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Abstract—This paper considers the problem of obtaining good  There is a considerable body of work on attitude recon-
attitude estimates from measurements obtained from typical low struction for robotics and control applications (for example
cost inertial measurement units. The outputs of such systems [1]-[4]). A standard approach is to use extended stochastic
are characterised by high noise levels and time varying additive . . . . o
biases. We formulate the filtering problem as deterministic linear gsymatlon techniques [5]_’ [6]. An altern.atlve IS to use
observer kinematics posed directly on the special orthogonal deterministic complementary filter and non-linear observer
group SO(3) driven by reconstructed attitude and angular ve- design techniques [7]-[9]. Recent work has focused on some
locity measurements. Lyapunov analysis results for thg .proposed of the issues encountered for low cost IMU systems [9]-
observers are derived that ensure almost global stability of the [12] as well as observer design for partial attitude estimation

observer error. The approach taken leads to an observer that we . L
term the direct complementary filter By exploiting the geometry [13]-[15]. It is also worth mentioning the related problem of

of the Specia| orthogona| group a related observer’ termed the fusing IMU and vision data that is receiVing recent attention
passive complementary filteis derived that decouples the gyro [16]-[19] and the problem of fusing IMU and GPS data [9],
measurements from the reconstructed attitude in the observer [20]. Parallel to the work in robotics and control there is
inputs. Both the direct and passive filters can be extended to 5 gjgnificant literature on attitude heading reference systems

estimate gyro bias on-line. The passive filter is further developed L .
to provide a formulation in terms of the measurement error that (AHRS) for aerospace applications [21]. An excellent review

avoids any algebraic reconstruction of the attitude. This leads to Of attitude filters is given by Crassidet al. [22]. The recent

an observer on SO(3), termed the explicit complementary filter interest in small low-cost aerial robotic vehicles has lead to a
that requires only accelerometer and gyro outputs; is suitable renewed interest in lightweight embedded IMU systems [8],
for implementation on embedded hardware; and provides good [23]-[25]. For the low-cost light-weight systems considered,

attitude estimates as well as estimating the gyro biases on-line. . S . e
The performance of the observers are demonstrated with a set linear filtering techniques have proved extremely difficult

of experiments performed on a robotic test-bed and a radio 10 apply robustly [26] and linear single-input single-output

controlled unmanned aerial vehicle. complementary filters are often used in practice [25], [27]. A
Index Terms—Complementary filter, nonlinear observer, atti- K€Y issue is on-line identification of gyro bias terms. This
tude estimates, special orthogonal group. problem is also important in IMU callibration for satellite
systems [5], [21], [28]-[31]. An important development that

. INTRODUCTION came from early work on estimation and control of satellites

jwas the use of the quaternion representation for the attitude

HE recent proliferation of Micro-Electro-Mechanica . . :
Systems (MEMS) components has lead to the devé?:_nematlcs [30], [32]-[34]. The non-linear observer designs

opment of a range of low cost and light weight inertianat are based on this WOI"k have'strolng robustness properties
measurement units. The low power, light weight and p ind deal well with the bias estimation problem [9], [30].

tential for low cost manufacture of these units opens up owe\é%r, apdart from the tearllelz(r wo_rk Of thte suthors [1347]
wide range of applications in areas such as virtual real 1, [36] and some recent work on invariant observers [37],

and gaming systems, robotic toys, and low cost mini-aeri 38] there appears to be almost no work that considers the

vehicles (MAVs) such as the Hovereye (Fig. 1). The sign qrmulation of non-linear attitude observers directly on the
output of low cost IMU systems, however, is characterisélf]"i‘tr')t(hl_"e'group repretszntamon d(ﬁO.(?’)' f i titud
by low-resolution signals subject to high noise levels as wel N IS paper we study the design ot non-inear atiitude
as general time-varying bias terms. The raw signals must paservers 0FO(3) in a general setting. We term the proposed

processed to reconstruct smoothed attitude estimates and b gg_e rverscomplementary f|lter$)ecause of the s!m||ar|ty of
corrected angular velocity measurements. For many of t architecture to that of linear complementary filters (cf. Ap-

low cost applications considered the algorithms need to rﬁﬁnd'x A), although, for the non-linear case we do not have

on embedded processors with low memory and processfi\ requency dqmaln interpretation. A gene_ral formulation of
resources the error criterion and observer structure is proposed based

on the Lie-group structure a$O(3). This formulation leads
R. Mahony is with Department of Engineering, Australian National Uniyg tg propose two non-linear observersSJ@(?)), termed the
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T. Hamel is with I3S-CNRS, Nice-Sophia Antipolis, France. e—mail.dweCt Complementary filteand passive Complementary filter
thamel@i3s.unice.fr . The direct complementary filter is closely related to recent
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Fig. 1. The VTOL MAV HoverEy&® of Bertin Technologies.

We do not know of a prior reference for the passive complé: suite of experimental results, obtained during flight tests
mentary filter. The passive complementary filter has seveddl the Hovereye (Fig. 1), are provided in Section VI that
practical advantages associated with implementation and lademonstrate the performance of the proposed observers. In
sensitivity to noise. In particular, we show that the filter caaddition to the conclusior§¥Il) there is a short appendix on

be reformulated in terms of vectorial direction measuremerisear complementary filter design and a second appendix that
such as those obtained directly from an IMU system; @rovides the equivalent quaternion formulation of the proposed
formulation that we term thexplicit complementary filteThe observers.

explicit complementary filter does not require on-line algebraic

reconstruction of attitude, an implicit weakness in prior work

on non-linear attitude observers [22] due to the computational  |l. PROBLEM FORMULATION AND NOTATION.

overhead of the calculation and poor error characterisation of _ o

the constructed attitude. As a result the observer is ideafly Notation and mathematical identities

suited for implementa.tion on t—_zmbgdded _hardware platforms.1pe special orthogonal group is denot§@(3). The asso-
Furtherm_ore, the_ relat|v9 contribution of different data can kl‘?ated Lie-algebra is the set of anti-symmetric matrices
preferentially weighted in the observer response, a property

tha_lt allows the_ Qesigner to adjust _fo_r application spe(_:ific s0(3) = {[A e R¥3 | A= AT}

noise characteristics. Finally, the explicit complementary filter

remains well defined even if the data provided is insufficiept,, any two matricesd, B € R™ " then the Lie-bracket (or

to algebraically reconstruct the attitude. This is the case, fatrix commutator) i§A, B] = AB — BA. LetQ € R3 then
example, for an IMU with only accelerometer and rate gyrQe define ’

sensors. A comprehensive stability analysis is provided for
all three observers that proves local exponential and almost 0 —Q3 Q
global stability of the observer error dynamics, that is, a stable 0, = Qs 0 -0
linearisation for zero error along with global convergence

o2 " —Qs 0
of the observer error for all initial conditions and system

trajectories other than on a set of measure zero. Al'thouggr anyw € R3 then. v — O x v is the vector cross product
2 <V = .

the principal results of the paper are presented in the mauﬁ%e operator vexso(3) — R? denotes the inverse of the
Lie group representation #0(3), the equivalent quaternion ) x

representation of the observers are presented in an appen(()jl?f'.rator
The authors recommend that thg quaternion representations are vex(Qy) = 9, O € RP.
used for hardware implementation.

vex(A)x = A, A € 50(3)

The body of paper consists of five sections followed by a
conclusion and two appendices. Section Il provides a quickFor any two matricesA, B € R™*" the Euclidean matrix
overview of the sensor model, geometry §0(3) and in- inner product and Frobenius norm are defined
troduces the notation used. Section Il details the derivation
of the direct and passive complementary filters. The develop-
ment here is deliberately kept simple to be clear. Section IV
integrates on-line bias estimation into the observer design and
provides a detailed stability analysis. Section V develops the
explicit complementary filtera reformulation of the passive
complementary filter directly in terms of error measurements.

n

((A,B)) =tr(A"B) = Y A;;B;;
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The following identities are used in the paper Accelerometer:Denote the instantaneous linear acceleration
B T 3 of { B} relative to{ A}, expressed id A}, by v. An ideal

(Rv)x = Rox R, Re€S0(3),ve Rg accelerometer, ‘strapped down’ to the body-fixed-frame

(v X w)x = [vx, wx] v,weR {B}, measures the instantaneous linear acceleration of

7 1 {B} minus the (conservative) gravitational acceleration

_ _ = 3
viw = (w) = 5o wx), v,wER field g, (where we considey, expressed in the inertial
Ty = o2 = }HUXHQ v eR? frame {A}_), and provides a measurement expressed in
2 ’ the body-fixed-framg B}. In practice, the output from
((A,vx)) =0, A=AT cR3 veR? a MEMS component accelerometer has added bias and
tr([A, B]) =0, A,B e R¥? noise,

. . . a:RT(@_QO)+ba+/¢Lav
The following notation for frames of reference is used
« {A} denotes an inertial (fixed) frame of reference.
« {B} denotes a body-fixed-frame of reference.
« {E} denotes the estimator frame of reference.
Let P,, P, denote, respectively, the anti-symmetric and a
symmetric projection operators in square matrix space Vg = W ~ —RTe;
a
1 1
P,(H) = i(H - H"), P (H) = §(H+HT). as a low-frequency estimate of the inertialaxis ex-
i , pressed in the body-fixed-frame.
Let (¢,a) (la| = 1) denote the angle-axis coordinates ofagnetometer:The magnetometers provide measurements of

whereb, is a bias term ang, denotes additive measure-
ment noise. Normally, the gravitational field = |goles
where |go| ~ 9.8 dominates the value of for low
frequency response. Thus, it is common to use

R € SO(3). One has [39]: the magnetic field
R= exp(@ax), log(R) = bax m = RTAm + B, + Ly
1 .
cos() = 5 (r(R) 1), Pa(R) = sin(0)ax. where 4m is the Earths magnetic field (expressed in

the inertial frame),B,, is a body-fixed-frame expres-
sion for the local magnetic disturbance ang denotes
measurement noise. The noigg is usually quite low

for magnetometer readings, however, the local magnetic
disturbance can be very significant, especially if the IMU
is strapped down to an MAV with electric motors. Only

are termedasvmptotically dependerif there exists a non- the direction of the magnetometer output is relevant for
ymprtotically dep X! attitude estimation and we will use a vectorial measure-

degenerate functiorf, : M, x M, — R and a timeT" such
ment
that for anyt > T' m

Ffolz(t),y(t) = 0. " ml

By the term non-degenerate we mean that the Hessiaf of The measured vectors, andv,, can be used to construct

at any p(_)int(x,_y) s full rgnk. The two signals are termed, , j,qtantaneous algebraic measurement of the rotétfn
asymptotically independeiritt for any non-degenerat¢; and (B} — {4}

any T there existsy > T with fi(x(t1),y(t1)) # 0.

For anyR € SO(3) then3 > tr(R) > —1. If tr(R) = 3 then
6 = 0 in angle-axis coordinates anl = I. If tr(R) = —1
thend = 4+, R has real eigenvalued, —1,—1), and there
exists an orthogonal diagonalising transformatiore SO(3)
such thatU RUT = diag(1, -1, —1).

For any two signalsc(t) : R — M., y(t) : R — M,

in the following development

R, = in_ (Mles — Rua|® + Xa|v), — Rup|?) = 4R
y=arg min - (Mes = Rual* + dolof, — Rom*) = 3
B. Measurements

where v} is the inertial direction of the magnetic field in

The measurements .available from a .typical inertial megso locality where data is acquired. The weights and o
surement unit are 3-axis rate gyros, 3-axis accelerometers apd cosen depending on the relative confidence in the sensor
3-axis magnetometers. The reference frame of the strap doy{fints. Due to the computational complexity of solving an op-
IMU is termed the body-ﬂ_xed-frame}. The inertial frame imisation problem the reconstructed rotation is often obtained
is denoted{A}. The rotationz = ;R denotes the relative j, 5 synoptimal manner where the constraints are applied in
orientation of{ 3} with respect to{A}. sequence; that is, two degrees of freedom in the rotation matrix
Rate Gyros:The rate gyro measures angular velocity{@f} are resolved using the acceleration readings and the final

relative to {A} expressed in the body-fixed-frame ofdegree of freedom is resolved using the magnetometer. As a
reference{ B}. The error model used in this paper is consequence, the error properties of the reconstructed attitude
OV = Q+b+peR? R, can be difficult to characterisg. Moreover, if gither mag-
netometer or accelerometer readings are unavailable (due to
where Q@ € {B} denotes the true valug; denotes local magnetic disturbance or high acceleration manoeuvres)
additive measurement noise ahdenotes a constant (orthen it is impossible to resolve the vectorial measurements into
slowly time-varying) gyro bias. a unique instantaneous algebraic measurement of attitude.
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C. Error criteria for estimation onSO(3) as a non-linear approximation of the error betwe@nand
Let ik denote an estimate of the body-fixed rotation matri;? as measured from the frame of reference associated with

R = 4AR. The rotationR can be considered as coordinate&- In practice, it will be implemented as an error between a
for the estimator frame of referendd}. It is also associated Measured estimat&, of R and the estimaté.

with the frame transformation The goal of the observer design is to find a simple expres-
s sion forw that leads to robust convergence®f— I. In prior
R=gpR:{E} — {A} work [35], [36] the authors introduced the following correction
The goal of attitude estimate is to drivE — R. The term . - A
estimation error used is the relative rotation from body-fixed- w = Vex(Po(R)) = vex(Po (L Ry)) @)
frame {B} to the estimator fram¢ £’} This choice leads to an elegant Lyapunov analysis of the
R.—RTR R=ER: (B} - (B} @ filter stability. Differentiating the storage function Eg. 2 along

trajectories of Eq. 5 yields
The proposed observer design is based on Lyapunov stabil-

B k ~
ity analysis. The Lyapunov functions used are inspired by thgr = — §tr(R) = _713” (wZR)
cost function
kp, [ 70 A - kp, [ oo =
1 . 1 . . = ——1tr |wy, (Ps(R) + Po(R))| = ——tr |w P, (R)
Fui= 11— RI? = St ((5s = B (I - R)) 2 % ] | =-Fulwird)]
L, — B) @ =~ (e Pa(R)) = —kplwf* ®)
= — 3 —
2 In Mahony et al. [35] a local stability analysis of the filter
One has that dynamics Eq. 5 is provided based on this derivation. In Section

IV a global stability analysis for these dynamics is provided.
We term the filter Eq. 5 @omplementary filter orbO(3)

whered is the angle associated with the rotation fr¢i} to since it recaptures the block diagram structure of a classical

frame { E}. Thus, driving Eq. 2 to zero ensures tifat> 0.  complementary filter (cf. Appendix A). In Figure 2: Th&*”

Fo— %tr([ _R) = (1—cos(8)) = 2sin(6/2)%.  (3)

Q
[1l. COMPLEMENTARY FILTERS ONSO(3)

Maps angular velocit,

In this section, a general framework for non-linear comple-R B2 | into comeet fram of reference
mentary filtering on the special orthogonal group is introduced. (Re2) | Mope amsulas velocity
The theory is first developed for the idealised case wiidte Difference operation oo TS0
andQ(t) are assumed to be known and used to drive the filterz I - e — &
dynarr(1i2:s. Filter design for real world signals is considered inaag%7a
|later sections. onto Ty SO(3). kinematics

The goal of attitude estimation is to provide a set of
dynamics for an estimaté&(t) € SO(3) to drive the error Inverse operation
rotation (Eq. 1)R(t) — I5. The kinematics of the true system on S0®
are . Fig. 2. Block diagram of the general form of a complementary filter on

R=RQyx = (RQ)«xR (4) so@).

where 2 € {B}. The proposed observer equation is posed . . . . .
directly as a kinematic system for an attitude estim&ten Operation is an inverse operation S0(3) and is equivalent to

. O o ‘_’ operation for a linear complementary filter. The* R,’
SO(3). The observer kinematics include a prediction terr% ope 6.“0 orafinear compieme tary filter. Tha R’/

: . ._gperation is equivalent to generating the error tegm-‘z".
based on th&) measurement and an innovation or correcti ~

termw := w(R) derived from the erroz. The general form he two operat|0_n§Da(R) ar_wd (R€2) are maps from err.or
. space and velocity space into the tangent spacé&®f3);
proposed for the observer is

operations that are unnecessary on Euclidean space due to the
Jiz = (RQ+ kPRw)xR, ]:3(0) = Ry, (5) identification 7,R™ = R". The kinematic model is the Lie-
. group equivalent of a first order integrator.
wherekp > 0 is a positive gain. The terfi() + kpliw) € To implement the complementary filter it is necessary to
{A} is expressed in the inertial frame. The body-fixed-fram@ap the body-fixed-frame velocify into the inertial frame. In
angular velocity is mapped back into the inertial fraf® = practice, the ‘true’ rotatior® is not available and an estimate
RQ. If no correction term is usedipw = 0) then the error of the rotation must be used. Two possibilities are considered:

rotation i is constant, direct complementary filter: The constructed attitudg, is

é :RT(RQ)zR n RT(RQ)XR used to map the velocity into the inertial frame
=R" (—(RQ)x + (RQ)x) R =0. (6) R = (R, + kpRw)« R.
The correction termw := w(R) € {E} is considered to A block diagram of this filter design is shown in Figure

be in the estimator frame of reference. It can be thought of 3. This approach can be linked to observers documented
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in earlier work [30], [32] (cf. Appendix B). The approachthe architecture shown in Figure 5. The passive complementary
has the advantage that it does not introduce an additiofiier avoids coupling the reconstructed attitude noise into the
feedback loop in the filter dynamics, however, higlpredictive velocity term of the observer, has a strong Lyapunov
frequency noise in the reconstructed attituitg will  stability analysis, and provides a simple and elegant realisation
enter into the feed-forward term of the filter. that will lead to the results in Section V.

Qy Qy

| RyQy : | (D
Ry (RyS2y) x }L Mﬂ R = RA i

N R - + [ N R
T —
RTR, Po(R) %? R=AR iRT

BT Fig. 5. Block diagram of the simplified form of the passive complementary
filter.

Fig. 3. Block diagram of the direct complementary filter 86 (3).

passive complementary filter: The filtered attitude? is used IV. STABILITY ANALYSIS

in the predictive velocity term In this section, the direct and passive complementary filters

. (RQ, + kpRw)x 1. @ ©n S'O(S).are exten'ded to provide on-line estimation of time-
varying bias terms in the gyroscope measurements and global

A block diagram of this architecture is shown in Figure 4stability results are derived. Preliminary results were published

The advantage lies in avoiding corrupting the predictivia [35], [36].

angular velocity term with the noise in the reconstructed For the following work it is assumed that a reconstructed

pose. However, the approach introduces a secondagyation R, and a biased measure of angular velo¢¥y are

feedback loop in the filter and stability needs to bavailable

proved. . .
R, = R, valid for low frequencies (11a)
Qy M aa. | Q,rQ+0b for constant bias. (11b)
@‘ The approach taken is to add an integrator to the compensator
(F) term in the feedback equation of the complementary filter.

Ry — I3 - I I Let kp, kr > 0 be positive gains and define
—< RTR P, (R) : >T"eR=AR[—t— . . . . .
Ta Direct complementary filter with bias correction:

AT R= (Ry(Qy A kpﬁzw) R, R(0) = R, (122)
X
Fig. 4. Block diagram of the passive complementary filterS(3). B = —kw, E(O) = 2’07
(12b)
A key observation is that the Lyapunov stability analysis in = w = vex(P,(R)), R=R'R,. (12¢)

Eq. 8 is still valid for Eq. 9, since ] ) ) ) )
Passive complementary filter with bias correction:

. 1 X 1 ~ ~
By =— =t =——tr(—(Q+k Q P . . .
tr 5 r(R) 5 M(—(Q+ kpw)x R+ RQ) R= R(Qy —b—|—kpw> . R0)=Ry, (13a)
X

_ 1 > kp TPy 2 .
= —t([R,Q]) = Ftr(wi R) = —kplwl”, b= —kw, b(0) = by,  (13b)
using the fact that the trace of a commutator is zero, w = vex(Py(R)), R=R"R,. (13c)
tr([R,Qx]) = 0. The filter is termed g@assivecomplimentary
filter since the cross coupling betweéh and & does not The non-linear stability analysis is based on the idea of an
contribute to the derivative of the Lyapunov function. A globaidaptive estimate for the unknown bias value.
stability analysis is provided in Section IV. Theorem 4.1:[Direct complementary filter with bias
There is no particular theoretical advantage to either tg@rrection.] Consider the rotation kinematics Eq. 4 for a
direct or the passive filter architecture in the case where ex#Bte-varying k(t) € SO(3) and with measurements given
measurements are assumed. However, it is straightforward?¥ EQ. 11. Let(R(t),b(t)) denote the solution of Eq. 12.

see that the passive filter (Eq. 9) can be written Define error variables? = R”R andb = b — b. Define
o ) U C 50(3) x R® by
R = R(Qy + kpPa(R)). (10)

This formulation suppresses entirely the requirement to repre-

sentQ) andw = kpP,(R) in the inertial frame and leads toThen:

U= {(R, )| tr(R) = —1,P,(bxR) = o}. (14)
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1) The setU is forward invariant and unstable with respectWe verify that Eq. 19 is also a general solution of Eqn’s 15

to the dynamic system Eq. 12. and 12b. Differentiating tR) yields
2) The error(R(t),b(t)) is locally exponentially stable to d . } o
(1,0). o %tr(R) = —tr(bx exp(—tbx ) Ro)
3) For almost all initial conditiong 2o, by) ¢ U the trajec- - -
tory (R(t),b(t)) converges to the trajectoy(), b). —tr (exp(—ti)x) (bx Ro + Robx)>
Proof: Substituting for the error model (Eq. 11), Equation 2
12a becomes —tr (exp(_téx)pa(gxéo)) =0,
R= (R(Q +b) + k’Pf%w)X R. where the second line follows sinck, commutes with
exp(bx) and the final equality is due to the fact that
Differentiating R it is straightforward to verify that Pa(bxRo) = 0, a consequence of the choice of initial

conditions (Ry, by) € U. It follows that t{R(t)) = —1 on
5 5 75 solution of Eq. 19 and hence = 0. Classical uniqueness
R=—-k R—b.R. 15 ) . .

Pex * (15) results verify that Eq. 19 is a solution of Eqn’s 15 and 12b. It
remains to show that such solutions remairlidfor all time.
The condition onR is proved above. To see thag (bx R) =0
we compute

A (b ) = —Po (B2 1) = —Py (b BT = 0

Define a candidate Lyapunov function by

1 A 1 -
= —tr(I3 — — b2 =Ey+—b> @
V= gtrlls — B) + oo ot o 7 (16)

Differentiating V' one obtains ~ dt~
asR = RT. This proves thall is forward invariant.
Vo _ ltr(f%) _ L Applying LaSalle’s principle to the solutions of Eg. 12 it
kr follows that either( R, b) — (I,0) asymptotically or( R, b) —
_ L (kPwXRJr EXR) _ i@’ 13) (R.(t), bo) where (R.(t),bo) € U is a solution of Eq. 18.
2 kr To determine the local stability properties of the invariant
_ —kp = = sets we compute the linearisation of the error dynamics. We
2 {{wx, Pa(R) + Ps(R))) will prove exponential stability of the isolated equilibrium
Lz > > Loz int (1,0) first and then return to prove instability of the
— (b, Pa(R) + Py(R))) — — (b, b point (Z, P y
2<< xoPalR) + P (R))) k1< ) setU. Definez,y € R® as the first order approximations of

R andb around(I, 0)

- ~ 1 ~ =
= —kp(w, vex(Pu(R))) — (b, vex(Pa(R)) — —(b,b)
! R~ (I+zy), Ty € 50(3) (20a)
Substituting forb andw (Eqn’s 12b and 12c) one obtains b= —y. (20b)
V = —kplw|? = —kp|vexP,(R)[? 17) The sign change in Eq. 20b simplifies the analysis of the

linearisation. Substituting into Eq. 15, computihgand dis-

Lyapunov’s direct method ensures thatonverges asymptoti- arding all terms of quadratic or higher order(in y) yields

cally to zero [40]. Recalling thatP, (R)|| = ﬁsin(&), where d [ z —kpls I .
(0, a) denotes the angle-axis coordinatesrofit follows that T ( ) = < b ) < ) (21)

w = 0 implies eitherR? = I, or log(R) = may for |a| = 1. t\ v —kily 0

In the second case one has the conditigfr— TTl- Note  For positive gainsip, k; > 0 the linearised error system is
thatw = 0 is also equivalent to requiring? = R” t0 be  gyrictly stable. This proves part ii) of the theorem statement.

symmetric. 3 _ _ o To prove thatU is unstable, we use the quaternion formu-
It is easily verified tha(Z,0) is an isolated equilibrium of |ation (see Appendix B). Using Eq. 49, the error dynamics of
the error dynamics Eq. 18. the quaternionj = (3, o) associated to the rotatioR is given

From the definition ofU one has thay = 0 on U. We will  py
prove thatU is forward invariant under the filter dynamics

Eqn’s 12. Settingo = 0 in Eq. 15 and Eq. 12b yields § = %(kpg\f;ﬁ +07b), (22a)
R=—bR,  b=0. (18) b = ki, (220)
o= —5(5(6 + kp30) + b x 9), (22¢)

For initial conditions(Ry, by) = (Ro, by) € U the solution of

Eq. 18 is given by It is straightforward to verify that the invariant set associated
to the error dynamics is characterised by

R(t) = exp(—thx) Ro, b(t) = bo, (Ro,bo) € U. -

(19) U= {(sv b)

5=0,[7] :1,5%:0}
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Definey = 575, then an equivalent characterisation@fis error variables? = R” R andb = b — b. Assume thaf2(¢) is
given by (5,y) = (0,0). We study the stability propertiesa bounded, absolutely continuous signal and that the pair of

of the equilibrium (0,0) of (5,y) evolving under the filter signals(Q(t), R) are asymptotically independent (sg&A).
dynamics Eq. 12. Combining Eq. 22¢ and 22b, one obtaibefine Uy C SO(3) x R® by

the following dynamics for . - -
g dynamics fol Up = {(R,b) tr(R) = —1,b= 0} . (23)
g =Tb+ b7
R s Then:
= k18[0]" — 358[b|° — 5kpS7y 1) The sefl is forward invariant and unstable with respect

Linearising around small values ¢f,%) one obtains to the dynamic system 13.

. L ) : 2) The error(R(t),b(t)) is locally exponentially stable to

5\ _ kP 2 5 (1,0). o

n kr — jbo)? 0 y 3) For almost all initial conditiong Ry, by) ¢ Uy the tra-

jectory (R(t), b(t)) converges to the trajectofyR(t), b).
Proof: Substituting for the error model (Eq. 11) in Eqgn’s
13 and differentiatingR, it is straightforward to verify that

Since K p and K are positive gains it follows that the lineari-
sation is unstable around the poifit 0) and this completes
the proof of part i).

The linearisation of the dynamics around the unstable set is R= [R Q] — kpwy R — by R, (24a)
either strongly unstable (for large values|@f|?) or hyperbolic -
(both positive and negative eigenvalues). Sibgelepends on b=kw (24D)
the initial condition then there there will be trajeCtOfieS thathe proof proceeds by differentiating the Lyapunov-”ke func-
converge tdU along the stable centre manifold [40] associategbn Eq. 16 for solutions of Eq. 13. Following an analogous
with the stable direction of the linearisation. From classicglerivation to that in Theorem 4.1, but additionally exploiting
centre manifold theory it is known that such trajectories atfe cancellation tf2,.]) = 0, it may be verified that
measure zero in the overall space. Observing in addition that . 9 < o
U is measure zero iSO(3) x R? proves part iii) and the full V = —kplw|” = —kp|vex(Pu(R))]
proof is complete. B whereV is given by Eq. 16. This boundg(t) < V(0), and

The direct complimentary filter is closely related to quateft follows b is bounded. LaSalle’s principle cannot be applied
nion based attitude filters publlshed over the last fifteen yeajﬁecﬂy since the dynamics Eq. 24a are not autonomous. The
[9], [30], [32]. Details of the similarities and differences isunction V is uniformly continuous since the derivative
given in Appendix B where we present quaternion versions of | _ _ . _
the filters we propose in this paper. Apart from the formulation V = —kpPa(R)" (]P’a([R, Qx]) = Po((kpw — b)x)R>
directly on SO(3), the present paper extends earlier wor
by proposing_globally defined observer dynamic; and a f&symptotic convergence of — vex(P, (R)) to zero.
global analysis. To the authors best understanding, all PrOMyirect substitution shows thati? 5) — (1,0) is an equilib-
published algorithms depend on a &g@nterm that is discon- ” m point of Eq. 24. Note thaonvc U (E’q. 14) and hence

tinuous onU (Eq. 14). Given that the observers are not well'— 5 onw (Th. 4.1) For(f% 13) € U, the error dynamics
defined on the sét/ the analysis for prior work is necessarilyl%q_24 become ’

non-global. However, having noted this, the recent work o . ) .
Thienelet al. [30] provides an elegant powerful analysis that R =[R,Q«], b=0.
tran;forms the observer error Qyngmlcs mtq a linear “mﬁ‘he solution of this ordinary differential equation is given by
varying system (the transformation is only valid on a domain

on SO(3) x R* — 1) for which global asymptotic stability is s _ ~ _ K

proved. This analysis provides a global exponential stability R(t) = exp(—A(t)) Ro exp(A(t)),  A(t) = 0 Qcdr.
undgr the assumption thqt the_obsgrver error trajectory d%ﬁceA(t) is anti-symmetric for all time thenxp(—A(1)) is
not intersectU. In all practical situations the two approaCheBrthogonal and sincexp(—A(t)) = exp(A(#)) it follows R

are heq“"’a'e_”t- - o , is symmetric for all time. It follows thab, is forward invariant
The remainder of the section is devoted to proving an angfzjer the filter dynamics Eq. 13. We prove by contradiction

ogous result to Theorem 4.1 for the passive complementapy 1y ' [ is the largest forward invariant set of the closed-
filter dynamics. In this case, it is necessary to deal W"ilaop dynamics Eq. 13 such that = 0. Assume that there

non-autonomous terms in the error dynamics due to passig;q (Ro,bo) € U — Uy such that(R(t), b(t)) remains inU
coupling of the driving ternf2 into the filter error dynamics. for all tir;1e. One has thaP (5 R) _ (’) on this trajectory.
Interestingly, the non-autonomous term acts in our favour e

disturb the forward invariance properties of the BefEq. 14)
and reduce the size of the unstable invariant set.

uniformly bounded. Applying Barbalat's lemma proves

Ef’onsequently,

_ ntset.  Lp G Ry = B[R Q) — P ROT)
Theorem 4.2:[Passive complementary filter with bias dt .

correction.] Consider the rotation kinematics Eq. 4 for a = Pa(bx[R, Qx])

time-varying R(t) € SO(3) and with measurements given by

1
Eq. 11. Let(R(t),b(t)) denote the solution of Eq. 13. Define 2
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where we have used passive dynamics by the independent driving tétrprovides
- - - a disturbance that ensures that the adaptive bias estimate
2Pa(bx R) = bx R+ Rbx =0, (26) converges to the true gyroscopes’ bias, a particularly useful
several times in simplifying expressions. Sin@@(¢), R(¢)) Property in practical applications.
are asymptotically independent then the relationship Eq. 25
must be degenerate. This implies that there exists a fime V. EXPLICIT ERROR FORMULATION OF THE PASSIVE

such that for allt > T thenb(t) = 0 and contradicts the COMPLEMENTARY FILTER

assumption. _ o , A weakness of the formulation of both the direct and passive
It follows that either (R,b) — (I,0) asymptotically or 5nq complementary filters is the requirement to reconstruct an

(R,b) = (R.(1),0) € Uo. estimate of the attitude,, to use as the driving term for the

Analogously to Theorem 4.1 the linearisation of the ermqly o gynamics. The reconstruction cannot be avoided in the
dynamics (Eq. 24) a(I,g) is computed. LetR ~ I + =x gjrect filter implementation because the reconstructed attitude
andb ~ —y for z,y € R". The linearised dynamics are th§g 4150 used to map the velocity into the inertial frame. In this

time-varying linear system section, we show how the passive complementary filter may be
d ( x ) ( —kpls — Q(t)x I ) ( T ) reformulated in terms of direct measurements from the inertial
- = unit.
@\ v —hils 0 y Let vo; € {A}, i = 1,...,n, denote a set of known
Let |2may denote the magnitude bound éhand choose inertial directions. The measurements considered are body-
fixed-frame observations of the fixed inertial directions

042(|Qmax‘2 + k[)

ag >0, ap> 4]@3 s v; = RT'UOi o, v € {B} (29)
o1t hpay as < 2T kpas + [Omad 2 where z; is a noise process. Since only the direction of the
kr k1 k1 measurement is relevant to the observer we assume@ithiat
Set P, () to be matrices 1 and normalise all measurements to engurg= 1.
o arls  —anls o- kpar — asks  —an|Qmad Let R be an estimate oR. Define
—aol;3 asls )’ _062|Qma><‘ a2 V; = RTU(),'

(27)

It is straightforward to verify that? and Q are positive to be the associated estimate«f For a single direction;,
definite matrices given the constraints om;, s, a3}. Con- the error considered is

sider the cost functiodV = 1¢7P¢, with € = (z,y)7T.

Differentiating W yields B =1 — cos(Lvi, ;) = 1 — (vi, 05)

W - _ (kPOél _ anI)‘xP _ a2|y|2 which yleldS )
+ yTx(al +kpag — azkr) + azyT(Q X x) (28) Ei=1- tr(RT'UOz‘UoTiR) =1- tr(RRTUOiU&R)
It is straightforward to verify that For multiple measures; the following cost function is con-
sidered
4 (erpg) < ~2(el @ d -
dt - ’ lyl )’ Emes= Y _kiEi =Y ki —tr(RM), k>0, (30)
i=1 =1

This proves exponential stability of the linearised system at
(LO). where
The linearisation of the error dynamics on a trajectory in
Uy are also time varying and it is not possible to use the
argument from Theorem 4.1 to prove instability. However,
note thatV(R.,b.) = 2 for all (R,,b.) € U,. Moreover, Assume linearly independent inertial directi¢ny;} then the
any neighbourhood of a poirtR.,b,) € U, within the set matrix M is positive definite(A/ > 0) if n > 3. Forn = 2
SO(3) x R® contains points(R,b) such theV(R,b) < 2. then M is positive semi-definite with one eigenvalue zero.
Trajectories with these initial conditions cannot convergégo The weightsk; > 0 are chosen depending on the relative
due to the decrease condition derived earlier, and it follows thainfidence in the measuremenisFor technical reasons in the
Uy is unstable. Analogous to Theorem 4.1 it is still possiblproof of Theorem 5.1 we assume additionally that the weights
that a set of measure zero initial conditions, along with very; are chosen such thaf, has three distinct eigenvaluasg >
specific trajectorie€)(¢), such that the resulting trajectorieshs > As.
converge to toUy. This proves part iii) and completes the Theorem 5.1:[Explicit complementary filter with bias
proof. B correction.] Consider the rotation kinematics Eq. 4 for a time-
Apart from the expected conditions inherited from Theorarying R(t) € SO(3) and with measurements given by Eqgn’s
rem 4.1 the key assumption in Theorem 4.2 is the indepe2B and 11b. Assume that there are two or more,X 2)
dence ofQ2(¢) from the error signaﬁi. The perturbation of the vectorial measurements; available. Choosé:; > 0 such

M = RTMyR with M, = Zkivoivg; (31)
i=1
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that M, (defined by Eq. 31) has three distinct eigenvalue®ve prove next Eq. 35 implies eithét = I or tr(R) =—1.

Consider the filter kinematics given by SinceR is a real matrix, the eigenvalues and eigenvectors
R . . . . of R verify
R=R((Q=b)x +kp(wmedx ), R(0)=Fo (32a)
: Rz = Mz andzf R = A 2l (36)
b= —krwmes (32b)

where A} (for k = 1...3) represents the complex conjugate
Wies = _ kiv; X 1, k;>0.  (32c) of the eigenvalue\, andz! represents the Hermitian trans-
pose of the eigenvectas, associated ta;. Combining Eq. 35

and let(R(t), b()) denote the solution of Eqn's 32. Assuméd Ed. 36, one obtains

thatQ(_t) is a bounded, ggsolutely continttous eignal and that T RMay, = Mot M,
the pair of signalgQ(t), R*) are asymptotically independent o= " "B
(See§II-A) Then: Ty MR T = )\ka Mxk = )‘k Ty M:L'k
1) There are three unstable equilibria of the filter charagote that forn > 3, M > 0 is positive definite and
terised by ef Mz, > 0, Yk = {1,2,3}. One has\, = A\ for all k.
(R*“ 5*1') _ (UoDiUoTR b) i=1,2,3, In the case whem = 2, it is simple to verify that two_ of the
_ _ three eigenvalues are real. It follows that all three eigenvalues
where D, = diag(1, -1, 1), Dy = diag(—1,1,~1) of R are real since complex eigenvalues must come in complex
and D3 = diag—1,—1,1) are diagonal matrices with conjugate pairs. The eigenvalues of an orthogonal matrix are

entries as shown anlil, € SO(3) such thatM, = of the form
UoAUL where A = diag\1, A2, A\3) is a diagonal 3
matrix. eig(R) = (1, cos(f) + isin(f), cos(f) — isin(6)),
2) Th R(t),b(t)) is locall tially stable t
) (I, e))error(R( ) b(¢)) s locally exponentially stable to whered is the angle from the angle-axis representation. Given

that all the eigenvalues are real it follows titat= 0 or 6 =
+7. The first possibility is the desired ca$®,b) = (I,0).
The second possibility is the case Wher(el?t}: —1.

When wnes = 0 then Egn’'s 32 and Eqgn's 13 lead to
identical error dynamics. Thus, we use the same argument
as in Theorem 4.2 to prove that= 0 on the invariant set.

To see that the only forward invariant subsets are the unstable
equilibria as characterised in part i) of the theorem statement
The derlvat|ve ofV is given by we introduceR = RRT. Observe that

3) For almost all initial conditiongRo, by) # (RLR,b),
i=1,...,3, the trajectory(R(t), b(t)) converges to the
trajectory(R( ),b).

Proof: Define a candidate Lyapunov-like function by

V Z k RJ\/[ ?62 = Emes+ %52
1 1

. 2 ~ . D e h ~ ~ _ _
V=—tr (RM + RM) - —b"b RM =MRT = RM,= MyRT
I
~ = ~ 2~k . L= S
— —tr ([RM, Q] — (b + kpw BRM) — Zi7Th Analogous to Eq. 35, this implieR = I3 orftr(R) =—-1on
([ <= pUmes)x ) kr the setwmes= 0 and R = RT. SetR’ = Ul RU,. Then

Recalling that the trace of a commutator is zero, the derivative
of the candidate Lyapunov function can be simplified to obtain

)2 As M, has three distinct eigenvalues, it follows th‘ﬂt =0
)

RA—AR =0 = Vl,j ()\7 — )\J)R,/L =0

V = eptr ((wmed Pa(RM) )+ (BX <IP’,1(RM) ~ L,

k; for all i # j and thusR’ is diagonal. Therefore, there are

(33) four isolated equilibrium points?) = UyD;UL, i =1,...,3

Recalling the identities in Section II-A one may writges (where D; are specified in part i) of the theorem statement)

as and R’ = I that satisfy the conditionumes = 0. The case

n g } Ry = I = UgD4UJ (where Dy = I) corresponds to the

(wmedx = 3 EL(@wT vi0;") = Py (RM) (34)  equilibrium (R, b) = (I,0) while we will show that the other

i=1 three equilibria are unstable.

Introducing the expressions ofyes into the time derivative ~ We proceed by computing the dynamics of the filter in the
of the Lyapunov-like functiord/, Eq. 33, one obtains new R variable and using these dynamics to prove the stability

. . ) properties of the equilibria. The dynamics associatef tare
V = —kp|[Pa(RM)]|".

The Lyapunov-like function derivative is negative semi-R = RRT +RRT R .

definite ensuring thab is bounded. Analogous to the proof = ROQRT — R(Q+b)x RT — kpRP,(RM)RT

of Theorem 4.2, Barbalat's Iemma is invoked to show that  _ —Rb, RT — %pR(RM _ MRT)}?T

P,(RM) tends to zero asymptotically. Thus, fof = 0 one - " . N L
has = —Rby(R"R)RT — 22 R(R"MoR — R* MyR)R"

RM = MR”. (35) = —(Rb)xR — 2 (RMyR — M)
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Settingb = Rb, one obtains
= — — kP — —
R=—-bxR— ?(RMOR—MO). 37)
The dynamics of the new estimation error on the Biase
by = Rby RT + Rby RT + k; RPo(RM)R”
_ k . .
= [(RQ)x,by] + ?IR(RTMOR — R"MyR)R"

The combined error dynamic linearisation in the primed coor-
dinates is

.C'U, . kpA7 D,; :Z?l =1 4
y/ - k]AiDi Q/(t)x y/ ’ B e

(39)
To complete the proof of part i) of the theorem statement we
will prove that the three equilibria associated witR..;, b.;)
for i = 1,2, 3 are unstable. The demonstration is analogous to

_ kr - - the proof of the Chetaev's Theorem (see [40, pp. 111-112]).
= [(RQ)x, bx] + E(RMO — MoR") (38)  Consider the following cost function:
The dynamics of R,b) (Eqn’'s 37 and 38) are an alternative S — %klx/TAil,/ _ %|y/|2

formulation of the error dynamics tQR, b).

Consider a first order approximation ,b) (Egn’s 37 and
38) around an equilibrium pointRy, 0)

R:Ro(fg—i-l‘x), B:—y.
The linearisation of Eqg. 37 is given by
_ _ ko _ _ _
R =y Ro — - (Rowx MoRo + RoMoRoz ),
and thus
. = — k — —
iy = RIy Ry — 7P(33XMOR0 + MyRozy),
and finally
. k
U(?xx Uy = Di(U(;Fy)XDZ-—?P((U(;F;U)XADH_ADZ-(U(?JE)X)

for i = 1,...,4 and whereA is specified in part i) of the
theorem statement. Define

Ay = 0.5diag Az + A3, — A1 + A3, — A1 + A2)
Ay = 0.5diagAe — Az, A1 — Az, Ar + o)

Az = 0.5diag(— s + A3, A + Az, +A1 — Ao)
Ay = 0.5diag(— X2 — A3, —A1 — Az, —A1 — Aa)

Settingy’ = Uly and 2/ = Uz one may write the
linearisation Eq. 37 as

' = kpA;x’ + Dy, i=1,...,4.

We continue by computing the linearisation %quuation
(38) may be approximated to a first order by

. kr, = _
=i = (D), —y] + 5 (Roc Mo + Moz Ro)
and thus
. k
~Ug i Un = [(U§ RQ)x, ~¢] + 5 (Dia A+ Aal, D).
Finally, fori =1,...,4
. k
U3 xUo = =5 ((Dia')x Dik + ADi(Dia') ) + [, /..

Rewriting in terms of the variables’,y’ and settingQ’ =
UL RQ one obtains

y":kIAiDix'—&—Q’Xy', fori:].,...,é‘:.

It is straightforward to verify that its time derivative is always
positive
S = kpk]Aﬂ(L'/F.

Note that fori = 1,...,3 then A; has at least one element of
the diagonal positive. For each=1,...,3 andr > 0, define

Up={¢ = (2".y)" : S()>0,[¢] <r}

and note thatU,. is non-null for all» > 0. Let &, € U, such
that S(&)) > 0. A trajectory ¢’(¢) initialized at&'(0) = &
will diverge from the compact séf,. sinceS(¢’) > 0 on U,.
However, the trajectory cannot exif, through the surface
S(¢') = 0 since S(&'(t)) > S(&) along the trajectory.
Restrictingr such that the linearisation is valid, then the trajec-
tory must exitU, through the spher&’| = r. Consequently,
trajectories initially arbitrarily close t¢0, 0) will diverge. This
proves that the point0, 0) is locally unstable.

To prove local exponential stability ofR,b) = (I,0) we
consider the linearisation Eq. 39 foe= 4. Note thatD, = I
and Ay < 0. SetKp = —E2A; and K; = —ELA4,. Then
Kp, Kr > 0 are positive definite and Eq. 39 may be written

d ' - —Kp I3 x’
at\ v |\ —K; Q@) Y

Consider a cost functiol’ = ¢'7 P¢’ with P given by Eq. 27.
Analogous to Eq. 28, the time derivative &f is given by

V =— (Kpai — aoKp)|2' |2 — aaly/)?
+ y'Tm'(al + KpOég — OégK[) — OZQ.”L'/T(Q/ X y/).

Once again, it is straightforward to verify that

. |2’
V=201 1yNQ |,
Y|
whereQ is defined in Eq. 27 and this proves local exponential
stability of (R, b) = (I,0).

The final statement of the theorem follows directly from the
above results along with classical dynamical systems theory
and the proof is complete. [ ]

Remark:If n = 3, the weightsk; = 1, and the measured
directions are orthogondb!v; = 0,Vi # j) then M = I5.
The cost functionEes becomes

Emes=3 — tl’(RM) =tr(ls — R) = Ey.
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In this case, the explicit complementary filter (Eqn’s 32) andgn’s 29 (for a single measurement= v,) and Eq. 11b. Let

the passive complementary filter (Eqn’s 13) are identical. (R(t), b(t)) denote the solution of Eqn’s 32. Assume thit)
Remark:lt is possible to weaken the assumptions in Theds a bounded, absolutely continuous signal &ft), v, (t))

rem 5.1 to allow any choice of gairis and any structure of the are asymptotically independent (sgé&A). Define

matrix My and obtain analogous results. The case where all U, = {(R 5) T Bon — —1.5— 0}

three eigenvalues af/, are equal is equivalent to the passive ! Oa7H70a '

complementary filter scaled by a constant. The only other cak@en:

wheren > 2 has 1) The setU; is forward invariant and unstable under the
] T closed-loop filter dynamics.

Moy = Uodiag A1, A1, A2)Uyg 2) The estimate(d,, b) is locally exponentially stable to
for Ay > Xy > 0. (Note that the situation where = 1 (va, b).
is considered in Corollary 5.2) It can be shown that any 3) For almost all initial conditions(Ro,b0) ¢ Us then
symmetryR, = exp(ma. ) With a, € spar{vo;, vg2} satisfies (8a,b) converges to the trajectorty, (t), b).
wmes= 0 and it is relatively straightforward to verify that this ~ Proof: The dynamics of, are given by
set is forward invariant under the closed-loop filter dynamics. bo = —(Q+ b+ kpvg X D) X Bg (40)

This invalidates part i) of Theorem 5.1 as stated, however,

it can be shown that the new forward invariant pomts al%efne the following storage function

ur)stable as expected. To see t.h|.s, note that (@y, b.) in V = Enest 752.

this set corresponds to the minimal cost Bf,es on U,. kr

Consequently, any neighbourhood (@t,,b,) contains points The derivative ofl” is given by

(R b) such thatV(R b) < V(R*,b ) and the Lyapunov V _ 7k'p||(va « RTUOa)tz _ *2kP|’Ua % f}a|2

decrease condition ensures instability. There is still a separate
isolated unstable equilibrium iti, and the stable equilibrium, The Lyapunov-like functionl” derivative is negative semi-
that must be treated in the same manner as undertaken indgéinite ensuring thab is bounded and, x 4, — 0. The
formal proof of Theorem 5.1. Following through the proof€tva X 0. = 0 is characterised by, = +0., and thus
yields_ analogous results to Theorem 5.1 for arbitrary choice 0T v, = +1 = UOaR Rug, = UOQR Voa-
of gains{k;}.

The two typical measurements obtained from an IMU un(}
are estimates of the gravitational, and magneticin, vector

Consider a trajectoryi.,(t), b.(t)) that satisfies the filter
namics and for which,., = +v, for all time. One has

fields Sy —
Vg = RTﬂ v = RT — Mo %(va X 0xa) =0
|ao|” Imo|” = —(Q X Vg) X Dya — Vg X (Q X Dra)
In this case, the cost functiofimes becomes — v, X (g}* X Dyq) — kpg X ((Vg X Dyq) X Dsa)
Emes: kl(l - <@aava>) + k2(1 - <@mavm>) = iv(l X (B* X Ua) =0.

The weightsk; andk, are introduced to weight the confidencdifferentiating this expression again one obtains

in egch measure. In situatipns where the IMU is subject <(Q X V) X (by X Vg) + va % (be X (Q X U{z,))) -0

to high magnitude accelerations (such as during takeoff or _ . _ _
landing manoeuvres) it may be wise to reduce the relativénce the signal$} andv, are asymptotically independent it
weighting of the accelerometer datla (<< k,) compared to follows that the functional expression on the left hand side is
the magnetometer data. Conversely, in many applications iegenerate. This can only holdif = 0. For i, = —vq, this
IMU is mounted in the proximity to powerful electric motorsset of trajectories is characterised by the definitiofUef It is
and their power supply busses leading to low confidence $tfaightforward to adapt the arguments in Theorems 4.1 and
the magnetometer readmgs (Ch()@se>> k;2) This is a very 4.2 to see that this set is forward invariant. Note thabtot 0
common situation in the case of mini aerial vehicles witthenV = Emes It is direct to see thati..(t), b.(t)) lies on a
electric motors. In extreme cases the magnetometer datdogal maximum ofEpes and that any neighbourhood contains

unusable and provides motivation for a filter based solely @®ints such that the full Lyapunov functior is strictly less
accelerometer data. than its value on the séf,. This proves instability ofJ; and

completes part i) of the corollary.
L . L The proof of part ii) and part iii) is analogous to the proof
A. Estimation from the measurements of a single direction of Theorem 5.1 (see also [15]). n
Let v, be a measured body fixed frame direction associatedan important aspect of Corollary 5.2 is the convergence of
with a single inertial directioni,, v, = R vg.. Letd, be an the bias terms in all degrees of freedom. This ensures that, for
estimated, = R”vy,. The error considered is a real world system, the drift in the attitude estimate around
Emes— 1 — tr(RM); M — R” voavil R the unmeasur_ed axigy, will be driven asymptotlcglly by a _
zero mean noise process rather than a constant bias term. This
Corollary 5.2: Consider the rotation kinematics Eq. 4 for anakes the proposed filter a practical algorithm for a wide range
time-varying R(t) € SO(3) and with measurements given byof MAV applications.
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VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the proposed observers.

Experiments were undertaken on two real platforms to
demonstrate the convergence of the attitude and gyro bias
estimates.

1) The first experiment was undertaken on a robotic ma-
nipulator with an IMU mounted on the end effector and
supplied with synthetic estimates of the magnetic field
measurement. The robotic manipulator was programmed
to simulate the movement of a flying vehicle in hover-
ing flight regime. The filter estimates are compared to
orientation measurements computed from the forward
kinematics of the manipulator. Only the passive and
direct complimentary filters were run on this test bed.

2) The second experiment was undertaken on the VTOL
MAV HoverEye® developed by Bertin Technologies
(Figure 1). The VTOL belongs to the class of ‘sit
on tail' ducted fan VTOL MAV, like the iISTAR9 and
Kestrel developed respectively by Allied Aerospace [41]
and Honeywell [42]. It was equipped with a low-cost
IMU that consists of 3-axis accelerometers and 3-axis 0 20 £ w0 ) %
gyroscopes. Magnetometers were not integrated in the e
MAV due to perturbations caused by electrical motorsig. 6. Euler angles from direct and passive complementary filters
The explicit complementary filter was used in this ex-
periment.

For both experiments the gains of the proposed filters were
chosen to bekp = 1rad.s ' andk; = 0.3rad.s *. The inertial g
data was acquired at rates of 25Hz for the first experiment and o 0 2 E % e
50Hz for the second experiment. The quaternion version of the o —
filters (Appendix B) were implemented with first order Euler AN
numerical integration followed by rescaling to preserve the
unit norm condition.

Experimental results for the direct and passive versions of
the filter are shown in Figures 6 and 7. In Figure 6 the onbjg. 7. Bias estimation from direct and passive complementary filters
significant difference between the two responses lies in the
initial transient responses. This is to be expected, since both
filters will have the same theoretical asymptotic performancaanoeuvre, before returning to the initial heading and landing
In practice, however, the increased sensitivity of the direttie vehicle. After landing, the vehicle is placed by hand at its
filter to noise introduced in the computation of the measuréaitial pose such that final and initial attitudes are the identical.
rotation R, is expected to contribute to slightly higher noise Figure 8 plots the pitch and roll anglds,§) estimated
in this filter compared to the passive. directly from the accelerometer measurements against the

The response of the bias estimates is shown in Figure€eatimated values from the explicit complementary filter. Note
Once again the asymptotic performance of the filters is similre large amounts of high frequency noise in the raw attitude
after an initial transient. From this figure it is clear that thestimates. The plots demonstrate that the filter is highly
passive filter displays slightly less noise in the bias estimatesccessful in reconstructing the pitch and roll estimates.
than for the direct filter (note the different scales in thaxis). Figure 9 presents the gyros bias estimation verses the

predicted yaw angleg( based on open loop integration of the

Figures 8 and 9 relate to the second experiment. Thgroscopes. Note that the explicit complementary filter here
experimental flight of the MAV was undertaken under remote based solely on estimation of the gravitational direction.
control by an operator. The experimental flight plan used waSonsequently, the yaw angle is the indeterminate angle that is
First, the vehicle was located on the ground, initially headetbt directly stabilised in Corollary 5.2. Figure 9 demonstrates
toward ¢»(0) = 0. After take off, the vehicle was stabilizedthat the proposed filter has successfully identified the bias of
in hovering condition, around a fixed heading which remairtke yaw axis gyro. The final error in yaw orientation of the
close the initial heading of the vehicle on the ground. Themicrodrone after landing is less than 5 degrees over a two
the operator engages | 90°-left turn manoeuvre, returns minute flight. Much of this error would be due to the initial
to the initial heading, and follows with a 90°-right turn transient when the bias estimate was converging. Note that the

roll @ (%)

pitch 6 (%)

yaw  (°)

30
time (s)



hal-00488376, version 1 - 1 Jun 2010

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, MONTH YEAR 13

second part of the figure indicates that the bias estimates are into the estimator frame of reference. The resulting ob-
not constant. Although some of this effect may be numerical, server kinematics are considerably simplified and avoid
it is also to be expected that the gyro bias on low cost IMU  coupling of constructed attitude error into the predictive
systems are highly susceptible to vibration effects and changes velocity update.

in temperature. Under flight conditions changing engine spedgsplicit complementary filterA reformulation of the passive
and aerodynamic conditions can cause quite fast changes in complementary filter in terms of direct vectorial measure-

gyro bias. ments, such as gravitational or magnetic field directions
obtained for an IMU. This observer does not require on-
e B B v g line algebraic reconstruction of attitude and is ideally
WP i o Gfrom estimator : : suited for implementation on embedded hardware plat-
S I (Y i T TV S T forms. Moreover, the filter remains well conditioned in
g :w\mmwwmﬁt the case where only a single vector direction is measured.
tofe ; ; L ‘ ; ; The performance of the observers was demonstrated in a

e e ) suite of experiments. The explicit complementary filter is now
tme s} implemented as the primary attitude estimation system on
several MAV vehicles world wide.

. . . y (roll angle) from accelerometers
1) | i i (LB L Stk i, | — w from estimator :

i T S APPENDIX A
ol L Rt A REVIEW OF COMPLEMENTARY FILTERING

; : : 3 3 3 3 3 Complementary filters provide a means to fuse multiple

N 9"“%(3,“"" e @ w0 o independent noisy measurements of the same signal that
have complementary spectral characteristics [11]. For example,

Fig. 8. Estimation results of the Pitch and roll angles. consider two measuremenfs = x + 1 andys = x+ s of a
signalx whereu; is predominantly high frequency noise and
1o is a predominantly low frequency disturbance. Choosing a

w0r pair of complementary transfer functiods (s) + Fs(s) = 1

with Fy (s) low pass andF(s) high pass, the filtered estimate

is given by

¢(deg)
°
T

X(s) = Fi(s)Y1+F2(s)Y2 = X(s)+F1(s)p(s)+Fa(s)pa(s).

-50- N . ’ @ (yaw angle) from gyros
—— ¢@from the estimator

The signal X (s) is all pass in the filter output while noise

L L L L |
50 60 70 80 90 100 110 120 130 140

e components are high and low pass filtered as desired. This type
004r of filter is also known aslistorsionless filteringince the signal
ool z(t) is not distorted by the filter [43]. Complementary filters
- . g - are particularly well suited to fusing low bandwidth position
g or W g D ey = measurements with high band width rate measurements for
o0z} — E; first order kinematic systems. Consider the linear kinematics
00, 6‘0 7‘0 e‘o 9‘0 160 1‘10 1%0 1éo 14‘10 T = u. (41)

time (s)

Fig. 9. Gyros bias estimation and influence of the observer on yaw angl)!,\\.lIth typlcal measurement characteristics

Yz = L(5)3j + Hzy  Yu = U Yy + b(t) (42)

VIl. CONCLUSION whereL(s) is low pass filter associated with sensor character-
_ i ) istics, 11 represents noise in both measurements igndis a
This paper presents a general analysis of attitude obsenfgferministic perturbation that is dominated by low-frequency
design posed directly on the special orthogonal group. Thrggtent. Normally the low pass filtet(s) ~ 1 over the
non-linear observers, ensuring almost global stability of ”?F'equency range on which the measuremgnis of interest.
observer error, are proposed: The rate measurement is integratgdto obtain an estimate of
Direct complementary filterA non-linear observer posed onthe state and the noise and bias characteristics of the integrated
SO(3) that is related to previously published non-lineagignal are dominantly low frequency effects. Choosing
observers derived using the quaternion representation of

S0(3). Fi(s) = =2
Passive complementary filteA non-linear filter equation that C(s) +s
takes advantage of the symmetry 80(3) to avoid Fy(s)=1—Fy(s) =

transformation of the predictive angular velocity term C(s) +s
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with C(s) all pass such thaL(s)F(s) ~ 1 over the band- Abusing notation for the noise processes, and usirg(z —
width of L(s). Then %), andb = (by — b), one has

Lo Bu(8) +b(s)
X(s) % X(s) + Fuls)a(s) + =5

Note that even thoughx(s) is high pass the noise,(s)+b(s) In the absence of noise one may apply Lyapunov’s direct

is low pass filtered. In practice, the filter structure is implenethod to prove convergence of the state estimate. LaSalle’s

mented by exploiting the complementary sensitivity structuggincipal of invariance may be used to show thhat> by.

of a linear feedback system subject to load disturband&hen the underlying system is linear, then the linear form of

Consider the block diagram in Figure 10. The outputan the feedback and adaptation law ensure that the closed-loop
system is linear and stability implies exponential stability.

d - 5 = -
L= —kpla]® = pud + o (b~ k)

Yu
l X APPENDIX B
?””ﬁoq C(s) jgf—.i QUATERNION REPRESENTATIONS OF OBSERVERS
T‘ The unit quaternion representation of rotations is commonly
used for the realisation of algorithms &0 (3) since it offers

considerable efficiency in code implementation. The set of
quaternions is denote® = {q = (s,v) € R x R?® : |¢| = 1}.
The setQ is a group under the operation

Fig. 10. Block diagram of a classical complementary filter.

be written
. C(s) s yu(s) 5189 — v vy
(8) = —=—~Yz(8) + =——— =
(s) s+ C(s) (5) C(s)+s s N ew $1V9 + Sav1 + U1 X U
Yu(s)
— T(s)y, L . - g
(8)yz(s) + S(s) S with identity elementl = (1,0,0,0). The group of quater

where S(s) is the sensitivity function of the closed-loopnlons are homomorphic t50(3) via the map

system andl’(s) is the complementary sensitivity. This archi- F:Q— SO(3), F(q):= I3+ 2svy + 202

tecture is easy to implement efficiently and allows one to use

classical control design techniques @fs) in the filter design. This map is a two to one mapping @ onto SO(3) with

The simplest choice is a proportional feedb&tks) = kp. In  kernel{(1,0,0,0),(-1,0,0,0)}, thus,Q is locally isomorphic

this case the closed-loop dynamics of the filter are given byo SO(3) via F'. Given R € SO(3) such thatR = exp(fax)
then F~1(R) = {%(cos(§),sin(§)a)} Let Q@ € {A} de-

T =yu +kp(ys — T). (43) note a body-fixed frame velocity, then the pure quaternion
The frequency domain complementary filters associated wigh2) = (0,€2) is associated with a quaternion velocity.
this choice areF(s) = fi and F(s) = —*—. Note that Consider the rotation kinematics o%10(3) Eq. 4, then the
S P S P

the crossover frequency for the filter isigtrad.s *. The gain @ssociated quaternion kinematics are given by
kp is typically chosen based on the low pass characteristics )
of y, and the low frequency noise characteristicsyQf to 7= §q®p(9) (45)
choose the best crossover frequency to tradeoff between
two measurements. If the rate measurement Big$,= by,
is a constant then it is natural to add an integrator to t
compensator to make the system type |

O(s) = ko + L (44) q=q1®q:[
A type | system will reject the constant load disturbabge
from the output. Gain design fdrp andk; is typically based Note that
on class_ical frequency design metho<_js. The non-linear deve_l-zgﬂ — 2c0s(60/2) sin(0/2)a = l(sin 0)a — vex(IPa(R))
opment in the body of the paper requires a Lyapunov analysis
of closed-loop system Eq. 43. Applying the Pl compensat
Eq. 44, one obtains state space filter with dynamics

h

It_e? gy =~ q be a low frequency measure gfandQ, ~ Q+b
I4for constant bia®) be the angular velocity measure. Légt
d%note the observer estimate and quaternion étrror

UAhere (0,a) is the angle axis representation &f = F(q).
The quaternion representations of the observers proposed in
F=yy—b+k(y, —2), b= —ki(ys — ) this paper are:

. L . L Direct complementary filter (Eq. 12):
The negative sign in the integrator state is introduced to P y (Ea. 12)

. . 7 . . . . . 1 - N
indicate that the stgté will cancel the bias iny,,. Consider §==G®p(R(Qy — b) + 2kps0) (46a)
the Lyapunov function 2

1, 1 . b= —2k50 (46b)
£—§|$ | +%|bo b|
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Passive complementary filter (Eq. 13): This demonstrates that the quaternion filter Egn’s 51 is ob-

L1 . - tained from the standard form of the complimentary filter
¢ = 54®Pp(Qy — b+ 2kps0) (47a) proposed Eq. 12 with the correction term Eq. 12c replaced
R . by
b= —2k;50 (47b) wg = sgr(3)s, Ge FY(R"R).
Explicit complementary filter (Eq. 32): Note that the correction term defined in Eq. 12¢ can be written
n ~~
ki .1 . w = 250. It follows that
Wmes = — VX (Z E(vivi — ;v; )) (48a) sgn3)
) i=1 Wq = 25 w
q= §d®p(§2y = bt Fpcimes) (48b) The correction term for the two filters varies only by the
b— — ke fWmes (48c) positive scaling factor sdd)/(25). The quaternion correction

term w, is not well defined fors = 0 (whered = £7) and
The error dynamics associated with the direct filter expressg@se points are not well defined in the filter dynamics Eq. 51.
in the quaternion formulation are It should be noted, however, that,| is bounded at = 0
. 1 - and, apart from possible switching behaviour, the filter can
i=-3 (p(b+ kpst) @) - (49)

still be implemented on the remainder 600(3) x R®. An
The error dynamics associated with the passive filter are

argument for the use of the correction teuy is that the
resulting error dynamics strongly force the estimate away from
§= 1 (q 2 p(Q) — p(Q) ® - plb+ kpst) @ q) . (50) the unstable sétf (cf. Eq. 14). An argument against its use is
2 that, in practice, such situations will only occur due to extreme
There is a fifteen year history of using the quaternion repansients that would overwhelm the bounded correction term
resentation and Lyapunov design methodology for filtering, in any case, and cause the numerical implementation of
on SO(3) (for example cf. [9], [30], [32]). To the authorsthe filter to deal with a discontinuous argument. In practice,
knowledge the Lyapunov analysis in all cases has been bageg an issue of little significance since the filter will general
around the cost function work sufficiently well to avoid any issues with the unstable
&) = (13 — 1)% + 3] setU. Fors — 1, corresponding t® = 0 the correctiop term
w, scales to a factor of /2 the correction termw. A simple
Due to the unit norm condition it is straightforward to shovgcaling factor like this is compensated for the in choice of filter
that gainskp andk; and makes no difference to the performance
D(q)=2(1—15]) =21 — |cos(8/2)|) of the filter.

The cost function proposed in this paper ig = (1 —
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