Die **Hydronium-Ionen-Konzentration** wird oftmals nur als **Wasserstoffionenkonzentration** [H[†]] bezeichnet.

Vielfach wird der Übersichtlichkeit halber nur H⁺ geschrieben.

Konjugierte Säure-Base-Paare (durch Rückreaktionen)

Bei der Dissoziation einer Säure wie HCl nimmt H₂O ein Proton auf. H₂O reagiert also als Base:

HCl +
$$H_2O$$
 \longrightarrow H_3O^+ + $C\Gamma$
Säure 1 Base 2

Die Protonenabgabe einer Säure oder die Protonenaufnahme einer Base ist eine reversible Reaktion. Bei HCl reagiert bei der Rückreaktion das Chlorid-Ion als Base und das Hydronium-Ion als Säure:

$$H_3O^+ + Cl^- \longrightarrow HCl + H_2O$$

Säure 2 **Base 1**

Es stellt sich ein Gleichgewicht zwischen Hin- und Rückreaktion ein. HCl und C Γ sind ein konjugiertes Säure-Paar, ebenso H_3O^+ und H_2O . Durch Doppelpfeile wird ausgedrückt, dass Hin- und Rückreaktion gleichzeitig ablaufen:

$$HCI + H_2O$$
 \Rightarrow $H_3O^+ + CI^ HCI$ Säure Säure 1 Base 2 Säure 2 Base 1 CI^- : cI^- : cI^- :

Ein konjugiertes Säure-Base-Paar unterscheidet sich also um ein Proton.

Die allgemeine Schreibweise des Dissoziationsgleichgewichts einer Säure in wässriger Lösung sieht folgendermassen aus:

$$HA + H_2O = H_3O^+ + A^-$$

Beispiel für Basen: Bei Ammoniak wird bei der Rückreaktion das Ammonium-Ion zur Säure und das Hydroxid-Ion zur Base:

$$NH_3 + H_2O$$
 \longrightarrow $OH^- + NH_4^+ : NH_4^+ : NH_3$: Base

Base 1 Säure 2 Base 2 Säure 1 OH^- : konjugierte Base der Säure H_2O

Die allgemeine Schreibweise der Gleichgewichtsreaktion einer Base in wässriger Lösung lautet:

$$B + H_2O$$
 \rightarrow $HB^+ + OH^-$