سلخو

 $= \frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{2} \sum_{i=1}^{n$

Application Manual

Real Time Clock Module RTC-4553

SEIKO EPSON CORP.

.

Ŋ

Copyright Notice

This manual is based on information current as of September, 1994. Note that the contents of this manual are subject to change without notice. Please inquire separately for information concerning product warranties.

Trademarks

The EPSON® and EPSON logo are registered trademark of Seiko Epson Corporation.

RTC-4553 is a product name of Seiko Epson Corporation.

à,

Rights to other trademarks and product names mentioned in this manual are also acknowledged.

Disclaimer

The copyright to this manual is held by Seiko Epson Corporation. Therefore, copying of the contents of this manual without Seiko Epson Corporation's express permission, by whatever method, is prohibited.

This manual neither guarantees any rights in respect of industrial property or other matters, nor is it a commercial title or license.

Seiko Epson Corporation cannot bear any responsibility for the implementation of these examples, and you must check circuit behavior independently. The example circuits and other components described in this manual in this manual are provided for informational purpose only.

Conclusion

We have prepared this manual as carefully as possible. If you find it unsatisfactory or incomplete in any respect, we would welcome your comments.

4

Ņ

Contents

Overview	1
Features	1
Terminal connections	1
Block diagram	1
Terminal functions	2
Characteristics	3
1. Absolute maximum ratings	3
2. Operating conditions	3
3. Frequency characteristics	3
4. DC, AC characteristics	3 to 5
Register	6
1. Register table	6
2. Notes	6*
3. Functions of the register bits	7
Register description	8
1. S1, S10, MI1, MI10, H1, H10, W, D1, D10, MO1, MO10, Y1, Y10	8
2. CNT1 register (Control register 1)	8 to 9
3. CNT2 register (Control register 2)	9 to 10
4. CNT3 register (Control register 3)	10
Operation procedure	11
1. Data reading	12
2. Data writing	12
3. Release of system reset	13
4. Flow chart of write operation	14 to 15
5. Flow chart of reading	16
6. Non-existent data	17
Power source and chip select	18
1. Starting time of access	18
2. CS1 and CS0 action	18
3. Power-down of system power supply	· 18
4. Power supply and CS1 action	18 to 19
5. Example of connecting the RTC to power supply circuit	19
Reference data	20
Package size	21
Marking layout	21

سلخو

Overview

This RTC-4553 is an SOP 14-pin size real time clock module which is designed for use in serial interfaces suitable for handy electronic equipments.

This module has excellent heat-resistance, its small package allows for high density mounting and automatic mounting. It features a wide variety of functions, such as a time and date function, a built-in 30×4 bit S-RAM and much more.

This module is indispensable for handy electronic equipment such as video-cameras, multi-function telephones, and POS systems, where time display is necessary.

Features

- The built-in crystal resonator makes the product streamlined and adjustment-free.
- The small package makes high density mounting possible.
- The built-in calendar that keeps time (hour, minute, second) and calendar. (year, month, day, day of the week).
- Automatic leap year correction.
- It has a built-in 30×4 bit RAM.
- High speed access
- Interface possible with 3V.
- It outoput a rèference pulse (1/10Hz, 1024Hz).
- $\circ~$ It has a 30 seconds correction.
- Using a C-MOS IC enables low current consumption (1µA typ.).

Terminal connection

Block Diagram

Terminal functions

Terminal No.	Terminal Symbol	Output Input	Function
1	GND		Connect this terminal to the ground.
2	WR (WRITE & READ enable)	Input	Address and data are written at WR="L". Writing counter data (second digit to year digit) is in accordance with increment system. (Time and date can not be written indirectly.) The specified address and data are read when WR="H". The designated data output from Sour, set in the proceeding time.
3	S⊪ (Serial input)	Input	This input pin for serial address and data is used to write addresses and data of each counter, register and RAM.
4	SCK (Serial clock)	Input	When outputting or inputting serial address and data, input synchronous signal to this pin, so that the address and data can be read and written in synchronization with the signal. 8 clock (address 4 clock + data 4 clock) is one cycle.
5, 6, 7, 9, AND 10	NC		Test pins. Do not connect them to any terminals.
8	Voo		Connected it to the power source. It should be supplied 5V \pm 10% or 3V \pm 10% power, when normal access mode. Supply voltage of 2V or more when battery buckup mode.
11	CSo (Chip select 0)	Input	This pin is used to select RTC-4553. In microcomputer, register can be accessed when "CSo=L". When "CSo=H", Sout comes to high impedance.
12	CS: (Chip select 1)	Input	Connect this pin to the power down detector circuit. (When the circuit does not have power down detector, fix it on V_{0D} .) When "CSI=L", Sour and TPour comes to high impedance.
13	Sour (Serial output)	Output	This output pin for serial address and data is used to read address and date of each counter register and RAM.
14	TPour (Timing pulse output)	Output	This pin outputs a 1024Hz or 1/10Hz internal reference clock. It can be used for checking time pace accuracy. Please use output mode 1/10Hz when check clock tolerance. The duty cycle will be vary once per 10 seconds on 1024Hz output mode.

Note : Power supply by-pass capacitor of a 0.01μ F or more, should be installed very close between V_{DD} and GND terminals of this RTC.

-- 2 ---

Characteristics

1. Absolute maximum ratings

Items	Symbols	Conditions	MIN.	MAX.	Unit	
Supply voltage	Vco	Vao – GND	-0.3	+6.0		
Input voltage	Vin	SIN, SCK, WR, CS0, CS1	-0.3	Vop+0.3	v	
Output voltage	Vour	Sout, TPout	-0.3	V00+0.3		
Storage temperature	Тята	*1	-55	+125	°C	
Soldering conditions	Tsol	-	Once or twice at 260°C for up to 3 minutes.	or less for up to 10 seconds,	or once at 230°C or le	

*1: Stored without Tape and Reel.

2. Operating conditions

Items	Symbols	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	VDD	V₀₀–GND	2.7	5.0	5.5	v
Operating temperature	Торя		-30	_	+70	°C

3. Frequency characteristics

____A``

Items	Symbols	Condit	ions	MAX.	Unit	
	Δf / fo	Ta = 25°C	AA	5 ±5		
Frequency tolerance		Vop = 5 V *2	А	5 ±10	1	
		*2	B	5 ±20	ppm	
Frequency temperature characteristics	top	Ta = −10 to 70°0 *3	C, V _{DD} = 5 V	+10 -120		
Frequency voltage characteristics	f/V	Ta = fixed, Voo *3	= 2 to 5.5 V	±5	-	
Aging	fa	Ta = 25°C, Vop =	5V, first year	±5	ppm/year	

*2: Freqency tolerance is guaranteed at the time of shipment.

*3: The frequency deviation (0 ppm) at Ta=25°C for "top" or Vob=5 V for "f/V" is used reference value.

*4: Start up time (tr) of power is $1.0 \,\mu\text{s/V} \le \text{tr} \le 1.6 \,\text{ms/V}$

4

(1) $V_{DD} = 5 V \pm 10\%$

① DC characteristics

(GND=0V, Ta=-30 to 70°C)

Item	Symbol	Condition		Voo = 5V ±10%		Unit
	Gymbol	Condition	MIN.	TYP.	MAX.	Unat
Data holding voltage	Voн		2.0		5.5	V
Current consumption	loo1	<u>SCK</u> = 500 kHz CS₀ ≈ L, CS₁ = H			100	
	lodz	$\frac{SCK}{CS_0} = 0 Hz$	_	1.0	3.0	- μΑ
Dutput voltage	Vон	lон = − 400 µA	Vpp - 0.4	_	_	v
	Vol	loL = 1.6 mA		_	0.4	
Off leak current	Іогн	Vour = 5.5 V	2.0	_	2.0	
	lozı.	Vout = 0 V	-2.0	_	2.0	- μΑ
Input voltage	· Viii	_	4/5 Vod			v
	Vı			· _	1/5 Von	7 v
Input current	lu+	V _{IN} = 5.5 V	-2.0		2.0	μА
	In.	V:N = 0 V	-2.0	-	2.0	
Oscillation startup time	Τs	Ta = 25°C	_	_	3.0	sec.

. .

(GND= 0 V, Ta= -30 to +70°C)

Item	Symbol	Condition				
	•,		MIN.	MIN. TYP.		- Unit
SCK input frequency	folk			_	500	kHz
SCK "L" time	twok		1.0	_		
SCK "H" time	twcкн		1.0	_		-
SCK Pause time	les	<u> </u>	1.0			-1
CSo Set up time	tscs		0			-
CS₀ Hold time	thos		0.5			μsec.
Sin Data Set up time	tso	— · · · · · · · · · · · · · · · · · · ·	0.2			1
Siv Data Hold time	tho	<u> </u>	0.2		<u> </u>	
WR Set up time	tswa		1.0			-
WR Hold time	thwe		0,5			-
Sour Delay time	toso	CL=100pF		150	500	
CSo, and CS1 Enable to Sour Output	toszı	CL=100pF	_	_	100	-
CSo Disenable to Sour High Z	toszz	CL=100pF			100	nsec.
CS: Enable to TPour Output	topzi	CL=100pF			100	-
CS: Enable to TPour High Z	topz2	CL=100pF		<u> </u>	100	-

(2) $V_{DD} = 3V \pm 10\%$

-سطغر 1 DC characteristics (GND= 0 V, Ta = -30 to 70°C) Vop = 3 V ±10% ltem Symbol Condition Unit MIN. MAX. TYP, Data holding voltage Vон 2.0 3.3 ٧ -SCK = 300 kHz CS₀ = L, CS₁ = H lodi — -----100 Current consumption mΑ SCK = 0 Hz 002 1.0 $\overline{CS_0} = H, CS_1 = L$ 3.0 _ Vон loн = - 400 µА Vpp-0.4 _ _ Output voltage v Vol lo⊾ = 1.6 mA — 0.4 -2.0 Іогн Vout = 3.3 V _ 2.0 Off leak current μΑ lozi Vour = 0 V -2.0 2.0 νы _ 4/5 Voo Input voltage ۷ VIL ----1/5 Voo ---lн VIN = 3.3 V -2.0 ļ 2.0 Input current μΑ hu VIN = 0 V -2.0 _ 2.0 Oscillation startup time Ts Ta = 25°C -3.0 ___ Sec.

2 AC characteristics

(GND= 0 V, Ta = -30 to +70°C)

.

ltem	Symbol	Condition -		$V_{DD} = 3 \text{ V} \pm 10\%$		
	Cymbol .	Condition	MIN.	TYP,	MAX.	Unit
SCK input frequency	folk		-		300	kHz
SCK "L" time	tworl.		1.5	_		
SCK "H" time	twcxн	-	1.5		_	
SCK Pause time	tes		1.5			
CSo Set up time	tacs	<u> </u>	0			
CSo Hold time	thes		1.0			μsec.
Sin Data Set up time	tsp		0.2			
Siv Data Hold time	tho		0.2	_		
WR Set up time	tswa		1.5	_		
WR Hold time	tewa		1.0		_	
Sour Delay time	toso	CL=100pF		300	500	
CSo, and CSI Enable to Sour Output	toszi	CL=100pF			200	
CSo Disenable to Sour High Z	toszz	CL=100pF			200	nsec.
CS1 Enable to TPour Output	topzi	CL=100pF		· · · · · · · · · · · · · · · · ·	200	
CS: Enable to TPour High Z	toez2	CL=100pF		_	200	

.

EPSON 2008

(3) Timing Chart

•

--- 5 ----

•

	Re	gist	ter										MOI)E 2 (User f	RAM region	2)	
	1.6	2eai	icta	r tak	alo					Address User RAM				i register			
	••••	i¢9	1310	, rar	NG						A ₃	A2	A1 A0	D3	D2	D 1	De
										0	0	0	0 0	RA ₆₃	RA ₆₂	RA	RAe
											·	MQ	DE 1 (User	RAM region	11)		FIAs
									Ac	idres	8			User RA	M register		RAse
									A	A2	A 1	A٥	D3	Da	Dı	D ₀	RA72
								0	0	0	0	0	RA ₃	RA ₂	RA:	RA ₀	RA76
							h	IODE 0		_				h <u></u> n		RA4	FIAac
		ddre	88		Register			C	ounter	er and control register						RA ₈	RA ₈₄
_	A3	A2	A 1	A٥	symbol	Da	D ₂	Dı		D٥		Register name			RA12	RAa	
0	0	0	0	0	Ş1	S:	S4	S2		Sı			1 second digit register				RA ₉₂
1	0	0	0	1	S10	0	S40	S20		S10			10 seco	RA20	RAm		
2	0	0	1	0	Mh	mie	mi4	miz		mi		1 minute digit register				RA24	RA100
3	0	0	1	1	MI10	0	mixo	mizo		min	,	10 minutes digit register			RA28	RA104	
4	0	1	0	0	H,	ha	h₄	hı		h,		1 hour digit register			RA32	RA108	
5	0	1	0	1	H ₁₀	PM/AM	0	h20		h10	-+		10 hou	rs digit regis	ter	RA ₃₆	RA112
6	0	1	1	0	W	0	W4	W2		W1			Day of the week digit reg.			RA40	RAite
7	0	1	1	1	D1	de	d₄	d2		d۱				digit registe		RA44	MS ₀
8	1	0	0	0	D10	0	0	d ₂₀		dio		·	10 day	s digit regist	er	RA48	
9	1	0	0	1	MO	moe	mo₄	mo ₂	_	mon			1 mont	h digit regisi	er	RA ₅₂	1
A	1	0	1	0	MO ₁₀	0	0	0		moto			10 mani	fis digit regi	ster	RA ₅₀	1
B	1	0	1	1	Y 1	Ув	y 4	y2	-	y۱				digit registe		MS.	1
С	1	1	0	0	Y10	Уюл	Y40	y 20		y10				s digit regis			-
-	1	1	0	1	CNT 1	TPS	30ADJ	CNTR		24/12	5		Cont	ol register 1			
D				0	CNT 2	BUSY	PONC	Ì		۲		Control register 2			-		
D E F	1	1	1	1	CNT 3	2001	1 0110				N 1				-	1	

Auswahl as

Use RAM och Mock O

2. Notes

(1) Do not set data out of range for the time and calendar. Otherwise, a counting error may occur.

(2) When the power is turned on (before initialization) the state of the bits are undefined. Write the registers to set the values.

(3) The user should be set D_0 bit of control register 2 (* bit) to "0".

(4) When the read is bit D1 of control register 2 (- bit) is undefined.

(5) D₃ bit of control register 3 (TEST bit) is used by us to test the system. The user must set this bit to "0".

3. Functions of the register bits.

λ.

Bit name		Functions										
0 mark	When this bit is rea	ad, the data	is "0".									
Second to year digit	BCD code.The dat	a are writter	by increment r	nethod.							€	
PM/AM	"1" shows PM and 23:59 = PM)		M. This bit can	also be r	ead in 24	-hour mo	de(24/12	=1). (00:	00 to 11:5	9 ≠ AM;	12:00 to	
	Encode it before us	sing. nple:	P -1-								1	
Day of the week digit		· .	Data	0	1	2	3	4	5	6	- 1	
			ly of the week	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.]	
Year digit	The leap year is au	tomatically	dentified up to	2000 100								
User RAM region	30 × 4 bit SRAM	tomatioany		2000 yea	us.					.		
	Constant periodic pulse can be selected.											
TPS					S bit		ency (Cyc			- !		
(Timing Pulse Selection)	Note : During for 10 power on or)		łz (976.5			-	
	1/10 Hz sign				L	l	1/10 H	z (10 se	c.)]	
30ADJ (30 seconds adjustment)	When this bit is "1" This bit will be rese				ted							
CNTR	This bit will be rese	automatica	any, anter 70.5 p	586					····			
(Counter reset)	Counter reset exce	pt year.										
24/12	When "1", then 24-	hour mode;	when "0", then	12-hour r	node with	PM/AM.	Selectic	on of read	l mode.			
· ···· · · · · · · · · · · · · · · · ·	This bit is used whe	en reading/v	vriting from/to ti	ne and c	alendar c	ounter. T	'his bit is	set to "1"	when ca	rry toccor	ed ^a	
		BUSY bit	Mode	* *	•••		Functi	ón			ן ן	
Busy		0	No carry	R	eading ar	d writing	time and	date are	available	1.		
	1 Carry occur Reading and writing time and date are prohit									d.]	
	When turning on th	e power, po	wer-on-clear fu	nction we	orks autor	natically.	and PON	C bit set	to "1". W	hen		
	power-on-crear fur											
		R	egister				Data	a			7	
PONC		Counter (Se	cond to year dig		0-year, 0	I-month,	01-day, /	M, 12-0	clock, 00-	minute,	1	
(Power-ON-Clear detector)				· U	0-second			k				
			rol register		II "0" (But		1)				-	
		User RAM Undefined										
	Therefore, the time	and calend	ar counter and	he contr	ol register	must be	set, whe	n writing	PONC =	"1".		
The bit marked ""	When this bit is rea	d, the data i	s undefined.									
The bit marked "*"	Should be set this t	bit to "0".										
	Time and calendar	counters an	d control registe	ers are al	I-cleared	with "1".						
		F	legister		•		Dat	a			ן ך	
SYSR		Counter (Se	cond to year dig		0-year, 0			AM, 12-0	'clock, 00	-minute,		
(System reset)		Control regi	tor		0-second						-	
		User RAM			All *0* (But SYSR=1 Undefined						-	
											_	
	Setting of the count				after relea	sing syst	em reset.					
TEST	This bit is used by S The user must set t			ystem.								
	Switch the mode by											
		MSI M	So Mode na	ma			Mod		<u> </u>		- I	
MS. MS.		0 (Counter (Second +			trol regiet	er 1 to 2	- 1	
MS₀, MS₁ (Mode selection)		0 1			Counter (-		-i I	
		1 (User RAN						-	
		1 2			User RAN						-	
								,			<u> </u>	
		- 1										

--- 7 ---

أستلحق

Register description

- 1. S1, S10, MI1, MI10, H1, H10, W, D1, D10, MO1, MO10, Y1, Y10
 - (Time and calendar register)
 - (1) Every registers are BCD code and positive logic.
 - (2) The range of register "W" is 0 to 6, and it is used in a code. The day of the week can not be identified by the date.
 - Example:

Data	0	1	2	3	4	5	6
Day of the week	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.	Sat.

(3) H1, H10 (Hour digit register)

Possible time is different according to the setting of $24/\overline{12}$ bit (CNT1 register).

When the 12-hour read mode (24/12 bit=0) is selected, the PM/AM bit must be set.

ſ	24/12 bit	Existent time	Note
ſ	0 (12-hour)	AM 12:00 to AM 11:59, PM 12:00 to PM 11:59	PM/AM bit can also be read in
	1 (24-hour)	AM 00:00 to AM 11:59, PM 12:00 to PM 23:59	24-hour mode.

(4) Y1, Y10 (year digit register)

These registers use the Gregorian calendar. Leap year is automatically (up to 2099) adjusted. (years that are multiples of 4 are identified as leap years.)

Example: '92, '96, '00, '04, '08, '12, '16, '20

(5) "0" mark

Even if "1" is written on the bit marked by zero in the register table, automatically turns to "0" when being read.

(6) Setting non-existent times or dates may cause time errors.

2. CNT 1 register (Control register 1)

- (1) TPS (Timing pulse select)
 - •Bit used for selecting output waveform of reference signal form TPout.

TPS bit	Output fequency (Cycle time)	Duty (Time) of "L" level
0	1024Hz (976.5 µsec.)	1/2 (438.25 μsec.)
1	1/10Hz (10 sec.)	3/5 (6 sec.)

• During for 10 seconds from power on or system reset, 1/10 Hz signal source not output.

(2) 30ADJ (30 seconds adjustment)

• 30ADJ function works when the 30ADJ bit is "1".

Seconds digit before 30ADJ	Seconds digit after 30ADJ
29 seconds or less	"00"seconds without carry to 1 minute degit
30 seconds or more	"00"seconds with carry to 1 minute degit

• This bit is automatically cleared (30ADJ = 0) within 76.3 µsec. after finishing 30 seconds adjustment. When reading or writing time/date register immediately after 30 seconds adjustment is required, please make sure that 30ADJ bit is "0" or it should be done, taking a pause for 76.3 µseconds after 30 seconds adjustment.

---- 8 ----

(3) CNTR (Counter reset)

• The CNTR bit used to initialize the counters of selected time and calendar. (Except year digit.)

CNTR bit	Meaning	Courset
0	Normal mode (When writing to time and calendar registers, the counter is incremented.)	0-seter
, 1	The time and calendar counter is initialized (expect year counters)	mach - ale
· · · · · · · · · · · · · · · · · · ·		

When the second counter is reset, second or less is also reset.

The output at TPout terminals shows duty cycle change in a reset cycle.

Notes

a) Data for days or months which do not exist may arise due to improper setting methods.

- Correct these data referring to procedure for non-existent data (on page 17).
- b) Be sure to set "0" after finishing counter reset.

(4) 24/12 (24-hour system/12-hour system)

Switch the read mode in accordance with the 24-hour system or 12-hour system.

24/12 bit	System name	Existent time]	
0	12-hour system	AM 12:00 to AM 11:59, PM 12:00 to PM 11:59		
1	24-hour system	AM 00:00 to AM 11:59, PM 12:00 to PM 23:59	+	

م مد ا

In the 12-hour mode, set the PM/AM bit by incrementing the time, this bit works on 24-hour mode too.

3. CNT 2 register

(1) BUSY

 This bit is used to write and read time and calendar. This bit shows the carry of 1-second digit whether a carry is going on or not.

BUSY bit	Mode	Meaning
0	Normal mode	Reading & writing of time & date are able.
1	Carry mode	Reading and writing of time and calendar are prohibited since the carry is going on.

Notes

a) It is recommended that Read/Write is finished before Busy bit rise to High. The duration of Busy=1 is 4.9 ms and actual prohibited duration of Read/Write is 0.5 us.

 b) If Read/Write is done in a duration of carry (0.5 μs), followings are occured. Read: Misreading may occur
Write: Write data are ignored.

• The end of read and write: Refers to the 8th pulse rise of SCK as shown in the figure for timing chart (on page 12).

. .

Û

(2) PONC (Power-on-clear)

• This bit is used to show the validity of data. The PONC bit is set to "1" when the power is turned on for the first time and when the power fails.

And "power-on-clear" function works automatically, user are necessary to set data for all registers.

PONC bit	Mode	Meaning		
0	Normal mode			
		Data is initialized	1	
		Register	Meaning	
Ť	Power-on clear mode	Time and calendar	00-year, 01-month, 0-week,01-day, am, 12-oclock, 00-minute, 00-second	
		Others	All control registers = 0. (Only PONC = 1) RAM is undefined.	

 Release: Before setting the register data, this bit should be released (PONC = 0) by performing system reset (writingSYSR = 1).

A Clode worken

(3) – mark

When this bit is read, the data is undefined.

(4) * mark

This bit should be "0".

4. CNT 3 Register

(1) SYSR (System reset)

All logic is initialized (refer table of PONC bit) by writing SYSR = 1. Release: This bit is released by the falling of \overline{SCK} after \overline{CS}_0 has fallen.

(2) TEST

The test bit is used for testing in "SEIKO EPSON". Be sure to set TEST = "0". Operation is not guaranteed for this product when TEST bit is "1".

(3) MS1, MSo (Mode select 1, and 0)

The bit is used for switching address mode.

MS1	MS ₀	Mode name	Meaning
0	0	Mode 0	Counter (Second to year digit) and control register 1 to 3
0	1	Mode 0	Counter (Second to year digit) and control register 1 to 3
1	0	Mode 1	User RAM region 1 (RAo to RAso) and control register 3
1	1	Mode 2	User RAM region 2 (RA60 to RA119) and control register 3

— 10 —

and a STAT Selected and a state of the

EPSON EUROPE ELECTRONICS

🖾 014

· · ·

- (2) Explanation
 - Serial address data that is input from the S_{IN} when CS₀=L is taken in on the SCK rise. Next, when WR=H is taken in on the 8th pulse rise of SCK, either the counter, control register or the SRAM address will be selected. The selected counter, control register or the SRAM address data is output simultaneously with SCK fall from the Sout in the following cycle.
 - When the SCK clock is less than 8 pulses or more, it enters the command wait mode. When the SCK in 9 pulses or more, commands are not correctly input. The internal counter of the SCK clock is cleared within the pause time and on the trailing edge of CSo.

Ø 015

			51241 244	· +
Data writing		Ĉ	Dates weeks inc	encurlos,
I) Timing chart			ton which of	relat production
a) When writing ti	me and calendar			
WR				
		/		•
<u>SCK</u>				
 Don't ca S⊪		Don't care		Don't care
	1-sec. digit address (0000)	*****	1-sec.digit address(0000)	1-sec.digit data+1
	* A_0 A_1 A_2 A_3 D_0 e trailing edge of SCK. the leading edge of SCK.	$D_1 X D_2 X D_3$		D ₀ D ₁ D ₂ D ₃
b) When writing S	GRAM data			چر ^و
] .			
SCK				
SiN Don't o	care A ₀ A ₁ A ₂ A ₃ D ₀		A ₀ A ₁ A ₂ A ₃	Don't Care
	SRAM address(0000) Data	a to be written (1111)	SRAM address(0000)	SRAM data(1111)
Sour *: Undefined	* A ₀ A ₁ A ₂ A ₃ D ₀		Ao Ar. Az Az	D_0 D_1 D_2 D_3
	trailing edge of SCK. he leading edge of SCK.			

(2) Explanation.

• Serial address data that is input form the SIN when CSo=L is taken in on the SCK rise. Next, when WR=L is taken in on the 8th pulse rise of SCK, either the counter, control register or the SRAM address will be selected. The selected counter, control register or the SRAM address data is written.

	sample;			
Counter register (Time and calendar reg.)		Data before increment	The number of time of increment	Data after increment
		0	4	4
		8	3	11 (10-digit is carried automatically)

The selected counter control register or the SRAM address data is output simultaneously with SCK fall from the Sour in the following cycle.

When the SCK clock is less than 8 pulses or more, it enters the command wait mode.
When the SCK in 9 pulses or more, commands are not correctly input.
The internal counter of the SCK clock is cleared within the pause time and on the trailing edge of CS₀.

- 12 --

EPSON DIG

3. Release of system reset

SYSR (system reset) is released by the falling of \overline{SCK} after $\overline{CS_0}$ has fallen.

4.Flow chart of write operation

(1)Typical application of initial setting of time and calendar. (Definition between the power on by battery changed etc.)

- 14 ---

(2) Typical application of initial setting of time and calendar. $(8:00\rightarrow 12:00)$

Note: When the operation can not be completed within 3.8 msec., check BUSY bit.

5.Flow chart of reading

(1) Typical application of reading time and calendar.

(2) Typical application of reading RAM.

(3) Typical application of reading time & calendar BUSY fall.

— 16 ----

Power source and chip select

1. Starting time of access

When interfacing the CPU after power has been turned on, please leave it in stand-by for at least 3 seconds (the rise time is necessary when oscillating circuit is turned on).

System voltage supply (Main)	Release voltage
CS ₁ (Voltage detecter ou	(Undefined)
	(Undefined)
	Interface is impossible

This 3 seconds stand-by period is unnecessary when voltage is already being applied from the back-up battery, but if it is not being backed up, it is necessary for proper functioning.

ساليزر

2. CS1 and CS0 operation

CS0 terminal can be used on floating state during CS1 is kept low. However, CS1 terminal must not be used on floating state, because it makes large current consumption. So, this is cause of short life of back up battery. When CS1 goes to low, it disables interfacing, both SOUT and TPOUT terminal goes to high impedance.

3. System power down during operation

When power goes down and CS1 goes low during RTC has interfacing with CPU, the interfaced datta will be invalid. So after power turns on again, SOUT terminals output will be unstable after one cycle just CS1 fixed to high.

4. Power and CS1 operation

VDD voltage level goes to battery's level due to system power down. CS1 should be low before VDD goes down (See <A> point as follows). When power turned on again, CS1 should be high after power over a level. (See point as follows.)

(1) Timing chart of system power supply

--- 18 ----

(2)The figure below the circuits near inputs

5. Example of connecting the RTC to the power supply circuit

(1) Frequency-temperature characteristics

characteristics.

 Example of the current consumption /voltage characteristics.

C

3

 $Ta = 25^{\circ}C$

CS1 = 0V

0

0

6 [V]

Supply Voltage

0

5

(4) Note

The data shows the standard values for sample lot. For the rated values, see the specifications.(Please refer to of page 3 to 5)

--- 20 ---