide slice
of a CPU bus access called a “Bit Lane.” Each row of 8 BRAMs in a
bus access are grouped together in a “Bus Block.” Hence, each Bus
Block is 64 bits wide and 4096 bytes in size. The entire collection of
BRAMs is grouped together into a contiguous address space called an
“Address Block.”

Note

Virtex, Virtex-E, Spartan2, and Spartan2E use 4 Kbit BRAMs.
Virtex-II and Virtex-II Pro use 16 Kbit BRAM.

Data2BRAM

April 11, 2003 Xilinx Development System

The address space, or Address Block, shown in Figure 3 consists of
four Bus Blocks. The upper right corner address is 0xFFFFC000 and
the lower left-hand corner address is 0xFFFFFFFF. Because a bus
access obtains 8 data bytes across eight BRAMs, byte-linear CPU data
must be “interleaved” by 8 bytes in the BRAMs. In this example, byte
0 goes into the first byte location of Bit Lane BRAM7; byte 1 goes into
the first byte location of Bit Lane BRAM6; and so forth, to byte 7.
However, CPU data byte 8 goes into the second byte location of Bit
Lane BRAM7; byte 9 goes into the second byte location of Bit Lane
BRAM6 and so forth, repeating until CPU data byte 15. This
interleave pattern repeats until every BRAM in the first Bus Block is
filled. This process then repeats for each successive Bus Block until
the entire memory space is filled, or the input data is exhausted.

Figure 3 Example BRAM Ad dress Space La yout

B
R

A
M

0

B
R

A
M

1

B
R

A
M

2

B
R

A
M

3

B
R

A
M

4

B
R

A
M

5

B
R

A
M

6

B
R

A
M

7

B
R

A
M

8

B
R

A
M

9

B
R

A
M

10

B
R

A
M

11

B
R

A
M

12

B
R

A
M

13

B
R

A
M

14

B
R

A
M

15

B
R

A
M

16

B
R

A
M

17

B
R

A
M

18

B
R

A
M

19

B
R

A
M

20

B
R

A
M

21

B
R

A
M

22

B
R

A
M

23

B
R

A
M

24

B
R

A
M

25

B
R

A
M

26

B
R

A
M

27

B
R

A
M

28

B
R

A
M

29

B
R

A
M

30

B
R

A
M

31

Increasing C
P

U
 m

em
ory address

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

64 bit bus accesses

0xFFFFC000

0xFFFFFFFF

B
us�

B
lock 0

B
us�

B
lock 1

B
us�

B
lock 2

B
us

B
lock 3

x604_01_080801

April 11, 2003 Xilinx Development System

Note

At first this filling order may seem counter intuitive. However,
as will be seen in section “BMM (Block RAM Memory Mapping) File
Syntax”, the order in which Bit Lanes and Bus Blocks are defined
controls the filling order. For the sake of this example, assume that Bit
Lanes are defined from left to right, and Bus Blocks are defined from
top to bottom.

This process is referred to as byte lane mapping or more accurately,
bit lane mapping

,

 because these formulas are not restricted to byte-
wide data. This is similar to the process embedded software
programmers used when programmed CPU code is placed into the
banks of fixed-size EPROM devices.

As mentioned previously, byte lane mapping is similar to a process
already used by embedded CPU software programmers. However,
byte lane mapping

BRAMs differs in some important ways as the
following describes:

•

Embedded system developers generally use a custom (for
example, in-house) software tool for byte lane mapping for a
fixed number and organization of byte-wide storage devices.
Because the number and organization of the devices cannot
change, these tools assume a specific device arrangement. Hence,
little or no configuration options are provided. By contrast, the
number and organization of FPGA BRAMs are completely “soft”
(within FPGA limits), and any tool for byte lane mapping for
BRAMs must support a vast set of device arrangements.

•

Existing byte lane mapping tools assume some kind of ascending
order of the physical addressing of byte-wide devices, because
board-level hardware is built that way. By contrast, FPGA
BRAMs have no fixed usage constraints and can be grouped
together with BRAMS anywhere within the FPGA fabric. For
clarity in these examples, Figure 3 displays BRAMs in ascending
order. However, BRAMs can be configured in any order.

•

Discreet storage devices are almost always only one or two bytes
(8 or 16 bits) wide, or rarely, 4 bits wide. Existing tools usually
assume that all storage devices have a single width. Virtex
BRAM, however, can be configured in several widths, depending
on the needs of the hardware designer, Table 1 and Table 2
specify the Virtex and Virtex-II BRAM widths.

•

Existing tools have limited configuration needs so that a simple
command line interface will suffice. BRAM usage adds more

Data2BRAM

April 11, 2003 Xilinx Development System

complexity and warrants a human-readable syntax to describe
the mapping between address spaces and BRAM utilization.

Note

Officially, Virtex-II and Virtex-II Pro parts contain 18 kbit
BRAMs; 16 Kbit of data, and 2 Kbits of parity. Data2BRAM currently
does not support the use of the parity bits and, therefore, these
BRAMs are referred to as 16 Kbit BRAMs.

Table 1 Vir tex, Vir tex-E, and Spar tan-IIe BRAM confi gurations

Component Data Depth Data Width

RAMB4_S1 4096 1
RAMB4_S2 2048 2
RAMB4_S4 1024 4
RAMB4_S8 512 8
RAMB4_S16 256 16

Table 2 Vir tex-II and Vir tex-II Pro BRAM confi gurations

Component
Data Cells

Parity Cells
Currentl y Unused

Data Depth Data Width Depth Width

RAMB16_S1 16384 1 - -

RAMB16_S2 8192 2 - -

RAMB16_S4 4096 4 - -

RAMB16_S9 2048 8 - -

RAMB16_S18 1024 16 - -

RAMB16_S36 512 32 - -

April 11, 2003 Xilinx Development System

BMM (Bloc k RAM Memor y Mapping) File Syntax

This section provides details of the syntax used in (.bmm) files.

Listing 1 shows the text-based syntax created to describe the
organization of BRAM usage in a flexible and readable form. The
address space defined by Listing 1 is the same BMM definition the
address shown graphically in Figure 3.

BMM is oriented towards human readability and is similar to high-
level computer programming languages.

•

Block structures by keywords or directives. BMM maintains
similar structures in groups or blocks of data. BMM creates
blocks to delineate address space, bus access groupings, and
comments.

•

Symbolic name usage. BMM uses names and keywords to refer to
groups or entities, improving readability and uses names to refer
to address space groupings and BRAMs.

•

In-file documentation. As with any high-level computer
language, allowing plain-text documentation embedded within
the file contents preserves knowledge and promotes
understanding. BMM files allow the free-form use of comment
blocks anywhere within the content of the file.

•

Implied algorithms. While it is easier to think of data
transpositions in data-associative terms, computers express data
transpositions in purely algorithmic terms. BMM allows the user
to specify the data transposition in semi-graphical terms, while
alleviating the need to specify the exact details of the address-to-
BRAM algorithm. The computer then infers the algorithm details
for the desired mapping.

For those with a software background, the Backus-Naur Form (BNF)
specification for BMM syntax is found in Listing 3. Please be aware of
the following important notational details:

•

Keywords are shown here in uppercase, but are actually
case-insensitive.

•

Listing 1 shows a recommended indenting style. However, this
style is for clarity only. White space is ignored except where it
delineates items or keywords.

Data2BRAM

April 11, 2003 Xilinx Development System

•

Line endings are also ignored. As many items as desired can
appear on a single line.

•

Comments can be either of two types:

1.

/*…*/

 brackets a comment block of characters, words, or lines.
This style of comments can be nested.

2.

//

 means everything to the end of the current line is treated
as a comment.

•

Numbers can be entered as decimal or hex. Hex numbers use the
“

0xXXX

” notation form.

The outermost definition of an address space is composed of the
following components:

ADDRESS_BLOCK ram_cntlr RAMB4 [start_addr:end_addr]
.
.

END_ADDRESS_BLOCK;

An

ADDRESS_BLOCK

 and

END_ADDRESS_BLOCK

 block keywords define a
single contiguous address space. The mandatory name following the

ADDRESS_BLOCK

 keyword provides a symbolic name for the entire
address space. Referring to the address space name is the same as
referring to the entire contents of Figure 3. A BMM file can contain
multiple

ADDRESS_BLOCK

 definitions, even for the same address space,
as long as the name for each

ADDRESS_BLOCK

 is unique.

Following the address space name is a keyword that defines what
type of memory device the

ADDRESS_BLOCK

 will be constructed.
Currently, there are three device types defined.

1. RAMB4

2. RAMB16

3. MEMORY

The RAMB4 keyword defines the memory device as a 4-Kbit BRAM
found in Virtex and Virtex-E parts. RAMB16 defines the memory
device as a 16-Kbit BRAM found in Virtex--II and Virtex-II Pro parts.
The correct keyword must be used for the FPGA part selected.

The “MEMORY” keyword defines the memory device as generic
memory. In this case, the size of the memory device is derived from
the address range defined by the

ADDRESS_BLOCK.

April 11, 2003 Xilinx Development System

Following the memory device type is the address range that the
Address Block occupies, by using the

[start_addr:end_addr]

 pair.
The

end_addr

 is shown following the

start_addr,

 but the actual
order is not mandated. For either order, Data2BRAM assumes that
the smaller of the two values is the

start_addr

, and the larger is the

end_addr

.

Inside an

ADDRESS_BLOCK

 definition are a variable number of sub-
block definitions called Bus Blocks. The composition of the blocks are
as follows:

BUS_BLOCK
Bit_lane_definition
Bit_lane_definition
.
.

END_BUS_BLOCK;

Each Bus Block brackets those BRAM Bit Lane definitions that are
accessed by a parallel CPU bus access. In the case of Listing 1, there
are four, which correspond to the four Bus Block rows in Figure 3.

The order in which the Bus Blocks are specified defines what part of
the address space a Bus Block occupies. The lowest addressed Bus
Block is defined at the first, and highest addressed Bus Block is
defined last. In the case of Listing 1, the first Bus Block would occupy
CPU addresses 0xFFFFC000 to 0xFFFFCFFF. This is the same as the
first row of BRAMs in Figure 3. The second Bus Block would occupy
CPU addresses 0xFFFFD000 to 0xFFFFDFFF, repersents the second
row of BRAMs in Figure 3. This pattern repeats in accending order
until the last Bus Block.

Note

The top-to-bottom order in which Bus Blocks are defined, also
controls the order in which Data2BRAM will fill them with data; top
first, up to the bottom.

A Bit Lane definition selects which bits out of a CPU bus access are
assigned to which BRAMs. Each definition takes the form of a BRAM
instance name followed by the bit numbers the Bit Lane occupies. The
instance name must be preceded by the hierarchy path of the BRAM
as used in the HDL design. The syntax is as follows:

BRAM_instance_name [MSB_bit_num:LSB_bit_num];

Data2BRAM

April 11, 2003 Xilinx Development System

Note

Normally the bit numbers are give as shown in the order above,

[MSB_bit_num:LSB_bit_num]

. If the order is reversed to have the
LSB first, and the MSB second, Data2BRAM will bit-reverse the Bit
Lane value before placing it into the BRAM.

Just as with Bus Blocks, the order in which Bit Lanes are defined is
important. But in the case of Bit Lanes, the order infers what part of
Bus Block CPU access a Bit Lane occupies. The first Bit Lane defined
is infered to be the most significant Bit Lane value, and last defined is
the least significant Bit Lane value. In the case of Figure 3. the most
significant Bit Lane is BRAM7, and least significant Bit Lane is
BRAM0. As seen in Listing 1, this corresponds with the order in
which the Bit Lanes are defined.

It is also important to understand how Data2BRAM inputs data. Data
is taken from data input files in Bit Lane sized chunks, from the most
significant value first to the least significant. If the first 64 bits of input
data was 0xB47DDE02826A8419, then the value 0xB4 would be the
first value to be set into a BRAM.

Given the Bit Lane order, BRAM7 would be set to 0xB4, BRAM6 to
0x7D, etc. This would repeat until BRAM0 was set to 0x19. This
process repeats for each successive Bus Block access BRAM set, until
the memory space is filled or the input data is exhausted. Figure 4
expands the first Bus Block of Figure 3 to graphically illustrate this
process.

Figure 4 Bit Lane Fill Or der

B
R

A
M

0

B
R

A
M

1

B
R

A
M

2

B
R

A
M

3

B
R

A
M

4

B
R

A
M

5

B
R

A
M

6

B
R

A
M

7

7:015:823:1631:2439:3247:4055:4863:56

+0
B4

+1
7D

+2
DE

+3
02

+4
82

+5
6A

+6
84

+7
19

x604_03_080801

April 11, 2003 Xilinx Development System

Note

The Bit lane definitions must match the hardware configuration.
If the BMM is defined different from the way the hardware actually
works, the data retrieved from the memory components will be
incorrect.

Bit Lane definitions also have some optional syntax, depending on
what device type keyword is used in the Address Block definition.

When specifying “RAMB4” or “RAMB16” BRAM devices, the
physical row/column location within the FPGA can be indicated. The
following are examples of the physical row/column location:

top/ram_cntlr/ram0 [7:0] LOC = R3C5;

or

top/ram_cntlr/ram0 [7:0] PLACED = R3C5;

The

LOC

 keyword is used by the designer to hard locate the
corresponding BRAM. In this case, at row 3 and column 5, within the
HDL design. The

PLACED

 keyword is used by the Xilinx
Implementation tools when creating a

back annotated

 BMM file. The
above example indicates that the Implementation tools located the
corresponding BRAM at row 3 and column 5, during BIT file
generation (see section “Integrated Xilinx Implementation Tool
Usage” for more detail on back annotated BMM files). These
definitions are inserted after the bus bit values, and the terminating
semicolon. These location constraints will also override any existing
constraints in an .ucf file.

Note

The RxCx syntax is used with the “RAMB4” keyword, for
example, Virtex and Virtex-E parts. The XxYx syntax is used with the
“RAMB16” keyword for Virtex-II and Virtex-II Pro parts.

An “OUTPUT” keyword can be used, for outputting memory device
.mem files. This takes the form of:

top/ram_cntlr/ram0 [7:0] OUTPUT = ram0.mem;

This specifier creates .mem file with the data contents of the Bit Lane
memory device. The output file name must end with the .mem file
extension and can have a full or partial file path. The resulting .mem
files can then be used as input to device memory models during a
simulation run. As can be seen in Listing 1, .mem files will be created
for all of the BRAMs in the second Bus Block.

Data2BRAM

April 11, 2003 Xilinx Development System

Beyond the syntax of Bit Lane and Bus Block definitions, several
constraints must also be observed:

•

While the examples in this document use only byte wide for
clarity, the same principles apply to whatever data width a
BRAM is configured for.

•

There cannot be any gaps or overlaps in Bit Lane numbering, and
all Bit Lanes in an Address Block must be the same number of
bits wide.

•

The Bit Lane widths are valid for the memory device specified by
the device type keyword.

•

The amount of byte storage occupied by the Bit Lane BRAMs in a
Bus Block must equal the range of addresses infered by a Bus
Block’s start and end addresses.

•

All Bus Blocks must be the same number of bytes in size.

•

A BRAM instance name can only be specified once.

•

A Bus Block must contain one or more valid Bit Lane definitions.

•

An Address Block must contain one or more valid Bus Block
definitions.

Data2BRAM checks for all of these conditions and emits an error
message if a violation is detected.

Command Line Tool Usa ge

Command line functionality falls into several categories. The
following sections descibes those categories, and shows typical uses.

Bloc k RAM Memor y Map File Syntax Chec king

The -bm option allows a desiger to syntax check a BMM file. It is
invoked as:

data2bram -bm my.bmm

Data2BRAM would parse the BMM file “my.bmm” and report any
errors or warnings. If no output is given, the BMM file is correct. Only
the BMM syntax is checked for correctness. It is still up to the
designer to ensure that the BMM file matches the logic design.

April 11, 2003 Xilinx Development System

Data File Translation or Con version

In combination with the -bm option, the -bd and -o options are used
to transform ELF or MEM data files into a different format.
Principally, data files are converted into BRAM initialization files for
Verilog and VHDL, or UCF BRAM initialization records. A
conversion to all three formats would be invoked as:

data2bram -bm my.bmm -bd code.elf -o uvh output

This would yeild the files “output.v”, “output.vhd”, and
“output.ucf”. While only one data file is shown here, as many “-bd
datafile” pairs can be given as needed. These files can then be
incorporated directly in the design source file set, or can be used in
simulation environments.

Another conversion is a variation of dumping the contents of ELF
files. Using “dump” in this way effectively converts ELF files to MEM
files. This would be invoked as:

data2bram -bd code.elf -d -o m code.mem

The file “code.mem” would contain a text based version of the
contents of the binary ELF file. This is useful for making patches to
ELF files, for which the source is no longer available.

Lastly, ELF or MEM data files can be translated into device
initialization MEM files. The linear data in the input data files, is
converted to an initialization MEM for the device that occupies a
BitLane. This is true for both BRAM and external memory devices.
With a command line invoked as:

data2bram -bm my.bmm -bd code.elf -o m output

and a BitLane appeared as:

top/ram_cntlr/ram0 [7:0] OUTPUT = ram0.mem;

the MEM file “ram0.mem” would be produced that contained the
initialization data for only the device “top/ram_cnlr/ram0”. This
functionality is used primarily for simulation environments with
external memory devices in the design.

Note

The output file name “output”, while required, is ignored.
Instead, the output file name is controlled by the “OUTPUT”
directive in the BitLane definition.

Data2BRAM

April 11, 2003 Xilinx Development System

Data File Translation With Tag Name Filtering

Data file translation can be further controlled with tag, or Address
Block name, filtering. By listing a set of Address Block names with
each -bd option, data translation will be confined to only those that
set of Adress Blocks. A -bm option might be modified as:

-bd code.elf tag mem1 mem2

In this way, data translation will only take place to the Address
Blocks “mem1” and “mem2”; even if data in “code.elf” matches
another Address Block. This allows the designer to

steer

 differnet data
contents to Address Blocks that may have the same address range.
Alternatively, this facility allows data translation to be restricted to a
portion of the design, leaving the rest of the design untouched.

Note

Using tag name filtering implicitly invokes the -i option to turn
off address space mismatch errors. See the -i option for more
information.

BIT File Bloc k RAM Replacement

The Data2BRAM provides the facility to iterate new BRAM data into
a BIT file without the need to rerun the Xilinx implementation tools.
In conjunction with new ELF and a BMM file, Data2BRAM updates
the BRAM initialization in a BIT file image, and and outputs a new
BIT file. Additionally, tag filtering can be include. This facility would
be invoked as:

data2bram -bm my.bmm -bd code.elf -bt my.bit -o b new.bit

This would produce a new BIT file called “new.bit”, with the proper
BRAM contents replaced with the contents of “code.elf”.

Note

For proper operation, the BMM file

must

 have “LOC” or
“PLACED” constraints for each BRAM. These constraints can be
added by hand, but is most often obtained as a annotated BMM file
from Bitgen. See the “Integrated Xilinx Implementation Tool Usage”
section for more infomation.

The process yeilds a new BIT file significantly faster than rerunning
the implementation tools (from 100 to 1000 times). This facility is
meant primarily as a means to include new CPU software code into a
design when the logic portion of the design isn’t changing. Most
othen this will be used by a software developer that no access (nor
understanding) of the Xilinx implementation tools.

April 11, 2003 Xilinx Development System

Examining BIT and ELF File Contents

Data2BRAM provides the ability to examine, or

dump

, the contents of
ELF and BIT data files. The dump content isin a text hex format that is
pertinent to the input data file, and is printed to the console. Also, the
-d option has two optional parameters “e” and “r” that changes some
input data file dependent information is displayed.

ElF dumps are invoked as:

data2bram -bd code.elf -d

This dump will show the contents of each section within the ELF file.
Using the “e” option will diplay additional information about each
section. Using the “r” option will include some redundant ELF
header information.

Note

ELF files contain much more data than what is used for
Data2BRAM data translation (symbols, debug, etc.). Only those
sections labeled “Program header record” are considered by
Data2BRAM for data translation.

BIT dumps are invoked as:

data2bram -bm my.bmm -bt my.bit -d

Each bit stream command is decoded and displayed. Those
commands that contain bit field flags will have each bit field
described. Commands that contain non-BRAM data chunks will be
displayed as plain hex dumps. Since BRAM data is encoded within
bit streams, Data2BRAM will display BRAM data as decoded hex
dumps.

These dumps are used primarily for debugging purposes. However,
they are also useful for comparing binary ELF and BIT files with
simple, and human friendly, text tools.

Miscellaneous Functionality

Data2BRAM has twoo other options to control it’s behavior.

The -i option will tell Data2BRAM to ignore any data in an ELF or
MEM file that is outside of any Address Block within the BMM file.
This allows data files to be used that have much more data in them
the BMM file knows about. For example, a master design code file, of
which only a small portion is destined for BRAM memories.

Data2BRAM

April 11, 2003 Xilinx Development System

The -u option will force Data2BRAM to output text output files for all
Address Spaces, even if no data was transformed into an Address
Space. Depending on file type, an output file will be either empty, or
will contain initializations of all zero. If this option is not used, only
Address Spaces that receive transformed data will be output.

Integrated Xilinx Implementation Tool Usa ge

This section describes how Data2BRAM functionality is integrated
into the Xilinx Implementation Tool Flow. This flow allows the
hardware designer to associate Block RAM with a BMM file directly
from within Xilinx Implementation Tools. Access to Data2BRAM
functionality is done by utilizing a sub-set of Data2BRAM options in
NGDBuild, BitGen, NGDAnno, and FPGA Editor. Figure 5 illustrates
the software flow and the file dependencies. The following sections
describe each option and its effect in the software flow.

April 11, 2003 Xilinx Development System

Figure 5 Integrated Data2BRAM and Implementation Tool Flo w

Source
code

Compile

Link

CPU Code
Flash

CPU
Target

Debugger
Loader

Libraries

CPU Software Tool Flow

.c

.o .o

.elf

.drf .map

Download

.s

JTAG
interface

FPGA Stream
Flash

FPGA
Target

Map

Par

FPGA Tool Flow

Bitgen

Configure
download

.ncd

.ncd

.bit

.pcf

.ucf

JTAG
interface

PROM
Formater

.mcs

.bmm

.elf

NGDBuild

.ngd

Existing
IP

Simulation

.v
.vhd
.edn

Source
code

Synthesis

.edn

x604_02_080701

Data2BRAM

April 11, 2003 Xilinx Development System

NGDBuild Usa ge

Option

: -bm

Syntax

: -bm filename[.bmm]

Usage

: This option allows you to specify the name and the path of the
BMM file. If the BMM file is the same name as the design name and is
located in the same directory as the design netlist, that BMM file is
loaded by default. If the BMM file is added to an ISE project, ISE
tracks changes to the BMM file and re-implements the design when
necessary. The Xilinx Design Manager/Flow Engine (DMFE) does not
track changes to the BMM file. In this case, the user is responsible to
restart the Xilinx software flow themselves.

Functionality:

 NGDBuild creates the

BMM_FILE

 property in the
NGD file to let following tools know a BMM file design is being used.
The BMM file is syntax checked, and NGDBuild validates that the
BRAMs referenced in the BMM file, actually exist in the design
(syntax checking of the BMM file can also be done by running the
command line version of Data2BRAM). Also, any BRAM placement
constraints that appear in the BMM file are applied to the
corresponding BRAM.

Note

The -bm switch is supported in ISE. Design Manager users are
required to use the

Template Manager and Customize

 to set this option.

MAP and PAR Usage

There are no command line or functionality changes to MAP or PAR.
However, incorrectly connected BRAM components are trimmed by
MAP. You are responsible for correctly connecting the BRAM
components. Check the MAP report “Section 5 - Removed Logic” to
see if any BRAM components were removed from the design.

BitGen Usa ge

Option

: -bd

Syntax

: -bd filename[.elf|.mem] [<tag TagName...>]

Usage

: The -bd switch specifies the path and file name of the .elf file
used to populate the BRAMs specified in the BMM file. The address
information contained in the .elf file allows Data2BRAM to determine
which

ADDRESS_BLOCK

 to place the data.

April 11, 2003 Xilinx Development System

Functionality

: BitGen passes the -bd switch with the

<filename>

and any tag information to Data2BRAM. Data2BRAM processes the
BMM file specified during the NGDBuild phase and the ELF file is
used to internally create the BRAM initialization strings for each
BMM defined BRAM. The initialization strings are then used to
update the .ncd file before the .bit file is created.

Placement information of each BRAM is provided by the .ncd file.
Any BRAM placement constraints that appeared in the BMM file are
already reflected in the .ncd information. All other BRAMs are
assigned placement constraints by previous tool steps. These
placement constraints are passed to Data2BRAM to create a

<BMMfilename>_bd.bmm

 file; a back annotated BMM file.

Note

If Bitgen is invoked with a NCD file that contains a

BMM_FILE

property, but a -bd option is

not

 given, a back annotated BMM file is
still produced. The corresponding BRAMs will just have zero’ed
content.

In addition to the original BMM file contents, this file contains the
placement information for all of the BRAMs defined by the BMM file.
The back annotated BMM file, and the resulting .bit file, can then be
used to perform direct .bit file replacement with the command line
version of Data2BRAM.

Note

The -bm switch is supported in ISE. Design Manager users are
required to use the

Template Manager and Customize

 to set this option.

NGDAnno Usa ge

Option

: -bd

Syntax

: -bd <elf_filename>[.elf | .mem]

Usage

: The -bd switch specifies the path and file name of the .elf file
used to populate the BRAMs specified in the BMM file. The address
information contained in the .elf file allows Data2BRAM to determine
which

ADDRESS_BLOCK

 to place the data.

Functionality

: NGDAnno passes the -bd switch with the

<elf_filename>

 to Data2BRAM. Data2BRAM processes the BMM
file specified during NGDBuild and the .elf file is used to create the
BRAM initialization strings for each of the constrained BRAMs. The
initialization strings are then used to update the .ncd file before the
.bit file is created.

Data2BRAM

April 11, 2003 Xilinx Development System

Placement information of the BRAM is provided from the .ncd file to
Data2BRAM. This information is used to create the
<bramfilename>_bd.bmm file. This file contains the placement
information for all BRAM constrained or unconstrained. This is
necessary to enable the use of the command line version of
Data2BRAM.

Note

The -bm switch is supported in ISE. Design Manager users are
required to use the

Template Manager and Customize

 to set this option.

FPGA Editor Usa ge

Option

: -bd

Syntax

: -bd <elf_filename>[.elf | .mem]

Usage

: The -bd switch specifies the path and file name of the ELF file
used to populate the BRAMs specified in the BMM file. The address
information contained in the ELF file allows Data2BRAM to
determine which ADDRESS_BLOCK to place the data.

Functionality

: BRAMs specified in the BMM file will be marked
READ-ONLY in FPGA Editor. Any changes made in FPGA Editor to
the contents of the BRAM mapped in the BMM file will not be
retained even if the user writes out the NCD. The ELF file contents
must be changed to permanently change the contents of the BRAMs.

Note

The -bm switch is supported in ISE. Design Manager users are
required to use the

Template Manager and Customize

 to set this option.

Limitations

The following section describes the limitations of Integrated
implementation tool usage of Data2BRAM functionality:

•

Tools: XDL and NCDRead do not call Data2BRAM to update the
BRAM initialization strings. This results in different values than
those seen in FPGA Editor, BitGen, or NGDAnno.

•

BRAMs specified in the BMM file may be trimmed during MAP if
connected incorrectly. This may result in an error when
Data2BRAM is run.

•

Translating CPU addresses to physical BRAM addresses must be
done as part of the HDL hardware design.

April 11, 2003 Xilinx Development System

Command Line Option Ref erence

Data2BRAM has fairly simple command line options. The overall
syntax is as follows:

data2bram
 <-bm

filename

 [.bmm]> |
 <<[-bm

filename

 [.bmm]]>
 <-bd

filename

 [<.elf>|<.mem>] [<tag TagName <TagName>...>]>...
 <-o <u|v|h|m>

filename

 [.ucf|.v|.vhd|.mem]>
 <-p

partname

>
 -i>> |
 <<-bd

filename

 [.elf]> -d [e|r]> [<-o m

filename

 [.mem]>]>> |
 <<-bm

filename

 [.bmm]>
 <-bd

filename

 [<.elf>|<.mem>] [<tag TagName <TagName>...>]>...
 <-bt

filename

 [.bit]> <-o b

filename

 [.bit]>> |
 <<-bm

filename

 [.bmm]> <-bt

filename

 [.bit]> -d>> |
<-f

filename

 [.opt]> |
 <-q [e|w|i]> |
 -u |
 -h

Table 3 Command Line Options

Option Description

-bm

filename

Name of the input BMM file. If the file extension is missing, a
.bmm file extension is assumed. If this is option not unspeci-
fied, the ELF or MEM root file name with a .bmm extension is
assumed. If only this option is given, then the BMM file is
merely syntax checked and any errors are reported. Only one -
bm option can be used.

-bd

filename

Name of the an input ELF or MEM files. If the file extension is
missing, .elf is assumed. The .mem extension MUST be
supplied to indicate a MEM file. If TagNames are given, only
the address space of the same names within the BMM file will
be used for translation. All other input file data outside of the
TagName address spaces will be ignored. If no further options
are specified, "-o u filename" functionality is assumed. One or
more -bd options can be used.

Data2BRAM

April 11, 2003 Xilinx Development System

-bt

filename

Name of the input BIT file. If the file extension is missing, .bit is
assumed. If the -o option is not specified, the output BIT file
name will have the same root file name as the input BIT file,
with a "_rp" appended to the end. A .bit file extension is
assumed. Otherwise, the output BIT file name will be as speci-
fied in the -o option. Also, the device type is automatically set
from the BIT file header, and the -p option will have no effect.

-o

 u|v|h|m|b

file-
name

The name of the output file(s). The string preceding the file
name indicates which file formats are to be output. No spaces
can separate the file type characters, but can appear in any
order. As many, or as few file type characters can be used at
once. The file type characters mean:

'u' = UCF file format, a .ucf file extension.

'v' = Verilog file format, a .v file extension.

'h' = VHDL file format, a .vhd file extension.

'm' = MEM file format, a .mem file extension.

'b' = BIT file format, a .bit file extension.

The

filename

 applies to all specified output file types. If the file
extension is missing, the appropriate file extension will be
added to specified output file types. If the file extension is spec-
ified, the appropriate file extension will be added to the
remaining file formats. An output file contains data from all
translated input data files.

-u

Update -o text output files for all Address Spaces, even if no
data was transformed into an Address Space. Depending on file
type, an output file will be either empty, or will contain initial-
izations of all zero. If this option is not used, only Address
Spaces that receive transformed data will be output.

-p

partname

Name of the target Virtex part. If this is unspecified, a 'xcv50'
part is assumed. Use the -h option to obtain the full supported
part name list.

Table 3 Command Line Options

Option Description

April 11, 2003 Xilinx Development System

-i

Ignore ELF or MEM data that is outside the address space
defined in the BMM file. Otherwise, an error will be generated.

-d

 e|r Dump the contents of the input ELF or BIT file as formatted text
records. BIT file dumps display the BIT file commands, and the
contents of each BRAM. When dumping ELF files, two optional
modifier characters may follow the -d option. No spaces can
separate the modifier characters, but can appear in any order.
As many, or as few modifier characters can be used at once.
These modifiers mean:

'e' = EXTENDED mode. Display additional information
for each ELF section.

'r' = RAW mode. This includes some redundant ELF infor-
mation.

-f

filename

Name of an option file. If the file extension is missing, an .opt
file extension is assumed. These options are identical to the
command line options, just in a text file instead. A option, and
its items, must appear on the same text line. However, as many
switchs can appear on the same text line as desired. This option
can be used only once, and a .opt file can't contain a -f option.

-q

 e|w|i Disable the output of Data2BRAM messages. The string
following the option indicates which messages types will be
disabled. No spaces can separate the message type characters,
but can appear in any order. As many, or as few message type
characters can be used at once. The message type string is
optional. Leaving the message type blank is equivalent to using
"-q wi". The message type characters mean:

'e' = Disable ERROR messages.

'w' = Disable WARNING messages.

'i' = Disable INFO messages.

-h

Print help text, plus supported part name list.

Table 3 Command Line Options

Option Description

Data2BRAM

April 11, 2003 Xilinx Development System

Listing 1- Example Ad dress Space Map File

/***
*
* FILE : example.bmm
*
* Define a BRAM map for the RAM controller memory space. The
* address space 0xFFFFC000 - 0xFFFFFFFF, 16k deep by 64 bits wide.
*
** /

ADDRESS_BLOCK ram_cntlr RAMB4 [0xFFFFC000:0xFFFFFFFF]

// Bus access map for the lower 4k, CPU address 0xFFFFC000 - 0xFFFFCFFF
BUS_BLOCK

top/ram_cntlr/ram7 [63:56] LOC = R3C5;
top/ram_cntlr/ram6 [55:48] LOC = R3C6;
top/ram_cntlr/ram5 [47:40] LOC = R3C7;
top/ram_cntlr/ram4 [39:32] LOC = R3C8;
top/ram_cntlr/ram3 [31:24] LOC = R4C5;
top/ram_cntlr/ram2 [23:16] LOC = R4C6;
top/ram_cntlr/ram1 [15:8] LOC = R4C7;
top/ram_cntlr/ram0 [7:0] LOC = R4C8;

END_BUS_BLOCK;

// Bus access map for next higher 4k, CPU address 0xFFFFD000 - 0xFFFFDFFF
BUS_BLOCK

top/ram_cntlr/ram15 [63:56] OUTPUT = ram15.mem;
top/ram_cntlr/ram14 [55:48] OUTPUT = ram14.mem;
top/ram_cntlr/ram13 [47:40] OUTPUT = ram13.mem;
top/ram_cntlr/ram12 [39:32] OUTPUT = ram12.mem;
top/ram_cntlr/ram11 [31:24] OUTPUT = ram11.mem;
top/ram_cntlr/ram10 [23:16] OUTPUT = ram10.mem;
top/ram_cntlr/ram9 [15:8] OUTPUT = ram9.mem;
top/ram_cntlr/ram8 [7:0] OUTPUT = ram8.mem;

END_BUS_BLOCK;

// Bus access map for next higher 4k, CPU address 0xFFFFE000 - 0xFFFFEFFF
BUS_BLOCK

top/ram_cntlr/ram23 [63:56];
top/ram_cntlr/ram22 [55:48];
top/ram_cntlr/ram21 [47:40];
top/ram_cntlr/ram20 [39:32];
top/ram_cntlr/ram19 [31:24];
top/ram_cntlr/ram18 [23:16];
top/ram_cntlr/ram17 [15:8];
top/ram_cntlr/ram16 [7:0];

END_BUS_BLOCK;

// Bus access map for next higher 4k, CPU address 0xFFFFF000 - 0xFFFFFFFF
BUS_BLOCK

top/ram_cntlr/ram31 [63:56];
top/ram_cntlr/ram30 [55:48];
top/ram_cntlr/ram29 [47:40];
top/ram_cntlr/ram28 [39:32];
top/ram_cntlr/ram27 [31:24];
top/ram_cntlr/ram26 [23:16];
top/ram_cntlr/ram25 [15:8];
top/ram_cntlr/ram24 [7:0];

END_BUS_BLOCK;

END_ADDRESS_BLOCK;

April 11, 2003 Xilinx Development System

Listing 2- Modifi ed Bac kus-Naur Form (BMM) Syntax

Address_block_keyword ::= “ADDRESS_BLOCK”;

End_address_block_keyword ::= “END_ADDRESS_BLOCK”;

Bus_block_keyword ::= “BUS_BLOCK”;

End_bus_block_keyword ::= “END_BUS_BLOCK”;

LOC_location_keyword ::= “LOC”;

PLACED_location_keyword ::= “PLACED”;

MEM_output_keyword ::= “OUTPUT”;

BRAM_location_keyword ::= LOC_location_keyword |
PLACED_location_keyword ;

Memory_type_keyword ::= “RAMB4” |
“RAMB16” |
“MEMORY”;

Number_range ::= “[“ NUM “:” NUM “]”;

Name_path ::= IDENT (“/” IDENT)*;

BRAM_instance_name ::= Name_path;

MEM_output_spec ::= MEM_output_keyword “=” Name_path [".mem”];

BRAM_location_spec ::= BRAM_location_keyword “=”
("R” NUM “C” NUM) | (“X” NUM “Y” NUM);

Bit_lane_def ::= BRAM_instance_name Number_range
[BRAM_location_spec | MEM_output_spec] “;” ;

Bus_block_def ::= Bus_block_keyword
(Bit_lane_def)+
End_bus_block_keyword “;” ;

Address_block_def ::= Address_block_keyword IDENT Memory_type_keyword Number_range
(Bus_block_def)+
End_address_block_keyword“;” ;

