

AUTOMOTIVE CURRENT TRANSDUCER HAB 80-S

Introduction

The HAB Family is best suited for DC, AC or pulsed-current measurements in high-power and low-voltage automotive applications. It's contains galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

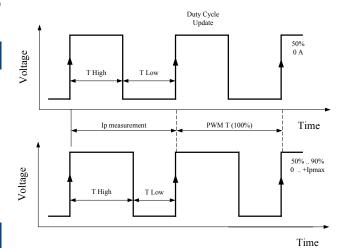
The HAB family gives you a choice of having different current measuring ranges in the same housing (from \pm 20 A up to \pm 100 A).

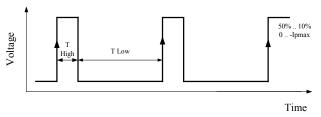
Features

- · Open Loop transducer using the Hall effect sensor
- Low voltage application
- Unipolar + 5 V DC power supply
- Primary current measuring range ± 80 A
- Maximum RMS primary current limited by the busbar, the magnetic core or the ASIC temperature T° < + 150°C
- Operating temperature range: 40°C < T° < + 125°C.

Advantages

- · Good accuracy for high and low current range
- Good linearity
- Low thermal offset drift
- Low thermal gain drift
- · Hermetic package.

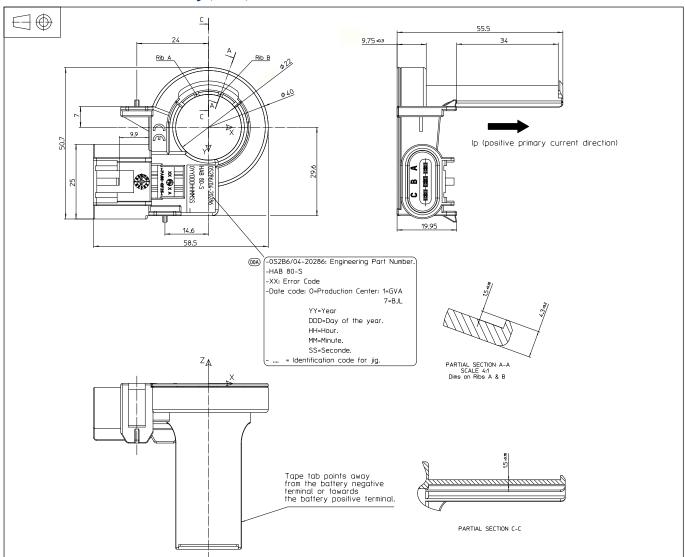

Automotive applications


- Battery Pack Monitoring
- Hybrid Vehicles
- EV and Utility Vehicles.

Principle of HAB xxx-S Family

The transducer uses open loop Hall effect technology. It provides a **P**ulse **W**idth **M**odulated output Signal proportional to the magnetic Induction B generated by the primary current \mathbf{I}_p to be measured.

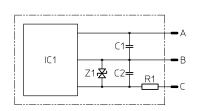
The PWM principle is described as follow:


$$\begin{split} \textit{PWM period} \quad & T_{\textit{Period}} = T_{\textit{High}} + T_{\textit{Low}} \\ & \textit{PWM frequency} = \frac{1}{T_{\textit{Period}}} = 125 \textit{Hz} \\ & \text{DutyCycle(\%)} = \frac{T_{\textit{High}}}{T_{\textit{Period}}} \times 100 \\ & \text{DutyCycle(\%)} = 50\% + \text{G} \times \text{I}_{\text{P}} \text{ with G} = \text{Sensitivity (\%/A)} \end{split}$$

The **PWM** period T_{period} starts on the falling edge of the output signal. The ouput signal of the duty cycle given during the T_{period} is the image of the primary current during the T_{period} -1 period.

HAB 80-S

Dimensions HAB 80-S family (in mm)


Bill of materials

Plastic casePA 66-GF25PinsBrass tin plated

• **m** 25 g

Ip (A)	lack	PWM output signal (%)
+ 80		90
0		50
- 80	1	10

System architecture

	Components list
IC1	Hall sensor ASIC
C1	100nF-±10%-X7R
C2	10nF-±10%-X7R
R1	51 ohms ±5%
Z1	Bi-directional zener ±12V

	Pin out
Α	DC supply voltage (5V)
В	Ground
C	PWM output signal

The optional components are needed if current sensor is outside the control module circuit.

HAB 80-S

Absolute maximum ratings (not operating)

PARAMETER	Symbol	Min	Max	Unit
Maximum primary current	I _P		Infinite	А
Supply voltage	V	- 8.5	8.5	V
Supply voltage (over voltage t < 1 min)	V _C	- 14	14	V
Current consumption (t < 1 min)	I _C		50	mA
Output voltage (t < 1 min)	V _{out}	- 5	14	V
Output voltage over supply voltage	V _{out} -V _C		2	V
Output current	l _{out}	- 10	10	mA
Output short-circuit duration	T _c		10	min
Ambiant storage temperature	T _s	- 40	125	°C

Operating conditions

PARAMETER	Symbol	Min	Typical	Max	Unit
Supply voltage	V _C	4.5	5.00	5.5	V
Supply voltage (accurate range)	V _C	4.75	5.00	5.25	V
Pull up load resistor	R _L	2.2	4.7		ΚΩ
Capacitive loading	C			1	nF
Ambient operation temperature	T _A	- 40	25	125	°C
Ambient operation temperature (accurate range)	T _A	- 10	25	65	°C

Operating characteristics

PARAMETER	Symbol	Min	Typical	Max	Unit
Primary current nominal range	I _{PN}	-80		80	А
Maximum current measuring range (clamping)	I _{PM}	-90		90	Α
Calibration current	I _{CAL}	-60		60	А
Current consumption	I _c	-	7.5	10	mA
Output PWM frequency	f _{PWM}	105	125	145	Hz
Output duty cycle sensitivity	G		0.5		%/A
Output duty cycle @ I _P = 0			50		%
Output duty clamping low	D _{OUT}	4	5	6	%
Output duty clamping high		94	95	96	%
Duty cycle resolution			0.0125		%
Power-up time to reach valid duty cycle				25	ms
Setting time after over load				25	ms
Output voltage high (pull up = 4.7 K Ω)	V _{outh}	V _c -0.2			V
Output voltage low (pull up = 4.7 K Ω)	V _{OUTL}			0.2	V
Output internal resistance	R _{out}		50	100	Ω
Ouput PWM rise time	t _{rise}			10	μs
Ouput PWM fall time	t _{fall}			10	μs

HAB 80-S

Operating temperature

PARAMETER	Symbol	Min	Typical	Max	Unit
Electric offset current @ accurate temperature range		-0.2	± 0.075	0.2	А
Electric offset current @ full temperature range	OE	-0.3	± 0.15	0.3	А
Magnetic offset current	I _{OM}		± 0.05		А
Output resolution			0.04		А
Sensitivity error @ accurate temperature range	\mathcal{E}_{G}	-2		2	%
Sensitivity error @ full temperature range		-3		3	%
Linearity error @ 25°C	$\epsilon_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	-1		1	%