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Non-linear complementary filters on the special
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Abstract—This paper considers the problem of obtaining good
attitude estimates from measurements obtained from typical low
cost inertial measurement units. The outputs of such systems
are characterised by high noise levels and time varying additive
biases. We formulate the filtering problem as deterministic
observer kinematics posed directly on the special orthogonal
group SO(3) driven by reconstructed attitude and angular ve-
locity measurements. Lyapunov analysis results for the proposed
observers are derived that ensure almost global stability of the
observer error. The approach taken leads to an observer that we
term the direct complementary filter. By exploiting the geometry
of the special orthogonal group a related observer, termed the
passive complementary filter, is derived that decouples the gyro
measurements from the reconstructed attitude in the observer
inputs. Both the direct and passive filters can be extended to
estimate gyro bias on-line. The passive filter is further developed
to provide a formulation in terms of the measurement error that
avoids any algebraic reconstruction of the attitude. This leads to
an observer onSO(3), termed the explicit complementary filter,
that requires only accelerometer and gyro outputs; is suitable
for implementation on embedded hardware; and provides good
attitude estimates as well as estimating the gyro biases on-line.
The performance of the observers are demonstrated with a set
of experiments performed on a robotic test-bed and a radio
controlled unmanned aerial vehicle.

Index Terms—Complementary filter, nonlinear observer, atti-
tude estimates, special orthogonal group.

I. I NTRODUCTION

T HE recent proliferation of Micro-Electro-Mechanical
Systems (MEMS) components has lead to the devel-

opment of a range of low cost and light weight inertial
measurement units. The low power, light weight and po-
tential for low cost manufacture of these units opens up a
wide range of applications in areas such as virtual reality
and gaming systems, robotic toys, and low cost mini-aerial-
vehicles (MAVs) such as the Hovereye (Fig. 1). The signal
output of low cost IMU systems, however, is characterised
by low-resolution signals subject to high noise levels as well
as general time-varying bias terms. The raw signals must be
processed to reconstruct smoothed attitude estimates and bias-
corrected angular velocity measurements. For many of the
low cost applications considered the algorithms need to run
on embedded processors with low memory and processing
resources.
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There is a considerable body of work on attitude recon-
struction for robotics and control applications (for example
[1]–[4]). A standard approach is to use extended stochastic
linear estimation techniques [5], [6]. An alternative is to use
deterministic complementary filter and non-linear observer
design techniques [7]–[9]. Recent work has focused on some
of the issues encountered for low cost IMU systems [9]–
[12] as well as observer design for partial attitude estimation
[13]–[15]. It is also worth mentioning the related problem of
fusing IMU and vision data that is receiving recent attention
[16]–[19] and the problem of fusing IMU and GPS data [9],
[20]. Parallel to the work in robotics and control there is
a significant literature on attitude heading reference systems
(AHRS) for aerospace applications [21]. An excellent review
of attitude filters is given by Crassidiset al. [22]. The recent
interest in small low-cost aerial robotic vehicles has lead to a
renewed interest in lightweight embedded IMU systems [8],
[23]–[25]. For the low-cost light-weight systems considered,
linear filtering techniques have proved extremely difficult
to apply robustly [26] and linear single-input single-output
complementary filters are often used in practice [25], [27]. A
key issue is on-line identification of gyro bias terms. This
problem is also important in IMU callibration for satellite
systems [5], [21], [28]–[31]. An important development that
came from early work on estimation and control of satellites
was the use of the quaternion representation for the attitude
kinematics [30], [32]–[34]. The non-linear observer designs
that are based on this work have strong robustness properties
and deal well with the bias estimation problem [9], [30].
However, apart from the earlier work of the authors [14],
[35], [36] and some recent work on invariant observers [37],
[38] there appears to be almost no work that considers the
formulation of non-linear attitude observers directly on the
matrix Lie-group representation ofSO(3).

In this paper we study the design of non-linear attitude
observers onSO(3) in a general setting. We term the proposed
observerscomplementary filtersbecause of the similarity of
the architecture to that of linear complementary filters (cf. Ap-
pendix A), although, for the non-linear case we do not have
a frequency domain interpretation. A general formulation of
the error criterion and observer structure is proposed based
on the Lie-group structure ofSO(3). This formulation leads
us to propose two non-linear observers onSO(3), termed the
direct complementary filterandpassive complementary filter.
The direct complementary filter is closely related to recent
work on invariant observers [37], [38] and corresponds (up
to some minor technical differences) to non-linear observers
proposed using the quaternion representation [9], [30], [32].

ha
l-0

04
88

37
6,

 v
er

si
on

 1
 - 

1 
Ju

n 
20

10
Author manuscript, published in "IEEE Transactions on Automatic Control 53, 5 (2008) 1203-1217"

 DOI : 10.1109/TAC.2008.923738

http://dx.doi.org/10.1109/TAC.2008.923738
http://hal.archives-ouvertes.fr/hal-00488376/fr/
http://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, MONTH YEAR 2

Fig. 1. The VTOL MAV HoverEyec© of Bertin Technologies.

We do not know of a prior reference for the passive comple-
mentary filter. The passive complementary filter has several
practical advantages associated with implementation and low-
sensitivity to noise. In particular, we show that the filter can
be reformulated in terms of vectorial direction measurements
such as those obtained directly from an IMU system; a
formulation that we term theexplicit complementary filter. The
explicit complementary filter does not require on-line algebraic
reconstruction of attitude, an implicit weakness in prior work
on non-linear attitude observers [22] due to the computational
overhead of the calculation and poor error characterisation of
the constructed attitude. As a result the observer is ideally
suited for implementation on embedded hardware platforms.
Furthermore, the relative contribution of different data can be
preferentially weighted in the observer response, a property
that allows the designer to adjust for application specific
noise characteristics. Finally, the explicit complementary filter
remains well defined even if the data provided is insufficient
to algebraically reconstruct the attitude. This is the case, for
example, for an IMU with only accelerometer and rate gyro
sensors. A comprehensive stability analysis is provided for
all three observers that proves local exponential and almost
global stability of the observer error dynamics, that is, a stable
linearisation for zero error along with global convergence
of the observer error for all initial conditions and system
trajectories other than on a set of measure zero. Although
the principal results of the paper are presented in the matrix
Lie group representation ofSO(3), the equivalent quaternion
representation of the observers are presented in an appendix.
The authors recommend that the quaternion representations are
used for hardware implementation.

The body of paper consists of five sections followed by a
conclusion and two appendices. Section II provides a quick
overview of the sensor model, geometry ofSO(3) and in-
troduces the notation used. Section III details the derivation
of the direct and passive complementary filters. The develop-
ment here is deliberately kept simple to be clear. Section IV
integrates on-line bias estimation into the observer design and
provides a detailed stability analysis. Section V develops the
explicit complementary filter, a reformulation of the passive
complementary filter directly in terms of error measurements.

A suite of experimental results, obtained during flight tests
of the Hovereye (Fig. 1), are provided in Section VI that
demonstrate the performance of the proposed observers. In
addition to the conclusion (§VII) there is a short appendix on
linear complementary filter design and a second appendix that
provides the equivalent quaternion formulation of the proposed
observers.

II. PROBLEM FORMULATION AND NOTATION.

A. Notation and mathematical identities

The special orthogonal group is denotedSO(3). The asso-
ciated Lie-algebra is the set of anti-symmetric matrices

so(3) = {A ∈ R3×3 | A = −AT }

For any two matricesA,B ∈ Rn×n then the Lie-bracket (or
matrix commutator) is[A,B] = AB −BA. Let Ω ∈ R3 then
we define

Ω× =




0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


 .

For anyv ∈ R3 thenΩ×v = Ω×v is the vector cross product.
The operator vex: so(3) → R3 denotes the inverse of theΩ×
operator

vex(Ω×) = Ω, Ω ∈ R3.

vex(A)× = A, A ∈ so(3)

For any two matricesA,B ∈ Rn×n the Euclidean matrix
inner product and Frobenius norm are defined

〈〈A, B〉〉 = tr(AT B) =
n∑

i,j=1

AijBij

||A|| =
√
〈〈A,A〉〉 =

√√√√
n∑

i,j=1

A2
ij
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The following identities are used in the paper

(Rv)× = Rv×RT , R ∈ SO(3), v ∈ R3

(v × w)× = [v×, w×] v, w ∈ R3

vT w = 〈v, w〉 =
1
2
〈〈v×, w×〉〉, v, w ∈ R3

vT v = |v|2 =
1
2
||v×||2, v ∈ R3

〈〈A, v×〉〉 = 0, A = AT ∈ R3, v ∈ R3

tr([A,B]) = 0, A, B ∈ R3×3

The following notation for frames of reference is used

• {A} denotes an inertial (fixed) frame of reference.
• {B} denotes a body-fixed-frame of reference.
• {E} denotes the estimator frame of reference.

Let Pa, Ps denote, respectively, the anti-symmetric and
symmetric projection operators in square matrix space

Pa(H) =
1
2
(H −HT ), Ps(H) =

1
2
(H + HT ).

Let (θ, a) (|a| = 1) denote the angle-axis coordinates of
R ∈ SO(3). One has [39]:

R = exp(θa×), log(R) = θa×

cos(θ) =
1
2
(tr(R)− 1), Pa(R) = sin(θ)a×.

For anyR ∈ SO(3) then3 ≥ tr(R) ≥ −1. If tr(R) = 3 then
θ = 0 in angle-axis coordinates andR = I. If tr(R) = −1
then θ = ±π, R has real eigenvalues(1,−1,−1), and there
exists an orthogonal diagonalising transformationU ∈ SO(3)
such thatURUT = diag(1,−1,−1).

For any two signalsx(t) : R → Mx, y(t) : R → My

are termedasymptotically dependentif there exists a non-
degenerate functionft : Mx ×My → R and a timeT such
that for anyt > T

ft(x(t), y(t)) = 0.

By the term non-degenerate we mean that the Hessian offt

at any point(x, y) is full rank. The two signals are termed
asymptotically independentif for any non-degenerateft and
any T there existst1 > T with ft(x(t1), y(t1)) 6= 0.

B. Measurements

The measurements available from a typical inertial mea-
surement unit are 3-axis rate gyros, 3-axis accelerometers and
3-axis magnetometers. The reference frame of the strap down
IMU is termed the body-fixed-frame{B}. The inertial frame
is denoted{A}. The rotationR = A

BR denotes the relative
orientation of{B} with respect to{A}.
Rate Gyros:The rate gyro measures angular velocity of{B}

relative to {A} expressed in the body-fixed-frame of
reference{B}. The error model used in this paper is

Ωy = Ω + b + µ ∈ R3

where Ω ∈ {B} denotes the true value,µ denotes
additive measurement noise andb denotes a constant (or
slowly time-varying) gyro bias.

Accelerometer:Denote the instantaneous linear acceleration
of {B} relative to{A}, expressed in{A}, by v̇. An ideal
accelerometer, ‘strapped down’ to the body-fixed-frame
{B}, measures the instantaneous linear acceleration of
{B} minus the (conservative) gravitational acceleration
field g0 (where we considerg0 expressed in the inertial
frame {A}), and provides a measurement expressed in
the body-fixed-frame{B}. In practice, the outputa from
a MEMS component accelerometer has added bias and
noise,

a = RT (v̇ − g0) + ba + µa,

whereba is a bias term andµa denotes additive measure-
ment noise. Normally, the gravitational fieldg0 = |g0|e3

where |g0| ≈ 9.8 dominates the value ofa for low
frequency response. Thus, it is common to use

va =
a

|a| ≈ −RT e3

as a low-frequency estimate of the inertialz-axis ex-
pressed in the body-fixed-frame.

Magnetometer:The magnetometers provide measurements of
the magnetic field

m = RT Am + Bm + µb

where Am is the Earths magnetic field (expressed in
the inertial frame),Bm is a body-fixed-frame expres-
sion for the local magnetic disturbance andµb denotes
measurement noise. The noiseµb is usually quite low
for magnetometer readings, however, the local magnetic
disturbance can be very significant, especially if the IMU
is strapped down to an MAV with electric motors. Only
the direction of the magnetometer output is relevant for
attitude estimation and we will use a vectorial measure-
ment

vm =
m

|m|
in the following development

The measured vectorsva andvm can be used to construct
an instantaneous algebraic measurement of the rotationA

BR :
{B} → {A}
Ry = arg min

R∈SO(3)

(
λ1|e3 −Rva|2 + λ2|v∗m −Rvm|2

)
≈ A

BR

where v∗m is the inertial direction of the magnetic field in
the locality where data is acquired. The weightsλ1 and λ2

are chosen depending on the relative confidence in the sensor
outputs. Due to the computational complexity of solving an op-
timisation problem the reconstructed rotation is often obtained
in a suboptimal manner where the constraints are applied in
sequence; that is, two degrees of freedom in the rotation matrix
are resolved using the acceleration readings and the final
degree of freedom is resolved using the magnetometer. As a
consequence, the error properties of the reconstructed attitude
Ry can be difficult to characterise. Moreover, if either mag-
netometer or accelerometer readings are unavailable (due to
local magnetic disturbance or high acceleration manoeuvres)
then it is impossible to resolve the vectorial measurements into
a unique instantaneous algebraic measurement of attitude.
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C. Error criteria for estimation onSO(3)
Let R̂ denote an estimate of the body-fixed rotation matrix

R = A
BR. The rotationR̂ can be considered as coordinates

for the estimator frame of reference{E}. It is also associated
with the frame transformation

R̂ = A
ER̂ : {E} → {A}.

The goal of attitude estimate is to drivêR → R. The
estimation error used is the relative rotation from body-fixed-
frame{B} to the estimator frame{E}

R̃ := R̂T R, R̃ = E
BR̃ : {B} → {E}. (1)

The proposed observer design is based on Lyapunov stabil-
ity analysis. The Lyapunov functions used are inspired by the
cost function

Etr :=
1
4
‖I3 − R̃‖2 =

1
4

tr
(
(I3 − R̃)T (I3 − R̃)

)

=
1
2

tr(I3 − R̃) (2)

One has that

Etr =
1
2

tr(I − R̃) = (1− cos(θ)) = 2 sin(θ/2)2. (3)

whereθ is the angle associated with the rotation from{B} to
frame{E}. Thus, driving Eq. 2 to zero ensures thatθ → 0.

III. C OMPLEMENTARY FILTERS ONSO(3)
In this section, a general framework for non-linear comple-

mentary filtering on the special orthogonal group is introduced.
The theory is first developed for the idealised case whereR(t)
andΩ(t) are assumed to be known and used to drive the filter
dynamics. Filter design for real world signals is considered in
later sections.

The goal of attitude estimation is to provide a set of
dynamics for an estimatêR(t) ∈ SO(3) to drive the error
rotation (Eq. 1)R̃(t) → I3. The kinematics of the true system
are

Ṙ = RΩ× = (RΩ)×R (4)

where Ω ∈ {B}. The proposed observer equation is posed
directly as a kinematic system for an attitude estimateR̂ on
SO(3). The observer kinematics include a prediction term
based on theΩ measurement and an innovation or correction
term ω := ω(R̃) derived from the error̃R. The general form
proposed for the observer is

˙̂
R = (RΩ + kP R̂ω)×R̂, R̂(0) = R̂0, (5)

wherekP > 0 is a positive gain. The term(RΩ + kP R̂ω) ∈
{A} is expressed in the inertial frame. The body-fixed-frame
angular velocity is mapped back into the inertial frameAΩ =
RΩ. If no correction term is used (kP ω ≡ 0) then the error
rotation R̃ is constant,

˙̃R =R̂T (RΩ)T
×R + R̂T (RΩ)×R

=R̂T (−(RΩ)× + (RΩ)×) R = 0. (6)

The correction termω := ω(R̃) ∈ {E} is considered to
be in the estimator frame of reference. It can be thought of

as a non-linear approximation of the error betweenR and
R̂ as measured from the frame of reference associated with
R̂. In practice, it will be implemented as an error between a
measured estimateRy of R and the estimatêR.

The goal of the observer design is to find a simple expres-
sion forω that leads to robust convergence ofR̃ → I. In prior
work [35], [36] the authors introduced the following correction
term

ω := vex(Pa(R̃)) = vex(Pa(R̂T Ry)) (7)

This choice leads to an elegant Lyapunov analysis of the
filter stability. Differentiating the storage function Eq. 2 along
trajectories of Eq. 5 yields

Ėtr =− 1
2

tr( ˙̃R) = −kP

2
tr

(
ωT
×R̃

)

= −kP

2
tr

[
ωT
×(Ps(R̃) + Pa(R̃))

]
= −kP

2
tr

[
ωT
×Pa(R̃)

]

= −kP

2
〈〈ω×,Pa(R̃)〉〉 = −kP |ω|2 (8)

In Mahony et al. [35] a local stability analysis of the filter
dynamics Eq. 5 is provided based on this derivation. In Section
IV a global stability analysis for these dynamics is provided.

We term the filter Eq. 5 acomplementary filter onSO(3)
since it recaptures the block diagram structure of a classical
complementary filter (cf. Appendix A). In Figure 2: The ‘R̂T ’

R̂
kR̂

T
R

Ω

Maps angular velocity

Maps angular velocity

R̃

+

+

Inverse operation

on SO(3)

SystemMaps error R̃

R

R

˙̂
R = AR̂

(RΩ)×

on SO(3)

Difference operation

into correct frame of reference

onto TI SO(3).

onto TI SO(3). kinematics

A

R̂
T

RΩ

Pa(R̃)

Fig. 2. Block diagram of the general form of a complementary filter on
SO(3).

operation is an inverse operation onSO(3) and is equivalent to
a ‘−’ operation for a linear complementary filter. The ‘R̂T Ry ’
operation is equivalent to generating the error term ‘y − x̂’.
The two operationsPa(R̃) and (RΩ)× are maps from error
space and velocity space into the tangent space ofSO(3);
operations that are unnecessary on Euclidean space due to the
identificationTxRn ≡ Rn. The kinematic model is the Lie-
group equivalent of a first order integrator.

To implement the complementary filter it is necessary to
map the body-fixed-frame velocityΩ into the inertial frame. In
practice, the ‘true’ rotationR is not available and an estimate
of the rotation must be used. Two possibilities are considered:
direct complementary filter: The constructed attitudeRy is

used to map the velocity into the inertial frame

˙̂
R = (RyΩy + kP R̂ω)×R̂.

A block diagram of this filter design is shown in Figure
3. This approach can be linked to observers documented
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in earlier work [30], [32] (cf. Appendix B). The approach
has the advantage that it does not introduce an additional
feedback loop in the filter dynamics, however, high
frequency noise in the reconstructed attitudeRy will
enter into the feed-forward term of the filter.

R̂
k

R̂
T

+

+ ˙̂
R = AR̂

(RyΩy)×

A

Ωy

Ry

RyΩy

R̃
R̂

T
Ry Pa(R̃)

Fig. 3. Block diagram of the direct complementary filter onSO(3).

passive complementary filter: The filtered attitudêR is used
in the predictive velocity term

˙̂
R = (R̂Ωy + kP R̂ω)×R̂. (9)

A block diagram of this architecture is shown in Figure 4.
The advantage lies in avoiding corrupting the predictive
angular velocity term with the noise in the reconstructed
pose. However, the approach introduces a secondary
feedback loop in the filter and stability needs to be
proved.

R̂
k

+

+
R̂

T
Ry

˙̂
R = AR̂

Ry

Ωy

R̃

(R̂Ωy)×

R̂Ωy

R̂
T

A
Pa(R̃)

Fig. 4. Block diagram of the passive complementary filter onSO(3).

A key observation is that the Lyapunov stability analysis in
Eq. 8 is still valid for Eq. 9, since

Ėtr =− 1
2

tr( ˙̃R) = −1
2

tr(−(Ω + kP ω)×R̃ + R̃Ω×)

= −1
2

tr([R̃, Ω×])− kP

2
tr(ωT

×R̃) = −kP |ω|2,
using the fact that the trace of a commutator is zero,
tr([R̃, Ω×]) = 0. The filter is termed apassivecomplimentary
filter since the cross coupling betweenΩ and R̃ does not
contribute to the derivative of the Lyapunov function. A global
stability analysis is provided in Section IV.

There is no particular theoretical advantage to either the
direct or the passive filter architecture in the case where exact
measurements are assumed. However, it is straightforward to
see that the passive filter (Eq. 9) can be written

˙̂
R = R̂(Ω× + kPPa(R̃)). (10)

This formulation suppresses entirely the requirement to repre-
sentΩ and ω = kPPa(R̃) in the inertial frame and leads to

the architecture shown in Figure 5. The passive complementary
filter avoids coupling the reconstructed attitude noise into the
predictive velocity term of the observer, has a strong Lyapunov
stability analysis, and provides a simple and elegant realisation
that will lead to the results in Section V.

˙̂
R = R̂A

R̂
k

Ωy

Ry

R̂
T

R

(Ω)×

R̂
T

Pa(R̃)

Fig. 5. Block diagram of the simplified form of the passive complementary
filter.

IV. STABILITY ANALYSIS

In this section, the direct and passive complementary filters
on SO(3) are extended to provide on-line estimation of time-
varying bias terms in the gyroscope measurements and global
stability results are derived. Preliminary results were published
in [35], [36].

For the following work it is assumed that a reconstructed
rotationRy and a biased measure of angular velocityΩy are
available

Ry ≈ R, valid for low frequencies, (11a)

Ωy ≈ Ω + b for constant biasb. (11b)

The approach taken is to add an integrator to the compensator
term in the feedback equation of the complementary filter.

Let kP , kI > 0 be positive gains and define

Direct complementary filter with bias correction:

˙̂
R =

(
Ry(Ωy − b̂) + kP R̂ω

)
×

R̂, R̂(0) = R̂0, (12a)

˙̂
b = −kIω, b̂(0) = b̂0,

(12b)

ω = vex(Pa(R̃)), R̃ = R̂T Ry. (12c)

Passive complementary filter with bias correction:

˙̂
R = R̂

(
Ωy − b̂ + kP ω

)
×

, R̂(0) = R̂0, (13a)

˙̂
b = −kIω, b̂(0) = b̂0, (13b)

ω = vex(Pa(R̃)), R̃ = R̂T Ry. (13c)

The non-linear stability analysis is based on the idea of an
adaptive estimate for the unknown bias value.

Theorem 4.1:[Direct complementary filter with bias
correction.] Consider the rotation kinematics Eq. 4 for a
time-varying R(t) ∈ SO(3) and with measurements given
by Eq. 11. Let(R̂(t), b̂(t)) denote the solution of Eq. 12.
Define error variablesR̃ = R̂T R and b̃ = b − b̂. Define
U ⊆ SO(3)× R3 by

U =
{

(R̃, b̃) tr(R̃) = −1,Pa(b̃×R̃) = 0
}

. (14)

Then:
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1) The setU is forward invariant and unstable with respect
to the dynamic system Eq. 12.

2) The error(R̃(t), b̃(t)) is locally exponentially stable to
(I, 0).

3) For almost all initial conditions(R̃0, b̃0) 6∈ U the trajec-
tory (R̂(t), b̂(t)) converges to the trajectory(R(t), b).

Proof: Substituting for the error model (Eq. 11), Equation
12a becomes

˙̂
R =

(
R(Ω + b̃) + kP R̂ω

)
×

R̂.

Differentiating R̃ it is straightforward to verify that

˙̃R = −kP ω×R̃− b̃×R̃. (15)

Define a candidate Lyapunov function by

V =
1
2

tr(I3 − R̃) +
1

2kI
|b̃|2 = Etr +

1
2kI

|b̃|2 (16)

DifferentiatingV one obtains

V̇ =− 1
2

tr( ˙̃R)− 1
kI

b̃T ˙̂
b

=
1
2

tr
(
kP ω×R̃ + b̃×R̃

)
− 1

kI
〈b̃, ˙̂

b〉

=
−kP

2
〈〈ω×,Pa(R̃) + Ps(R̃)〉〉

− 1
2
〈〈b̃×,Pa(R̃) + Ps(R̃)〉〉 − 1

kI
〈b̃, ˙̂

b〉

= −kP 〈ω, vex(Pa(R̃))〉 − 〈b̃, vex(Pa(R̃)〉 − 1
kI
〈b̃, ˙̂

b〉

Substituting for˙̂b andω (Eqn’s 12b and 12c) one obtains

V̇ = −kP |ω|2 = −kP |vexPa(R̃)|2 (17)

Lyapunov’s direct method ensures thatω converges asymptoti-
cally to zero [40]. Recalling that||Pa(R̃)|| = √

2 sin(θ), where
(θ, a) denotes the angle-axis coordinates ofR̃. It follows that
ω ≡ 0 implies eitherR̃ = I, or log(R̃) = πa× for |a| = 1.
In the second case one has the condition tr(R̃) = −1. Note
that ω = 0 is also equivalent to requiring̃R = R̃T to be
symmetric.

It is easily verified that(I, 0) is an isolated equilibrium of
the error dynamics Eq. 18.

From the definition ofU one has thatω ≡ 0 onU. We will
prove thatU is forward invariant under the filter dynamics
Eqn’s 12. Settingω = 0 in Eq. 15 and Eq. 12b yields

˙̃R = −b̃×R̃,
˙̂
b = 0. (18)

For initial conditions(R̃0, b̃0) = (R̃0, b̃0) ∈ U the solution of
Eq. 18 is given by

R̃(t) = exp(−tb̃×)R̃0, b̃(t) = b̃0, (R̃0, b̃0) ∈ U.
(19)

We verify that Eq. 19 is also a general solution of Eqn’s 15
and 12b. Differentiating tr(R̃) yields

d

dt
tr(R̃) = −tr(b̃× exp(−tb̃×)R̃0)

= tr

(
exp(−tb̃×)

(b̃×R̃0 + R̃0b̃×)
2

)

= tr
(
exp(−tb̃×)Pa(b̃×R̃0)

)
= 0,

where the second line follows sincẽb× commutes with
exp(b̃×) and the final equality is due to the fact that
Pa(b̃×R̃0) = 0, a consequence of the choice of initial
conditions (R̃0, b̃0) ∈ U. It follows that tr(R̃(t)) = −1 on
solution of Eq. 19 and henceω ≡ 0. Classical uniqueness
results verify that Eq. 19 is a solution of Eqn’s 15 and 12b. It
remains to show that such solutions remain inU for all time.
The condition onR̃ is proved above. To see thatPa(b̃×R̃) ≡ 0
we compute

d

dt
Pa(b̃×R̃) = −Pa(b̃2

×R̃) = −Pa(b̃×R̃b̃T
×) = 0

as R̃ = R̃T . This proves thatU is forward invariant.
Applying LaSalle’s principle to the solutions of Eq. 12 it

follows that either(R̃, b̃) → (I, 0) asymptotically or(R̃, b̃) →
(R̃∗(t), b̃0) where(R̃∗(t), b̃0) ∈ U is a solution of Eq. 18.

To determine the local stability properties of the invariant
sets we compute the linearisation of the error dynamics. We
will prove exponential stability of the isolated equilibrium
point (I, 0) first and then return to prove instability of the
setU. Definex, y ∈ R3 as the first order approximations of
R̃ and b̃ around(I, 0)

R̃ ≈ (I + x×), x× ∈ so(3) (20a)

b̃ = −y. (20b)

The sign change in Eq. 20b simplifies the analysis of the
linearisation. Substituting into Eq. 15, computing˙̃b and dis-
carding all terms of quadratic or higher order in(x, y) yields

d

dt

(
x

y

)
=

(
−kP I3 I3

−kII3 0

)(
x

y

)
(21)

For positive gainskP , kI > 0 the linearised error system is
strictly stable. This proves part ii) of the theorem statement.

To prove thatU is unstable, we use the quaternion formu-
lation (see Appendix B). Using Eq. 49, the error dynamics of
the quaternioñq = (s̃, ṽ) associated to the rotatioñR is given
by

˙̃s =
1
2
(kP s̃|ṽ|2 + ṽT b̃), (22a)

˙̃
b = kI s̃ṽ, (22b)

˙̃v = −1
2
(s̃(b̃ + kP s̃ṽ) + b̃× ṽ), (22c)

It is straightforward to verify that the invariant set associated
to the error dynamics is characterised by

U =
{

(s̃, ṽ, b̃) s̃ = 0, |ṽ| = 1, b̃T ṽ = 0
}
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Define y = b̃T ṽ, then an equivalent characterisation ofU is
given by (s̃, y) = (0, 0). We study the stability properties
of the equilibrium (0, 0) of (s̃, y) evolving under the filter
dynamics Eq. 12. Combining Eq. 22c and 22b, one obtains
the following dynamics forẏ

ẏ = ṽT ˙̃
b + b̃T ˙̃v

= kI s̃|ṽ|2 − 1
2 s̃|b̃|2 − 1

2kP s̃2y

Linearising around small values of(s̃, y) one obtains
(

˙̃s
ẏ

)
=

(
1
2kP

1
2

kI − 1
2 |b̃0|2 0

)(
s̃

y

)

SinceKP andKI are positive gains it follows that the lineari-
sation is unstable around the point(0, 0) and this completes
the proof of part i).

The linearisation of the dynamics around the unstable set is
either strongly unstable (for large values of|b̃0|2) or hyperbolic
(both positive and negative eigenvalues). Sinceb̃0 depends on
the initial condition then there there will be trajectories that
converge toU along the stable centre manifold [40] associated
with the stable direction of the linearisation. From classical
centre manifold theory it is known that such trajectories are
measure zero in the overall space. Observing in addition that
U is measure zero inSO(3)×R3 proves part iii) and the full
proof is complete.

The direct complimentary filter is closely related to quater-
nion based attitude filters published over the last fifteen years
[9], [30], [32]. Details of the similarities and differences is
given in Appendix B where we present quaternion versions of
the filters we propose in this paper. Apart from the formulation
directly on SO(3), the present paper extends earlier work
by proposing globally defined observer dynamics and a full
global analysis. To the authors best understanding, all prior
published algorithms depend on a sgn(θ) term that is discon-
tinuous onU (Eq. 14). Given that the observers are not well
defined on the setU the analysis for prior work is necessarily
non-global. However, having noted this, the recent work of
Thienelet al. [30] provides an elegant powerful analysis that
transforms the observer error dynamics into a linear time-
varying system (the transformation is only valid on a domain
on SO(3)×R3 −U) for which global asymptotic stability is
proved. This analysis provides a global exponential stability
under the assumption that the observer error trajectory does
not intersectU. In all practical situations the two approaches
are equivalent.

The remainder of the section is devoted to proving an anal-
ogous result to Theorem 4.1 for the passive complementary
filter dynamics. In this case, it is necessary to deal with
non-autonomous terms in the error dynamics due to passive
coupling of the driving termΩ into the filter error dynamics.
Interestingly, the non-autonomous term acts in our favour to
disturb the forward invariance properties of the setU (Eq. 14)
and reduce the size of the unstable invariant set.

Theorem 4.2:[Passive complementary filter with bias
correction.] Consider the rotation kinematics Eq. 4 for a
time-varyingR(t) ∈ SO(3) and with measurements given by
Eq. 11. Let(R̂(t), b̂(t)) denote the solution of Eq. 13. Define

error variablesR̃ = R̂T R and b̃ = b− b̂. Assume thatΩ(t) is
a bounded, absolutely continuous signal and that the pair of
signals(Ω(t), R̃) are asymptotically independent (see§II-A).
DefineU0 ⊆ SO(3)× R3 by

U0 =
{

(R̃, b̃) tr(R̃) = −1, b̃ = 0
}

. (23)

Then:
1) The setU0 is forward invariant and unstable with respect

to the dynamic system 13.
2) The error(R̃(t), b̃(t)) is locally exponentially stable to

(I, 0).
3) For almost all initial conditions(R̃0, b̃0) 6∈ U0 the tra-

jectory(R̂(t), b̂(t)) converges to the trajectory(R(t), b).
Proof: Substituting for the error model (Eq. 11) in Eqn’s

13 and differentiatingR̃, it is straightforward to verify that

˙̃R = [R̃, Ω×]− kP ω×R̃− b̃×R̃, (24a)
˙̃
b = kIω (24b)

The proof proceeds by differentiating the Lyapunov-like func-
tion Eq. 16 for solutions of Eq. 13. Following an analogous
derivation to that in Theorem 4.1, but additionally exploiting
the cancellation tr([R̃, Ω×]) = 0, it may be verified that

V̇ = −kP |ω|2 = −kP |vex(Pa(R̃))|2

whereV is given by Eq. 16. This boundsV (t) ≤ V (0), and
it follows b̃ is bounded. LaSalle’s principle cannot be applied
directly since the dynamics Eq. 24a are not autonomous. The
function V̇ is uniformly continuous since the derivative

V̈ = −kPPa(R̃)T
(
Pa([R̃, Ω×])− Pa((kP ω − b̃)×)R̃

)

is uniformly bounded. Applying Barbalat’s lemma proves
asymptotic convergence ofω = vex(Pa(R̃)) to zero.

Direct substitution shows that(R̃, b̃) = (I, 0) is an equilib-
rium point of Eq. 24. Note thatU0 ⊂ U (Eq. 14) and hence
ω ≡ 0 on U (Th. 4.1). For(R̃, b̃) ∈ U0 the error dynamics
Eq. 24 become

˙̃R = [R̃, Ω×], ˙̃
b = 0.

The solution of this ordinary differential equation is given by

R̃(t) = exp(−A(t))R̃0 exp(A(t)), A(t) =
∫ t

0

Ω×dτ.

SinceA(t) is anti-symmetric for all time thenexp(−A(t)) is
orthogonal and sinceexp(−A(t)) = exp(A(t))T it follows R̃
is symmetric for all time. It follows thatU0 is forward invariant
under the filter dynamics Eq. 13. We prove by contradiction
thatU0 ⊂ U is the largest forward invariant set of the closed-
loop dynamics Eq. 13 such thatω ≡ 0. Assume that there
exits (R̃0, b̃0) ∈ U − U0 such that(R̃(t), b̃(t)) remains inU
for all time. One has thatPa(b̃×R̃) = 0 on this trajectory.
Consequently,

d

dt
Pa(b̃×R̃) = Pa(b̃×[R̃, Ω×])− P(b̃×R̃bT

×)

= Pa(b̃×[R̃, Ω×])

= −1
2

(
(b̃× Ω)×R̃ + R̃(b̃× Ω)×

)
= 0, (25)
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where we have used

2Pa(b̃×R̃) = b̃×R̃ + R̃b̃× = 0, (26)

several times in simplifying expressions. Since(Ω(t), R̃(t))
are asymptotically independent then the relationship Eq. 25
must be degenerate. This implies that there exists a timeT
such that for allt > T then b̃(t) ≡ 0 and contradicts the
assumption.

It follows that either (R̃, b̃) → (I, 0) asymptotically or
(R̃, b̃) → (R̃∗(t), 0) ∈ U0.

Analogously to Theorem 4.1 the linearisation of the error
dynamics (Eq. 24) at(I, 0) is computed. LetR̃ ≈ I + x×
and b̃ ≈ −y for x, y ∈ R3. The linearised dynamics are the
time-varying linear system

d

dt

(
x

y

)
=

(
−kP I3 − Ω(t)× I3

−kII3 0

) (
x

y

)

Let |Ωmax| denote the magnitude bound onΩ and choose

α2 > 0, α1 >
α2(|Ωmax|2 + kI)

kP
,

α1 + kP α2

kI
< α3 <

α1 + kP α2

kI
+
|Ωmax|α2

kI

SetP, Q to be matrices

P =

(
α1I3 −α2I3

−α2I3 α3I3

)
, Q =

(
kP α1 − α2kI −α2|Ωmax|
−α2|Ωmax| α2

)

(27)
It is straightforward to verify thatP and Q are positive

definite matrices given the constraints on{α1, α2, α3}. Con-
sider the cost functionW = 1

2ξT Pξ, with ξ = (x, y)T .
DifferentiatingW yields

Ẇ =− (kP α1 − α2kI)|x|2 − α2|y|2
+ yT x(α1 + kP α2 − α3kI) + α2y

T (Ω× x) (28)

It is straightforward to verify that

d

dt

(
ξT Pξ

) ≤ −2(|x|, |y|)Q

(
|x|
|y|

)
.

This proves exponential stability of the linearised system at
(I, 0).

The linearisation of the error dynamics on a trajectory in
U0 are also time varying and it is not possible to use the
argument from Theorem 4.1 to prove instability. However,
note thatV (R̃∗, b̃∗) = 2 for all (R̃∗, b̃∗) ∈ U0. Moreover,
any neighbourhood of a point(R̃∗, b̃∗) ∈ U0 within the set
SO(3) × R3 contains points(R̃, b̃) such theV (R̃, b̃) < 2.
Trajectories with these initial conditions cannot converge toU0

due to the decrease condition derived earlier, and it follows that
U0 is unstable. Analogous to Theorem 4.1 it is still possible
that a set of measure zero initial conditions, along with very
specific trajectoriesΩ(t), such that the resulting trajectories
converge to toU0. This proves part iii) and completes the
proof.

Apart from the expected conditions inherited from Theo-
rem 4.1 the key assumption in Theorem 4.2 is the indepen-
dence ofΩ(t) from the error signal̃R. The perturbation of the

passive dynamics by the independent driving termΩ provides
a disturbance that ensures that the adaptive bias estimate
converges to the true gyroscopes’ bias, a particularly useful
property in practical applications.

V. EXPLICIT ERROR FORMULATION OF THE PASSIVE

COMPLEMENTARY FILTER

A weakness of the formulation of both the direct and passive
and complementary filters is the requirement to reconstruct an
estimate of the attitude,Ry, to use as the driving term for the
error dynamics. The reconstruction cannot be avoided in the
direct filter implementation because the reconstructed attitude
is also used to map the velocity into the inertial frame. In this
section, we show how the passive complementary filter may be
reformulated in terms of direct measurements from the inertial
unit.

Let v0i ∈ {A}, i = 1, . . . , n, denote a set ofn known
inertial directions. The measurements considered are body-
fixed-frame observations of the fixed inertial directions

vi = RT v0i + µi, vi ∈ {B} (29)

whereµi is a noise process. Since only the direction of the
measurement is relevant to the observer we assume that|v0i| =
1 and normalise all measurements to ensure|vi| = 1.

Let R̂ be an estimate ofR. Define

v̂i = R̂T v0i

to be the associated estimate ofvi. For a single directionvi,
the error considered is

Ei = 1− cos(∠vi, v̂i) = 1− 〈vi, v̂i〉
which yields

Ei = 1− tr(R̂T v0iv
T
0iR) = 1− tr(R̃RT v0iv

T
0iR)

For multiple measuresvi the following cost function is con-
sidered

Emes =
n∑

i=1

kiEi =
n∑

i=1

ki − tr(R̃M), ki > 0, (30)

where

M = RT M0R with M0 =
n∑

i=1

kiv0iv
T
0i (31)

Assume linearly independent inertial direction{v0i} then the
matrix M is positive definite(M > 0) if n ≥ 3. For n = 2
then M is positive semi-definite with one eigenvalue zero.
The weightski > 0 are chosen depending on the relative
confidence in the measurementsvi. For technical reasons in the
proof of Theorem 5.1 we assume additionally that the weights
ki are chosen such thatM0 has three distinct eigenvaluesλ1 >
λ2 > λ3.

Theorem 5.1:[Explicit complementary filter with bias
correction.] Consider the rotation kinematics Eq. 4 for a time-
varyingR(t) ∈ SO(3) and with measurements given by Eqn’s
29 and 11b. Assume that there are two or more, (n ≥ 2)
vectorial measurementsvi available. Chooseki > 0 such
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that M0 (defined by Eq. 31) has three distinct eigenvalues.
Consider the filter kinematics given by

˙̂
R = R̂

(
(Ωy − b̂)× + kP (ωmes)×

)
, R̂(0) = R̂0 (32a)

˙̂
b = −kIωmes (32b)

ωmes :=
n∑

i=1

kivi × v̂i, ki > 0. (32c)

and let(R̂(t), b̂(t)) denote the solution of Eqn’s 32. Assume
that Ω(t) is a bounded, absolutely continuous signal and that
the pair of signals(Ω(t), R̃T ) are asymptotically independent
(see§II-A). Then:

1) There are three unstable equilibria of the filter charac-
terised by

(R̂∗i, b̂∗i) =
(
U0DiU

T
0 R, b

)
, i = 1, 2, 3,

where D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1)
and D3 = diag(−1,−1, 1) are diagonal matrices with
entries as shown andU0 ∈ SO(3) such thatM0 =
U0ΛUT

0 where Λ = diag(λ1, λ2, λ3) is a diagonal
matrix.

2) The error(R̃(t), b̃(t)) is locally exponentially stable to
(I, 0).

3) For almost all initial conditions(R̃0, b̃0) 6= (R̂T
∗iR, b),

i = 1, . . . , 3, the trajectory(R̂(t), b̂(t)) converges to the
trajectory(R(t), b).

Proof: Define a candidate Lyapunov-like function by

V =
n∑

i=1

ki − tr(R̃M) +
1
kI

b̃2 = Emes+
1
kI

b̃2

The derivative ofV is given by

V̇ =− tr
(

˙̃RM + R̃Ṁ
)
− 2

kI
b̃T ˙̂

b

= −tr
(
[R̃M, Ω×]− (b̃ + kP ωmes)×R̃M

)
− 2

kI
b̃T ˙̂

b

Recalling that the trace of a commutator is zero, the derivative
of the candidate Lyapunov function can be simplified to obtain

V̇ = kP tr
(
(ωmes)×Pa(R̃M)

)
+tr

(
b̃×

(
Pa(R̃M)− 1

kI

˙̂
b×

))

(33)
Recalling the identities in Section II-A one may writeωmes

as

(ωmes)× =
n∑

i=1

ki

2
(v̂iv

T
i − viv̂i

T ) = Pa(R̃M) (34)

Introducing the expressions ofωmes into the time derivative
of the Lyapunov-like functionV , Eq. 33, one obtains

V̇ = −kP ||Pa(R̃M)||2.
The Lyapunov-like function derivative is negative semi-
definite ensuring that̃b is bounded. Analogous to the proof
of Theorem 4.2, Barbalat’s lemma is invoked to show that
Pa(R̃M) tends to zero asymptotically. Thus, forV̇ = 0 one
has

R̃M = MR̃T . (35)

We prove next Eq. 35 implies either̃R = I or tr(R̃) = −1.
SinceR̃ is a real matrix, the eigenvalues and eigenvectors

of R̃ verify

R̃T xk = λkxk andxH
k R̃ = λH

k xH
k (36)

whereλH
k (for k = 1 . . . 3) represents the complex conjugate

of the eigenvalueλk and xH
k represents the Hermitian trans-

pose of the eigenvectorxk associated toλk. Combining Eq. 35
and Eq. 36, one obtains

xH
k R̃Mxk = λH

k xH
k Mxk

xH
k MR̃T xk = λkxH

k Mxk = λH
k xH

k Mxk

Note that for n ≥ 3, M > 0 is positive definite and
xH

k Mxk > 0, ∀k = {1, 2, 3}. One hasλk = λH
k for all k.

In the case whenn = 2, it is simple to verify that two of the
three eigenvalues are real. It follows that all three eigenvalues
of R̃ are real since complex eigenvalues must come in complex
conjugate pairs. The eigenvalues of an orthogonal matrix are
of the form

eig(R̃) = (1, cos(θ) + i sin(θ), cos(θ)− i sin(θ)),

whereθ is the angle from the angle-axis representation. Given
that all the eigenvalues are real it follows thatθ = 0 or θ =
±π. The first possibility is the desired case(R̃, b̃) = (I, 0).
The second possibility is the case where tr(R̃) = −1.

When ωmes ≡ 0 then Eqn’s 32 and Eqn’s 13 lead to
identical error dynamics. Thus, we use the same argument
as in Theorem 4.2 to prove thatb̃ = 0 on the invariant set.
To see that the only forward invariant subsets are the unstable
equilibria as characterised in part i) of the theorem statement
we introduceR̄ = RR̂T . Observe that

R̃M = MR̃T ⇒ R̄M0 = M0R̄
T

Analogous to Eq. 35, this implies̄R = I3 or tr(R̄) = −1 on
the setωmes≡ 0 and R̄ = R̄T . SetR̄′ = UT

0 R̄U0. Then

R̄′Λ− ΛR̄′ = 0 ⇒ ∀i, j (λi − λj)R̄′ij = 0

As M0 has three distinct eigenvalues, it follows thatR̄′ij = 0
for all i 6= j and thusR̄′ is diagonal. Therefore, there are
four isolated equilibrium points̄R′0 = U0DiU

T
0 , i = 1, . . . , 3

(whereDi are specified in part i) of the theorem statement)
and R̄′ = I that satisfy the conditionωmes ≡ 0. The case
R̄′0 = I = U0D4U

T
0 (where D4 = I) corresponds to the

equilibrium (R̃, b̃) = (I, 0) while we will show that the other
three equilibria are unstable.

We proceed by computing the dynamics of the filter in the
newR̄ variable and using these dynamics to prove the stability
properties of the equilibria. The dynamics associated toR̄ are

˙̄R = ṘR̂T + R
˙̂
RT

= RΩ×R̂T −R(Ω + b̃)×R̂T − kP RPa(R̃M)R̂T

= −Rb̃×R̂T − kP

2 R(R̃M −MR̃T )R̂T

= −Rb̃×(RT R)R̂T − kP

2 R(R̂T M0R−RT M0R̂)R̂T

= −(Rb̃)×R̄− kP

2 (R̄M0R̄−M0)
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Setting b̄ = Rb̃, one obtains

˙̄R = −b̄×R̄− kP

2
(R̄M0R̄−M0). (37)

The dynamics of the new estimation error on the biasb̄ are

˙̄b× = Ṙb̄×RT + Rb̄×ṘT + kIRPa(R̃M)RT

= [(RΩ)×, b̄×] +
kI

2
R(R̂T M0R−RT M0R̂)RT

= [(RΩ)×, b̄×] +
kI

2
(R̄M0 −M0R̄

T ) (38)

The dynamics of(R̄, b̄) (Eqn’s 37 and 38) are an alternative
formulation of the error dynamics to(R̃, b̃).

Consider a first order approximation of(R̄, b̄) (Eqn’s 37 and
38) around an equilibrium point(R̄0, 0)

R̄ = R̄0(I3 + x×), b̄ = −y.

The linearisation of Eq. 37 is given by

R̄0ẋ× = y×R̄0 − kP

2
(R̄0x×M0R̄0 + R̄0M0R̄0x×),

and thus

ẋ× = R̄T
0 y×R̄0 − kP

2
(x×M0R̄0 + M0R̄0x×),

and finally

UT
0 ẋ×U0 = Di(UT

0 y)×Di−kP

2
((UT

0 x)×ΛDi+ΛDi(UT
0 x)×)

for i = 1, . . . , 4 and whereΛ is specified in part i) of the
theorem statement. Define

A1 = 0.5diag(λ2 + λ3,−λ1 + λ3,−λ1 + λ2)
A2 = 0.5diag(λ2 − λ3, λ1 − λ3, λ1 + λ2)
A3 = 0.5diag(−λ2 + λ3, λ1 + λ3, +λ1 − λ2)
A4 = 0.5diag(−λ2 − λ3,−λ1 − λ3,−λ1 − λ2)

Setting y′ = UT
0 y and x′ = UT

0 x one may write the
linearisation Eq. 37 as

ẋ′ = kP Aix
′ + Diy

′, i = 1, . . . , 4.

We continue by computing the linearisation of˙̄b. Equation
(38) may be approximated to a first order by

−ẏ× = [(RΩ)×,−y×] +
kI

2
(R̄0x×M0 + M0x×R̄0)

and thus

−UT
0 ẏ×U0 = [(UT

0 RΩ)×,−y′×] +
kI

2
(Dix

′
×Λ + Λx′×Di).

Finally, for i = 1, . . . , 4

UT
0 ẏ×U0 = −kI

2
((Dix

′)×DiΛ + ΛDi(Dix
′)×) + [Ω′×, y′×].

Rewriting in terms of the variablesx′, y′ and settingΩ′ =
UT

0 RΩ one obtains

ẏ′ = kIAiDix
′ + Ω′ × y′, for i = 1, . . . , 4.

The combined error dynamic linearisation in the primed coor-
dinates is(

ẋ′

ẏ′

)
=

(
kP Ai Di

kIAiDi Ω′(t)×

)(
x′

y′

)
, i = 1, . . . , 4.

(39)
To complete the proof of part i) of the theorem statement we

will prove that the three equilibria associated with(R̄∗i, b̄∗i)
for i = 1, 2, 3 are unstable. The demonstration is analogous to
the proof of the Chetaev’s Theorem (see [40, pp. 111–112]).
Consider the following cost function:

S =
1
2
kIx

′T Aix
′ − 1

2
|y′|2

It is straightforward to verify that its time derivative is always
positive

Ṡ = kP kIA
2
i |x′|2.

Note that fori = 1, . . . , 3 thenAi has at least one element of
the diagonal positive. For eachi = 1, . . . , 3 andr > 0, define

Ur = {ξ′ = (x′, y′)T : S(ξ′) > 0, |ξ′| < r}
and note thatUr is non-null for all r > 0. Let ξ′0 ∈ Ur such
that S(ξ′0) > 0. A trajectory ξ′(t) initialized at ξ′(0) = ξ′0
will diverge from the compact setUr sinceṠ(ξ′) > 0 on Ur.
However, the trajectory cannot exitUr through the surface
S(ξ′) = 0 since S(ξ′(t)) ≥ S(ξ′0) along the trajectory.
Restrictingr such that the linearisation is valid, then the trajec-
tory must exitUr through the sphere|ξ′| = r. Consequently,
trajectories initially arbitrarily close to(0, 0) will diverge. This
proves that the point(0, 0) is locally unstable.

To prove local exponential stability of(R̄, b̄) = (I, 0) we
consider the linearisation Eq. 39 fori = 4. Note thatD4 = I
and A4 < 0. Set KP = −kP

2 A4 and KI = −kI

2 A4. Then
KP ,KI > 0 are positive definite and Eq. 39 may be written
as

d

dt

(
x′

y′

)
=

(
−KP I3

−KI Ω′(t)×

)(
x′

y′

)

Consider a cost functionV = ξ′T Pξ′ with P given by Eq. 27.
Analogous to Eq. 28, the time derivative ofV is given by

V̇ =− (KP α1 − α2KI)|x′|2 − α2|y′|2
+ y′T x′(α1 + KP α2 − α3KI)− α2x

′T (Ω′ × y′).

Once again, it is straightforward to verify that

V̇ ≤ −2(|x′|, |y′|)Q
(
|x′|
|y′|

)

whereQ is defined in Eq. 27 and this proves local exponential
stability of (R̄, b̄) = (I, 0).

The final statement of the theorem follows directly from the
above results along with classical dynamical systems theory
and the proof is complete.

Remark:If n = 3, the weightski = 1, and the measured
directions are orthogonal(vT

i vj = 0, ∀i 6= j) then M = I3.
The cost functionEmes becomes

Emes = 3− tr(R̃M) = tr(I3 − R̃) = Etr.
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In this case, the explicit complementary filter (Eqn’s 32) and
the passive complementary filter (Eqn’s 13) are identical.¤

Remark:It is possible to weaken the assumptions in Theo-
rem 5.1 to allow any choice of gainski and any structure of the
matrix M0 and obtain analogous results. The case where all
three eigenvalues ofM0 are equal is equivalent to the passive
complementary filter scaled by a constant. The only other case
wheren > 2 has

M0 = U0diag(λ1, λ1, λ2)UT
0

for λ1 > λ2 ≥ 0. (Note that the situation wheren = 1
is considered in Corollary 5.2.) It can be shown that any
symmetryR̄∗ = exp(πa∗×) with a∗ ∈ span{v01, v02} satisfies
ωmes≡ 0 and it is relatively straightforward to verify that this
set is forward invariant under the closed-loop filter dynamics.
This invalidates part i) of Theorem 5.1 as stated, however,
it can be shown that the new forward invariant points are
unstable as expected. To see this, note that any(R̄∗, b̄∗) in
this set corresponds to the minimal cost ofEmes on U0.
Consequently, any neighbourhood of(R̄∗, b̄∗) contains points
(R̃, b̃) such thatV (R̃, b̃) < V (R̄∗, b̄∗) and the Lyapunov
decrease condition ensures instability. There is still a separate
isolated unstable equilibrium inU0, and the stable equilibrium,
that must be treated in the same manner as undertaken in the
formal proof of Theorem 5.1. Following through the proof
yields analogous results to Theorem 5.1 for arbitrary choice
of gains{ki}. ¤

The two typical measurements obtained from an IMU unit
are estimates of the gravitational,a, and magnetic,m, vector
fields

va = RT a0

|a0| , vm = RT m0

|m0| .

In this case, the cost functionEmes becomes

Emes = k1(1− 〈v̂a, va〉) + k2(1− 〈v̂m, vm〉)
The weightsk1 andk2 are introduced to weight the confidence
in each measure. In situations where the IMU is subject
to high magnitude accelerations (such as during takeoff or
landing manoeuvres) it may be wise to reduce the relative
weighting of the accelerometer data (k1 << k2) compared to
the magnetometer data. Conversely, in many applications the
IMU is mounted in the proximity to powerful electric motors
and their power supply busses leading to low confidence in
the magnetometer readings (choosek1 >> k2). This is a very
common situation in the case of mini aerial vehicles with
electric motors. In extreme cases the magnetometer data is
unusable and provides motivation for a filter based solely on
accelerometer data.

A. Estimation from the measurements of a single direction

Let va be a measured body fixed frame direction associated
with a single inertial directionv0a, va = RT v0a. Let v̂a be an
estimatev̂a = R̂T v0a. The error considered is

Emes = 1− tr(R̃M); M = RT v0avT
0aR

Corollary 5.2: Consider the rotation kinematics Eq. 4 for a
time-varyingR(t) ∈ SO(3) and with measurements given by

Eqn’s 29 (for a single measurementv1 = va) and Eq. 11b. Let
(R̂(t), b̂(t)) denote the solution of Eqn’s 32. Assume thatΩ(t)
is a bounded, absolutely continuous signal and(Ω(t), va(t))
are asymptotically independent (see§II-A). Define

U1 = {(R̃, b̃) : vT
0aR̃v0a = −1, b̃ = 0}.

Then:
1) The setU1 is forward invariant and unstable under the

closed-loop filter dynamics.
2) The estimate(v̂a, b̂) is locally exponentially stable to

(va, b).
3) For almost all initial conditions(R̃0, b̃0) 6∈ U1 then

(v̂a, b̂) converges to the trajectory(va(t), b).
Proof: The dynamics of̂va are given by

˙̂va = −(Ω + b̃ + kP va × v̂a)× v̂a (40)

Define the following storage function

V = Emes+
1
kI

b̃2.

The derivative ofV is given by

V̇ = −kP ||(va × R̂T v0a)×||2 = −2kP |va × v̂a|2
The Lyapunov-like functionV derivative is negative semi-
definite ensuring that̃b is bounded andva × v̂a → 0. The
setva × v̂∗a = 0 is characterised byva = ±v̂∗a and thus

v̂T
∗ava = ±1 = vT

0aR̂T
∗ Rv0a = vT

0aR̃∗v0a.

Consider a trajectory(v̂∗a(t), b∗(t)) that satisfies the filter
dynamics and for whicĥv∗a = ±va for all time. One has

d

dt
(va × v̂∗a) = 0

= −(Ω× va)× v̂∗a − va × (Ω× v̂∗a)

− va × (b̃∗ × v̂∗a)− kP va × ((va × v̂∗a)× v̂∗a)

= ±va × (b̃∗ × va) = 0.

Differentiating this expression again one obtains(
(Ω× va)× (b̃∗ × va) + va × (b̃∗ × (Ω× va))

)
= 0

Since the signalsΩ andva are asymptotically independent it
follows that the functional expression on the left hand side is
degenerate. This can only hold ifb̃∗ ≡ 0. For v̂∗a = −va, this
set of trajectories is characterised by the definition ofU1. It is
straightforward to adapt the arguments in Theorems 4.1 and
4.2 to see that this set is forward invariant. Note that forb̃∗ = 0
thenV = Emes. It is direct to see that(v̂∗a(t), b∗(t)) lies on a
local maximum ofEmes and that any neighbourhood contains
points such that the full Lyapunov functionV is strictly less
than its value on the setU1. This proves instability ofU1 and
completes part i) of the corollary.

The proof of part ii) and part iii) is analogous to the proof
of Theorem 5.1 (see also [15]).

An important aspect of Corollary 5.2 is the convergence of
the bias terms in all degrees of freedom. This ensures that, for
a real world system, the drift in the attitude estimate around
the unmeasured axisv0a will be driven asymptotically by a
zero mean noise process rather than a constant bias term. This
makes the proposed filter a practical algorithm for a wide range
of MAV applications.
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VI. EXPERIMENTAL RESULTS

In this section, we present experimental results to demon-
strate the performance of the proposed observers.

Experiments were undertaken on two real platforms to
demonstrate the convergence of the attitude and gyro bias
estimates.

1) The first experiment was undertaken on a robotic ma-
nipulator with an IMU mounted on the end effector and
supplied with synthetic estimates of the magnetic field
measurement. The robotic manipulator was programmed
to simulate the movement of a flying vehicle in hover-
ing flight regime. The filter estimates are compared to
orientation measurements computed from the forward
kinematics of the manipulator. Only the passive and
direct complimentary filters were run on this test bed.

2) The second experiment was undertaken on the VTOL
MAV HoverEyec© developed by Bertin Technologies
(Figure 1). The VTOL belongs to the class of ‘sit
on tail’ ducted fan VTOL MAV, like the iSTAR9 and
Kestrel developed respectively by Allied Aerospace [41]
and Honeywell [42]. It was equipped with a low-cost
IMU that consists of 3-axis accelerometers and 3-axis
gyroscopes. Magnetometers were not integrated in the
MAV due to perturbations caused by electrical motors.
The explicit complementary filter was used in this ex-
periment.

For both experiments the gains of the proposed filters were
chosen to be:kP = 1rad.s−1 andkI = 0.3rad.s−1. The inertial
data was acquired at rates of 25Hz for the first experiment and
50Hz for the second experiment. The quaternion version of the
filters (Appendix B) were implemented with first order Euler
numerical integration followed by rescaling to preserve the
unit norm condition.

Experimental results for the direct and passive versions of
the filter are shown in Figures 6 and 7. In Figure 6 the only
significant difference between the two responses lies in the
initial transient responses. This is to be expected, since both
filters will have the same theoretical asymptotic performance.
In practice, however, the increased sensitivity of the direct
filter to noise introduced in the computation of the measured
rotationRy is expected to contribute to slightly higher noise
in this filter compared to the passive.

The response of the bias estimates is shown in Figure 7.
Once again the asymptotic performance of the filters is similar
after an initial transient. From this figure it is clear that the
passive filter displays slightly less noise in the bias estimates
than for the direct filter (note the different scales in they-axis).

Figures 8 and 9 relate to the second experiment. The
experimental flight of the MAV was undertaken under remote
control by an operator. The experimental flight plan used was:
First, the vehicle was located on the ground, initially headed
toward ψ(0) = 0. After take off, the vehicle was stabilized
in hovering condition, around a fixed heading which remains
close the initial heading of the vehicle on the ground. Then,
the operator engages a' 90

o

-left turn manoeuvre, returns
to the initial heading, and follows with a' 90

o

-right turn
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Fig. 6. Euler angles from direct and passive complementary filters
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Fig. 7. Bias estimation from direct and passive complementary filters

manoeuvre, before returning to the initial heading and landing
the vehicle. After landing, the vehicle is placed by hand at its
initial pose such that final and initial attitudes are the identical.

Figure 8 plots the pitch and roll angles(φ, θ) estimated
directly from the accelerometer measurements against the
estimated values from the explicit complementary filter. Note
the large amounts of high frequency noise in the raw attitude
estimates. The plots demonstrate that the filter is highly
successful in reconstructing the pitch and roll estimates.

Figure 9 presents the gyros bias estimation verses the
predicted yaw angle (φ) based on open loop integration of the
gyroscopes. Note that the explicit complementary filter here
is based solely on estimation of the gravitational direction.
Consequently, the yaw angle is the indeterminate angle that is
not directly stabilised in Corollary 5.2. Figure 9 demonstrates
that the proposed filter has successfully identified the bias of
the yaw axis gyro. The final error in yaw orientation of the
microdrone after landing is less than 5 degrees over a two
minute flight. Much of this error would be due to the initial
transient when the bias estimate was converging. Note that the
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second part of the figure indicates that the bias estimates are
not constant. Although some of this effect may be numerical,
it is also to be expected that the gyro bias on low cost IMU
systems are highly susceptible to vibration effects and changes
in temperature. Under flight conditions changing engine speeds
and aerodynamic conditions can cause quite fast changes in
gyro bias.

Fig. 8. Estimation results of the Pitch and roll angles.
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Fig. 9. Gyros bias estimation and influence of the observer on yaw angle.

VII. C ONCLUSION

This paper presents a general analysis of attitude observer
design posed directly on the special orthogonal group. Three
non-linear observers, ensuring almost global stability of the
observer error, are proposed:

Direct complementary filter:A non-linear observer posed on
SO(3) that is related to previously published non-linear
observers derived using the quaternion representation of
SO(3).

Passive complementary filter:A non-linear filter equation that
takes advantage of the symmetry ofSO(3) to avoid
transformation of the predictive angular velocity term

into the estimator frame of reference. The resulting ob-
server kinematics are considerably simplified and avoid
coupling of constructed attitude error into the predictive
velocity update.

Explicit complementary filter:A reformulation of the passive
complementary filter in terms of direct vectorial measure-
ments, such as gravitational or magnetic field directions
obtained for an IMU. This observer does not require on-
line algebraic reconstruction of attitude and is ideally
suited for implementation on embedded hardware plat-
forms. Moreover, the filter remains well conditioned in
the case where only a single vector direction is measured.

The performance of the observers was demonstrated in a
suite of experiments. The explicit complementary filter is now
implemented as the primary attitude estimation system on
several MAV vehicles world wide.

APPENDIX A
A REVIEW OF COMPLEMENTARY FILTERING

Complementary filters provide a means to fuse multiple
independent noisy measurements of the same signal that
have complementary spectral characteristics [11]. For example,
consider two measurementsy1 = x+µ1 andy2 = x+µ2 of a
signalx whereµ1 is predominantly high frequency noise and
µ2 is a predominantly low frequency disturbance. Choosing a
pair of complementary transfer functionsF1(s) + F2(s) = 1
with F1(s) low pass andF2(s) high pass, the filtered estimate
is given by

X̂(s) = F1(s)Y1+F2(s)Y2 = X(s)+F1(s)µ1(s)+F2(s)µ2(s).

The signalX(s) is all pass in the filter output while noise
components are high and low pass filtered as desired. This type
of filter is also known asdistorsionless filteringsince the signal
x(t) is not distorted by the filter [43]. Complementary filters
are particularly well suited to fusing low bandwidth position
measurements with high band width rate measurements for
first order kinematic systems. Consider the linear kinematics

ẋ = u. (41)

with typical measurement characteristics

yx = L(s)x + µx, yu = u + µu + b(t) (42)

whereL(s) is low pass filter associated with sensor character-
istics, µ represents noise in both measurements andb(t) is a
deterministic perturbation that is dominated by low-frequency
content. Normally the low pass filterL(s) ≈ 1 over the
frequency range on which the measurementyx is of interest.
The rate measurement is integratedyu

s to obtain an estimate of
the state and the noise and bias characteristics of the integrated
signal are dominantly low frequency effects. Choosing

F1(s) =
C(s)

C(s) + s

F2(s) = 1− F1(s) =
s

C(s) + s
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with C(s) all pass such thatL(s)F1(s) ≈ 1 over the band-
width of L(s). Then

X̂(s) ≈ X(s) + F1(s)µx(s) +
µu(s) + b(s)

C(s) + s

Note that even thoughF2(s) is high pass the noiseµu(s)+b(s)
is low pass filtered. In practice, the filter structure is imple-
mented by exploiting the complementary sensitivity structure
of a linear feedback system subject to load disturbance.
Consider the block diagram in Figure 10. The outputx̂ can

yu

C(s)

-

+

+
R

x̂yx

+

Fig. 10. Block diagram of a classical complementary filter.

be written

x̂(s) =
C(s)

s + C(s)
yx(s) +

s

C(s) + s

yu(s)
s

= T (s)yx(s) + S(s)
yu(s)

s

where S(s) is the sensitivity function of the closed-loop
system andT (s) is the complementary sensitivity. This archi-
tecture is easy to implement efficiently and allows one to use
classical control design techniques forC(s) in the filter design.
The simplest choice is a proportional feedbackC(s) = kP . In
this case the closed-loop dynamics of the filter are given by

˙̂x = yu + kP (yx − x̂). (43)

The frequency domain complementary filters associated with
this choice areF1(s) = kP

s+kP
and F2(s) = s

s+kP
. Note that

the crossover frequency for the filter is atkP rad.s−1. The gain
kP is typically chosen based on the low pass characteristics
of yx and the low frequency noise characteristics ofyu to
choose the best crossover frequency to tradeoff between the
two measurements. If the rate measurement bias,b(t) = b0,
is a constant then it is natural to add an integrator to the
compensator to make the system type I

C(s) = kP +
kI

s
. (44)

A type I system will reject the constant load disturbanceb0

from the output. Gain design forkP andkI is typically based
on classical frequency design methods. The non-linear devel-
opment in the body of the paper requires a Lyapunov analysis
of closed-loop system Eq. 43. Applying the PI compensator,
Eq. 44, one obtains state space filter with dynamics

˙̂x = yu − b̂ + k(yx − x̂), ˙̂
b = −kI(yx − x̂)

The negative sign in the integrator state is introduced to
indicate that the statêb will cancel the bias inyu. Consider
the Lyapunov function

L =
1
2
|x− x̂|2 +

1
2kI

|b0 − b̂|2

Abusing notation for the noise processes, and usingx̃ = (x−
x̂), and b̃ = (b0 − b̂), one has

d

dt
L = −kP |x̃|2 − µux̃ + µx(b̃− kx̃)

In the absence of noise one may apply Lyapunov’s direct
method to prove convergence of the state estimate. LaSalle’s
principal of invariance may be used to show thatb̂ → b0.
When the underlying system is linear, then the linear form of
the feedback and adaptation law ensure that the closed-loop
system is linear and stability implies exponential stability.

APPENDIX B
QUATERNION REPRESENTATIONS OF OBSERVERS

The unit quaternion representation of rotations is commonly
used for the realisation of algorithms onSO(3) since it offers
considerable efficiency in code implementation. The set of
quaternions is denotedQ = {q = (s, v) ∈ R× R3 : |q| = 1}.
The setQ is a group under the operation

q1 ⊗ q2 =

[
s1s2 − vT

1 v2

s1v2 + s2v1 + v1 × v2

]

with identity element1 = (1, 0, 0, 0). The group of quater-
nions are homomorphic toSO(3) via the map

F : Q→ SO(3), F (q) := I3 + 2sv× + 2v2
×

This map is a two to one mapping ofQ onto SO(3) with
kernel{(1, 0, 0, 0), (−1, 0, 0, 0)}, thus,Q is locally isomorphic
to SO(3) via F . Given R ∈ SO(3) such thatR = exp(θa×)
then F−1(R) = {±(cos( θ

2 ), sin( θ
2 )a)} Let Ω ∈ {A} de-

note a body-fixed frame velocity, then the pure quaternion
p(Ω) = (0,Ω) is associated with a quaternion velocity.
Consider the rotation kinematics onSO(3) Eq. 4, then the
associated quaternion kinematics are given by

q̇ =
1
2
q ⊗ p(Ω) (45)

Let qy ≈ q be a low frequency measure ofq, andΩy ≈ Ω+ b
(for constant biasb) be the angular velocity measure. Letq̂
denote the observer estimate and quaternion errorq̃

q̃ = q̂−1 ⊗ q =

[
s̃

ṽ

]

Note that

2s̃ṽ = 2 cos(θ/2) sin(θ/2)a =
1
2
(sin θ)a = vex(Pa(R̃))

where (θ, a) is the angle axis representation of̃R = F (q̃).
The quaternion representations of the observers proposed in
this paper are:

Direct complementary filter (Eq. 12):

˙̂q =
1
2
q̂ ⊗ p(R̃(Ωy − b̂) + 2kP s̃ṽ) (46a)

˙̂
b = −2kI s̃ṽ (46b)
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Passive complementary filter (Eq. 13):

˙̂q =
1
2
q̂ ⊗ p(Ωy − b̂ + 2kP s̃ṽ) (47a)

˙̂
b = −2kI s̃ṽ (47b)

Explicit complementary filter (Eq. 32):

ωmes =− vex

(
n∑

i=1

ki

2
(viv̂i

T − v̂iv
T
i )

)
(48a)

˙̂q =
1
2
q̂ ⊗ p(Ωy − b̂ + kP ωmes) (48b)

˙̂
b = −kIωmes (48c)

The error dynamics associated with the direct filter expressed
in the quaternion formulation are

˙̃q = −1
2

(
p(b̃ + kP s̃ṽ)⊗ q̃

)
. (49)

The error dynamics associated with the passive filter are

˙̃q =
1
2

(
q̃ ⊗ p(Ω)− p(Ω)⊗ q̃ − p(b̃ + kP s̃ṽ)⊗ q̃

)
. (50)

There is a fifteen year history of using the quaternion rep-
resentation and Lyapunov design methodology for filtering
on SO(3) (for example cf. [9], [30], [32]). To the authors
knowledge the Lyapunov analysis in all cases has been based
around the cost function

Φ(q̃) = (|s̃| − 1)2 + |ṽ|2.
Due to the unit norm condition it is straightforward to show
that

Φ(q̃) = 2(1− |s̃|) = 2 (1− | cos(θ/2)|)
The cost function proposed in this paper isEtr = (1 −

cos(θ)) (Eq. 3). It is straightforward to see that the quadratic
approximation of both cost functions around the pointθ = 0 is
the quadraticθ2/2. The quaternion cost functionΦ, however,
is non-differentiable at the pointθ = ±π while the cost
tr(I − R̃) has a smooth local maxima at this point. To the
authors understanding, all quaternion filters in the published
literature have a similar flavour that dates back to the seminal
work of Salcudean [32]. The closest published work to that
undertaken in the present paper was published by Thienel in
her doctoral dissertation [44] and transactions paper [30]. The
filter considered by Thienelet al. is given by

˙̂q =
1
2
q̂ ⊗ p(R̃(Ωy − b̂ + kP sgn(s̃)ṽ)) (51a)

˙̂
b = −kIsgn(s̃)ṽ (51b)

The sgn(s̃) term enters naturally in the filter design from the
differential, d

dt |s̃| = sgn(s̃) d
dt s̃, of the absolute value term

in the cost functionΦ, during the Lyapunov design process.
Consider the observer obtained by replacing sgn(s̃) in Eqn’s 51
by 2s̃. Note that with this substitution, Eq. 51b is transformed
into Eq. 46b. To show that Eq. 51a transforms to Eq. 46a it is
sufficient to show that̃Rṽ = ṽ. This is straightforward from

2s̃R̃ṽ = R̃(2s̃ṽ) = R̃vex(Pa(R̃))

= vex(R̃Pa(R̃)R̃T ) = vex(Pa(R̃)) = 2s̃ṽ

This demonstrates that the quaternion filter Eqn’s 51 is ob-
tained from the standard form of the complimentary filter
proposed Eq. 12 with the correction term Eq. 12c replaced
by

ωq = sgn(s̃)ṽ, q̃ ∈ F−1(R̂T R).

Note that the correction term defined in Eq. 12c can be written
ω = 2s̃ṽ. It follows that

ωq =
sgn(s̃)

2s̃
ω

The correction term for the two filters varies only by the
positive scaling factor sgn(s̃)/(2s̃). The quaternion correction
term ωq is not well defined for̃s = 0 (whereθ = ±π) and
these points are not well defined in the filter dynamics Eq. 51.
It should be noted, however, that|ωq| is bounded at̃s = 0
and, apart from possible switching behaviour, the filter can
still be implemented on the remainder ofSO(3) × R3. An
argument for the use of the correction termωq is that the
resulting error dynamics strongly force the estimate away from
the unstable setU (cf. Eq. 14). An argument against its use is
that, in practice, such situations will only occur due to extreme
transients that would overwhelm the bounded correction term
ωq in any case, and cause the numerical implementation of
the filter to deal with a discontinuous argument. In practice,
it is an issue of little significance since the filter will general
work sufficiently well to avoid any issues with the unstable
setU. For s̃ → 1, corresponding toθ = 0, the correction term
ωq scales to a factor of1/2 the correction termω. A simple
scaling factor like this is compensated for the in choice of filter
gainskP andkI and makes no difference to the performance
of the filter.
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