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Graphics and imaging are two-dimensional applications. Just as in the
one-dimensional case, it is often desirable to manipulate the data through
filtering. This chapter describes the implementation of two-dimensional
filtering using 3 × 3 kernals, as well as median filtering. Histogram
equalization, a technique for enhancing images, is also described.

9.19.19.19.19.1 TWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTIONTWO-DIMENSIONAL CONVOLUTION
According to digital signal processing theory, a linear time-invariant
system (LTI system) is completely characterized by the impulse response
function, h(n), which is the system’s response to the unit sample sequence
delta (n). From this principle, the response y(n) of an LTI system is the
convolution sum of an input to the system x(n) with the impulse response,
h(n). The following equation defines convolution in one dimension:

n

∑
k=0

A two dimensional LTI system can again be described by it’s impulse
response h(n1, n2).The corresponding two-dimensional convolution sum
can be describe by the following equation:

y(n1, n2) = h(n1, n2) ** x(n1, n2)

where

x(n1,n2) describes the two-dimensional input
y(n1,n2) describes the two-dimensional output

Note: The “ **” symbol signifies a two-dimensional convolution.

This equation expands to the following equation:
+∞ +∞

∑ ∑
k1 = –∞ k2= –∞

y(n) =         x(k) h(n – k)
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A matrix is a natural data structure for storing two-dimensional data. For
the two dimensional convolution, the data input values (x-values) are
stored in the data matrix (in data memory), and the impulse response
values, h-values, are stored in the transfer function matrix (in program
memory).

9.1.19.1.19.1.19.1.19.1.1 ImplementationImplementationImplementationImplementationImplementation
FIR filters are used in the two-dimensional signal space just as they are in
the one-dimension signal space. For two-dimensional signals kernal
convolution performs FIR filtering on an image matrix. The kernal
convolution implements the following equation:

+∞ +∞

∑ ∑
k1 = –∞ k2= –∞

where

y(n1, n2) is the output filtered image
h(k1, k2) is the filter kernal
x(n1,n2) is the input image

The kernel convolves a 3 × 3 coefficient matrix by an M × N image matrix.
This code segment can use any size data buffer; the #DEFINE statements
at the start of the program determine the size of the input data matrix. The
input data (in data memory) is assumed to be in row major format. The
kernel (convolution coefficients) are loaded from the file coeff.dat
into program memory.

 y(n1, n2) =                     x(k1, k2) h(n1 – k, n2 – k2)
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Figure 9.1 shows A graphical depiction of the 3 × 3 kernel convolution.

Figure 9.1  3x3 Convolution MatrixFigure 9.1  3x3 Convolution MatrixFigure 9.1  3x3 Convolution MatrixFigure 9.1  3x3 Convolution MatrixFigure 9.1  3x3 Convolution Matrix

The data array elements in the upper left are referred to as {d00,d01...}.
The convolution kernel elements are referred to as { c00, c01, ... , c32, c33 }.
The first two convolutions are formed from these products:

Figure 9.2  3x3 Convolution OperationFigure 9.2  3x3 Convolution OperationFigure 9.2  3x3 Convolution OperationFigure 9.2  3x3 Convolution OperationFigure 9.2  3x3 Convolution Operation

 
                                                              
   0,0     0,1     0,2     0,3     0,4     . . .     0,M-1    
                                                              
   1,0     1,1     1,2     1,3     1,4     . . .       .      
                                                       .      
   2,0     2,1     2,2     2,3     2,4     . . .       .      
                                                              
   .       .       .       .       .                         
   .       .       .       .       .                         
   .       .       .       .       .                          
                                                     N-2,M-1  
                                                              
   N-1,0               . . .               N-1,M-2   N-1,M-1  
                                                              

~
~

~
~

Data Array:

c00*d00 = a0 
c01*d01 = a1	
c02*d02 = a2	  
c10*d10 = a3	   
c11*d11 = a4	         SUM      convolution sum #1
c12*d12 = a5	   
c20*d20 = a6	   
c21*d21 = a7	
c22*d22 = a8 

c00*d01 = b0 
c01*d02 = b1	
c02*d03 = b2	  
c10*d11 = b3	   
c11*d12 = b4	         SUM      convolution sum #2
c12*d13 = b5	   
c20*d21 = b6	   
c21*d22 = b7	
c22*d23 = b8 
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Figure 9.2 shows that for every convolution sum there are

• nine reads from data memory (input data)
• nine reads from program memory (kernel coefficients)
• eight additions
• one write to program memory for the convolution sum

The inner loop of the algorithm performs these 27 operations.

The program executes the outer loop m-2 times because the size the data
matrix is 3 × 3 the data starts at the upper left hand corner of the matrix. At
the m-2th iteration through the outer loop, the 3 × 3 kernel matrix covers
the data values through m; further loop iterations beyond m-2 times are
redundant. Therefore, the outer loop of the program determines the
starting point of the convolution and manages the update of the array
indices from row to row. The advantages of the automatic post modify
DAGs are obvious; one modify statement and one read statement can
manage the indices to process the data array.

The inner loop of the algorithm performs all of the calculations. While the
outer loop determines the starting point of the convolution and manages
the update of the array indices from row to row, the inner loop of the
algorithm performs the calculations. The third kernel coefficient is stored
in F5 in the setup segment of the code so as to avoid an extra cycle for
program memory read within the loop. (The ADSP-210xx multifunction
operations allow a data memory read/write and a program memory
read/write in one cycle, and the algorithm requires 18 reads and one
write.)

The calculations start at the upper left hand corner of the image matrix.
The first iteration of the kernel matrix by the image matrix performs the
operations over the first , second, and third rows. The second iteration
covers the second, third, and fourth rows, etc. Therefore, at the M – 2
iteration, the M – 1 and M rows have already been dealt with, and, in the
interest of time and space, we set the outer loop equal to M – 2.

The write operation to the PM location that contains the convolution sum
is at the second instruction in the inner loop, which may seem like an
unusual place for it. To minimize the cycle count, this write of the partial
sum cannot occur at the bottom of the loop. F12 is used to hold the partial
products, and F8 is used to hold the running total of the partial sums.
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The first time through the loop, F8 (which only contains one product) is
written to program memory at the relative bottom of the circular buffer
output (where the base register is currently pointing). When the circular
buffer is written to again, with the valid sum of products, the memory is
correctly written at the relative top of the circular buffer.

9.1.29.1.29.1.29.1.29.1.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/
*********************************************************************************

File Name
comv3x3.asm

Version

Purpose
This code performs the Kernel Convolution.

Equations Implemented
      y(n1, n2) =  SUM (SUM ( x(k1, k2) h(n1 – k, n2 – k2))

Calling Parameters
      none
Return Values

Registers Affected

Cycle Count
Setup: This code initializes register constants and address pointers needed.

cycles=10+1
time=11•50ns=550ns

Benchmark: This code performs the Kernel Convolution.
cycles=(9*(n-2)+3)*(m-2)+5+11 (note: 11 cache misses)
time (at m=780, n=1024, cycletime=50ns) =7158394•50ns=.3579197s
MFLOPS sustained in core loop=20MIPS(9mpy+8add)/9=37.77

# PM Locations
     27 words of instructions + 9 words of PM data
# DM Locations
     m * n + (m -2) * (n -2) where m = rows and n = collumns

*********************************************************************************/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)
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/*The third coefficient is stored in the register file to free up a cycle to
output a result. The first write to the output buffer is unused, the pointer
then wraps around to the proper location at the start of output.*/

#DEFINE m 780 /*m by n image*/
#DEFINE n 1024

.SEGMENT/DMDATA dmsegment;

.VAR input[m*n];

.VAR output[(m-2)*(n-2)];

.ENDSEG;

.SEGMENT/PMDATA pmdataseg;

.VAR kernal[3*3]=”coef.dat;

.ENDSEG;

.SEGMENT/PMCODE pmcodeseg;
setup: M0=1;

M1=n-2;
M2=-(2*n+1);
M3=2;
M8=1;
M9=2;
B0=input; L0=0;
B8=kernal; L8=@kernal;
B9=output+(m-2)*(n-2); L9=@output;
F5=PM(kernal+2); /*store in register file to save cycle*/

kern_conv: F0=DM(I0,M0), F4=PM(I8,M8);
LCNTR=m-2, DO in_row UNTIL LCE;

LCNTR=n-2, DO in_col UNTIL LCE;
F8=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M9);
F12=F0*F4,  F0=DM(I0,M1), PM(I9,M8)=F8;
F12=F0*F5, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M1), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
F12=F0*F4, F8=F8+F12, F0=DM(I0,M2), F4=PM(I8,M8);

in_col: F12=F0*F4, F8=F8+F12, F0=DM(I0,M0), F4=PM(I8,M8);
MODIFY(I0,M0);

in_row: F0=DM(I0,M0);
RTS (D), F8=F8+F12;
PM(I9,M8)=F8;
NOP;

.ENDSEG;

Listing 9.1  CONV3x3.ASMListing 9.1  CONV3x3.ASMListing 9.1  CONV3x3.ASMListing 9.1  CONV3x3.ASMListing 9.1  CONV3x3.ASM
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9.29.29.29.29.2 MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)MEDIAN FILTERING (3X3)
Like any other data transmitted through a channel, images are subject to
noise corruption. One type of noise is shot or impulse noise—a strong spike-
like noise scattered evenly through the image. Median filtering can remove
shot noise and is particularly useful when the image sharpness must be
preserved. It replaces a given data value with the median value of its
neighboring elements. The median is the value m such that half the values
in an array are less than m and half the values are greater than m.

The program presented here implements a 3×3 median filter (a nine-
element array) which is applied to every pixel in the image and replaces
that pixel with the median value.

In any six element subset of nine data values, at least one of the values will
be larger than the median (i.e., at least one value will have a rank of sixth
largest). This algorithm of median filtering considers the first six values in
the order that they appear in memory—no presorting is required. The
highest and lowest values are discarded and a new data value is read.
Performing this compare iteratively on successively smaller groups yields
a median of three values ranked in the middle of the array—the median is
the “middle” value of these three.

For further information see [GLASSNER90], p.171, 711; [GONZALEZ87],
p. 162-163; [JAIN89], p. 246-247.

9.2.19.2.19.2.19.2.19.2.1 ImplementationImplementationImplementationImplementationImplementation
The median filter algorithm has a simple implementation in ADSP-21000
family assembly language. Most of the program consists of a few
instructions repeated over and over again— the use of macros leads to
code that is easy to read and visualize.

The comp (compare) operator is central to the macro invocation: it
sets the appropriate flag in the arithmetic status (ASTAT) register
depending on the relative value of the operands. This conditional
operation is always valid because the ADSP-210xx updates the ASTAT
register after every operation. The AZ flag is set (ALU result is 0) if the
operands of comp are equal, and the AN flag is set (ALU result is
negative) if the first operator is smaller than the second. The state of the
ASTAT, if neither AZ or AN is set, is positive; operands a and b will be
swapped if and only if a is greater than b.
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The ADSP-210xx has a sufficient number of registers to perform the
memory read and write operations and the comparisons and swaps that
follow them. If registers were not available, it would not be possible to
read and compare using the same register; an intermediate storage area in
memory and overhead cycles used for memory management would be
needed.

9.2.29.2.29.2.29.2.29.2.2 Code ListingCode ListingCode ListingCode ListingCode Listing

/
*********************************************************************************

File Name
med3x3.asm

Version
    1.0

Purpose
Median filtering: replace a given data value with the median value of its

neighboring elements.

Equations Implemented
Y=SIN(X) or
Y=COS(X)

Calling Parameters
i0 index to data values
m0 column offset (usually 1)
m1 row offset (usually [#pixels/row - 2])
m2 offset to next 3x3 block (usually -[2*m1 + 1])

Return Values
r0 median value

Registers Affected
r0-r6  tmp values

Cycle Count

56 cycles
2.24 µs per 3x3

587ms for median filtering a 512x512 imag

# PM Locations
   16 words of instruction
# DM Locations
   9 words
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*********************************************************************************/

#define s2(a,b) comp(a,b); if gt b = pass a, a = b;
/*one macrdefinition*/
/*that gets repeated*/

#define mnmx3(a,b,c) s2(b,c); s2(a,c); s2(a,b)

#define mnmx4(a,b,c,d)  s2(a,b); s2(c,d); s2(a,c); s2(b,d)

#define mnmx5(a,b,c,d,e) s2(a,b); s2(c,d); s2(a,c); s2(a,e); \
s2(d,e); s2(b,e)

#define mnmx6(a,b,c,d,e,f) s2(a,d); s2(b,e); s2(c,f); \
  s2(a,b); s2(a,c); s2(e,f); s2(d,f)

.SEGMENT /pm  pm_code;

.GLOBAL med3x3; /*make code visible*/
/*to other modules*/

med3x3: r1=dm(i0,m0); /*initial 6 reads*/
 r2=dm(i0,m0);
 r3=dm(i0,m1);
 r4=dm(i0,m0);
 r5=dm(i0,m0);
 r6=dm(i0,m1);

strt:
 mnmx6(r1, r2, r3, r4, r5, r6); /*start the compare*/

mm6:
 r1 = dm(i0,m0); /*another read; overwrite*/

/*r1 (the smallest)*/

 mnmx5(r1, r2, r3, r4, r5); /*smallest and greatest
*/

/*values have dropped out*/
mm5:

 r1 = dm(i0,m0); /*r1 replaced again, */
/*r5 drops out*/

 mnmx4(r1, r2, r3, r4);
mm4:

 r1 = dm(i0,m2); /*a 3 value sort here*/
 mnmx3(r1, r2, r3);

mm3:
 rts (db); /*delayed branch means*/

/*2 more instructions*/
/*executed before return*/

 r0 = r2; /*r2 was median of last 3*/
 nop;

.ENDSEG;

Listing 9.2  med3x3.asmListing 9.2  med3x3.asmListing 9.2  med3x3.asmListing 9.2  med3x3.asmListing 9.2  med3x3.asm
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9.39.39.39.39.3 HISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATIONHISTOGRAM EQUALIZATION
A histogram tallies the intensities of all 8-bit pixels of an image into the
256 bins of a histogram array. If the pixel resolution is increased to 10-bits
or 12-bits, a larger histogram array is required (1024 or 4096 bins,
respectively). An intensity of zero (0x00) is the darkest pixel and is tallied
in bin 0, the first bin. An intensity of 255 (0xFF) is the brightest pixel and is
stored in bin 255, the last bin. The ADSP-210xx supports a 32-bit integer
data type, and thus can tally large numbers of pixels without overflowing
the histogram array.

After all pixel intensities have been tallied, the histogram array can be
analyzed to determine the darkness or brightness of the image. If the
image is too dark, most of the pixels will record in the first 128 bins
(Figure 9.3). If the image is too bright, most of the pixels will record in the
second 128 bins (Figure 9.4).

The process of histogram equalization enhances the contrast of the image by
applying a gain and offset to each pixel, which produces an image with
pixels that cover all intensities.
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Figure 9.3  Histogram Of Dark PictureFigure 9.3  Histogram Of Dark PictureFigure 9.3  Histogram Of Dark PictureFigure 9.3  Histogram Of Dark PictureFigure 9.3  Histogram Of Dark Picture

Figure 9.4  Histogram Of Bright PictureFigure 9.4  Histogram Of Bright PictureFigure 9.4  Histogram Of Bright PictureFigure 9.4  Histogram Of Bright PictureFigure 9.4  Histogram Of Bright Picture

9.3.19.3.19.3.19.3.19.3.1 ImplementationImplementationImplementationImplementationImplementation
The following sequence of tasks generalize the calculation of the
histogram array:

1. Read next pixel from memory.

2. Add the pixel value to the base address of the histogram array.

3. Use this address value as a pointer to read the current number
stored in the corresponding bin in the temporary histogram array.

4. Increment that bin value.

5. Write the bin value back to the temporary histogram.

The histo.asm program (Listing 9.3) is an optimized implementation
of the pseudo-code listed above. The core histogram loop, hloop  ,
processes two pixels per iteration. This technique yields an average
calculation rate of 3.5 instruction cycles per pixel. Due to register
pipelining, the two pixels processed in the loop must be tallied in two
different histogram arrays. After all pixels are processed, these two
temporary histograms in program memory are added together to produce
a composite histogram in data memory. The subroutine declares the two
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temporary and the final composite histogram arrays.

9.3.29.3.29.3.29.3.29.3.2 Code ListingCode ListingCode ListingCode ListingCode Listing
/
*********************************************************************************

File Name
histo.asm

Version

Purpose
An image histogram is an array summarizing the number of occurrences of each
grey level in an image. If a pixel in a typical monochrome image can take on
any of 256 distinct values, the histogram would need 256 bins. In each bin
the number of ocurrences of this grey level is stored.

The algorithm used here assumes the monochrome image is stored in a buffer in
Data Memory, and the histogram is formed in Data Memory.

Equations Implemented
    None

Calling Parameters
b0,i0  = data buffer start
l0 = data buffer length
m0 = 1
m15 = 0

Note: l1 = l8 = l9 = N = # of bins. N must be even, positive, and >= 4

Return Values
histogram output bins pointed to by i1

Registers Affected
r0 input data 1
r1 bin value 1
r2 input data 2
r3 bin value 2, tmp register
r14 temp bin buffer #1 start
r15 temp bin buffer #2 start

Cycle Count
3.5N + 2B + 30 cycles

where N = number of data values
B = number of bins

# PM Locations
    32 words instructions + 512 words data
# DM Locations
    N * 256, where N = number of data values
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*********************************************************************************/

* declare two temporary histogram buffers in program memory */

SEGMENT /pm pm_data;
VAR  temp1[256];
VAR  temp2[256];
ENDSEG;

* declare histogram result buffer in data memory */

SEGMENT /dm dm_data;
VAR  histogram[256];
GLOBAL  histogram;
ENDSEG;

SEGMENT /pm  pm_code;
GLOBAL histo;

* Initialize data addresses, loop count */

histo:  b8 = temp1; l8=@temp1; r14=i8;
 b9 = temp2; l9=@temp2;
 r3 = l1; /* r3 = N = # of bins */
 r3 = lshift r3 by -1; /* r3 = N/2 */
 r3 = r3 - 1, r15=i9; /* r3 = N/2-1, initialize r15  */

* Do the histogram into 2 temporary bins in PM */

 r0=dm(i0,m0);
 r0=r0+r14, r2=dm(i0,m0);
 lcntr = r3, do hloop until lce;

r2=r2+r15, i8=r0;
i9=r2;
r1=pm(i8,m15);  /* 2 cycles due to I register load latency */
r1=r1+1, r3=pm(i9,m15);
r3=r3+1, r0=dm(i0,m0), pm(i8,m15)=r1;

hloop: r0=r0+r14, r2=dm(i0,m0), pm(i9,m15)=r3;

 r2=r2+r15, i8=r0;
 i9=r2;
 r1=pm(i8,m15);
 r1=r1+1, r3=pm(i9,m15);
 r3=r3+1, pm(i8,m15)=r1;
 pm(i9,m15)=r3;

* Now combine the bins back into DM */

 b1=histogram; l1=@histogram;
 i8=b8;
 i9=b9;
 r2=l1;
 r2=r2-1, r0=pm(i8,m8);

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)
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 r1=pm(i9,m8);
 lcntr=r2, do combine until lce;

r2=r0+r1,  r0=pm(i8,m8);
ombine:   dm(i1,m0)=r2,  r1=pm(i9,m8);

 rts (db);
 r2=r0+r1;
 dm(i1,m0)=r2;

ENDSEG;

Listing 9.3  histo.asmListing 9.3  histo.asmListing 9.3  histo.asmListing 9.3  histo.asmListing 9.3  histo.asm

9.49.49.49.49.4 ONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERINGONE-DIMENSIONAL MEDIAN FILTERING
A median filter is designed to sort samples in an array by magnitude,
lowest to highest. The middle sorted sample is the median value. Median
filters require an odd number of samples to guarantee a middle position.

Median filters are used in image processing to average the image without
blurring edges, like low pass and mean average filters do. Median filters
are non-linear functions and are not used in speech or audio signal
processing. 

Some median filters are calculated on samples that cover a two-
dimensional area. The median filter discussed in this section is one-
dimensional; it finds the median of a horizontal line of samples. One-
dimensional median filters may be used if the image scanning device is
line array or if it necessary to reduce the processing power required of the
DSP.

9.4.19.4.19.4.19.4.19.4.1 ImplementationImplementationImplementationImplementationImplementation
Median filters have a delay line similar to the FIR filter that works on the
last N samples. After the median filter processes a sample, it outputs the
results and waits for the next input sample. When the next sample is
received, it replaces the oldest sample in the delay line.

Figure 9.5 demonstrates the first pass through the median filter to resolve
the lowest magnitude sample. The median filter result is four in this
example.

Listing 9.4 is a fixed point implementation of the median filter for an
ADSP-210xx family DSP. The first task is to transfer the samples from the
delay line to the median filter buffer, because they are shuffled. Next, the
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median filter is performed, as demonstrated in figure 9.5. Each pass of the
outer loop resolves the next highest magnitude sample in the median filter
buffer. Each pass through the inner loop compares the current lowest
sample in the outer loop pass to the next sample in the median filter
buffer. If the next sample is less than the current lowest, they are swapped.
The last outer loop pass resolves the middle or median sample in the
median filter buffer. After the median sample has been resolved, it is not
necessary to resolve the remaining higher magnitude samples.

Listing 9.5 is the floating-point version of listing 9.4.

Figure 9.5  Median Filter AlgorithmFigure 9.5  Median Filter AlgorithmFigure 9.5  Median Filter AlgorithmFigure 9.5  Median Filter AlgorithmFigure 9.5  Median Filter Algorithm
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Outer Loop Pass 1: R4 = 4

cmp R4 = 4, r2 = 6; 6 < 4, no, R4 = 4
cmp R4 = 4, r2 = 7; 7 < 4, no, R4 = 4
cmp R4 = 4, r2 = 5; 5 < 4, no, R4 = 4
cmp R4 = 4, r2 = 1; 1 < 4, yes, R4 = 1, base_adr + 4 = 4
cmp R4 = 1, r2 = 2; 2 < 1, no, R4 = 1
cmp R4 = 1, r2 =3; 3 < 4, no, R4 = 1
 

First pass resolves lowest in buffer, since lowest is not median
in is not restored into the median filter buffer. Next pass starts with
r4 = base_adr + 1 =5. The next pass will resolve the next lowest. 
The third pass of the outer loop wil resolve the next lowest. The
fourth pass will resolve the median.
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9.4.29.4.29.4.29.4.29.4.2 Code ListingsCode ListingsCode ListingsCode ListingsCode Listings

/
*********************************************************************************

File Name
med_fix.asm

Version

Purpose
N tap one-dimensional median filter subroutine for fixed point data
Equations Implemented

Calling Parameters
b1, i1 = start address of input delay line in data memory
l1 = length of delay line buffer
m1 =1 - to modify index registers
b8, i8 = start address of median filter buffer in program mem
l8 =length of delay line buffer
m9 =1 - to modify index registers

Return Values
r4 = median of values in delay line

Registers Affected
    r0, r2, r4, r5, r15

Cycle Count
FILTER_LEN + 6*[(FILTER_LEN+1)/2] + 14 + 3*sum[N]
where N=(FILTER_LEN-1)/2 to FILTER_LEN-1
99 cycles for FILTER_LEN=7

# PM Locations
    16 Instruction + N Words of PM Data, where N is the order of the median
filter
# DM Locations
    N Words, where N is the order of the median filter
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*********************************************************************************/

#define  FILTER_LEN 7                  /* must be an odd number */

.segment/pm pmcode;

.GLOBAL start_median;

start_median:

 /* xfer loop - transfer delay line data in DM to median filter buffer in PM */

    r0=dm(i1,m1);
    lcntr=FILTER_LEN-1, do xfer until lce;
xfer:    r0=dm(i1,m1), pm(i8,m9)=r0;   /* transfer to filter buffer */
                                       /* read from input buffer */
    pm(i8,m9)=r0;                      /* transfer to filter buffer */

/*
    median filter loop - find median value in delay line using this technique:

              for N=0 to (FILTER_LEN+1)/2    - outer loop

                   for M=N to FILTER_LEN     - inner loop

                        if (median[N] < median[M])

                             median[M]=median[N], median[M]=median[N]

                        inc M

                   inc N
*/

    b9=b8;                             /* i8, i9 point to median filter data */
    r15=FILTER_LEN;                    /* r15 is loop count for inner loop */

   /* each pass through the outer loop resolves the next greatest magnitude */
   /* in the median filter buffer - median[N]                               */

    lcntr=(FILTER_LEN+1)/2, do outer_loop until lce;

         r4=pm(i8,m9);                 /* read median[N] */
         modify(i9,1);                 /* i9 points to median[M] */
                                       /* where M=N+1 first */
         r15=r15-1, r5=pm(i9,m9);      /* decrement inner loop count */
                                       /* read median[M] */

 /* inner loop finds minimum of the remaining values in median filter buffer */

         lcntr=r15, do inner_loop until lce;
              r2=pass r5;                        /* f2=median[M] */
              comp(r2,r4), r5=pm(i9,m9);         /* cmp median[M], median[N] */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)
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inner_loop:   if lt r4=pass r2, pm(-2,i9)=r4;    /* if median[M] < median[N] */
                                                 /* median[N]=median[M] */
                                                 /* median[M]=median[N] */
outer_loop:

         i9=i8;                                  /* init i9 to median[N+1] */

    rts;                                         /* return is non-delayed */
                                                 /* 3 cycles              */

.endseg;

Listing 9.4  Fixed-Point 1-D Median FillterListing 9.4  Fixed-Point 1-D Median FillterListing 9.4  Fixed-Point 1-D Median FillterListing 9.4  Fixed-Point 1-D Median FillterListing 9.4  Fixed-Point 1-D Median Fillter

/
*********************************************************************************

File Name
med_flt.asm

Version
    1.0
Purpose

N tap one-dimensional median filter subroutine for floating point data

Calling Parameters
b1, i1 = start address of input delay line in data memory
l1 = length of delay line buffer
m1 =1 - to modify index registers
b8, i8 = start address of median filter buffer in program mem
l8 =length of delay line buffer
m9 =1 - to modify index registers

Return Values
f4 = median of values in delay line

Registers Affected
    f0, f2, f4, f5, r15
Cycle Count

FILTER_LEN + 6*[(FILTER_LEN+1)/2] + 14 + 3*sum[N]
where N=(FILTER_LEN-1)/2 to FILTER_LEN-1
99 cycles for FILTER_LEN=7

# PM Locations
    16 instructions + N Words of PM Data,

   where N is the order of the median filter

# DM Locations
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        N Words, where N is the order of the median filter

*********************************************************************************/

    Execution Time:

*/

#define  FILTER_LEN 7                  /* must be an odd number */

.segment/pm pmcode;

.GLOBAL start_median;

start_median:

 /* xfer loop - transfer delay line data in DM to median filter buffer in PM */

    f0=dm(i1,m1);
    lcntr=FILTER_LEN-1, do xfer until lce;
xfer:    f0=dm(i1,m1), pm(i8,m9)=f0;   /* transfer to filter buffer */
                                       /* read from input buffer */
    pm(i8,m9)=f0;                      /* transfer to filter buffer */

/*
    median filter loop - find median value in delay line using this technique:

              for N=0 to (FILTER_LEN+1)/2    - outer loop

                   for M=N to FILTER_LEN     - inner loop

                        if (median[N] < median[M])

                             median[M]=median[N], median[M]=median[N]

                        inc M

                   inc N
*/

    b9=b8;                             /* i8, i9 point to median filter data */
    r15=FILTER_LEN;                    /* r15 is loop count for inner loop */

   /* each pass through the outer loop resolves the next greatest magnitude */
   /* in the median filter buffer - median[N]                               */

    lcntr=(FILTER_LEN+1)/2, do outer_loop until lce;

         f4=pm(i8,m9);                 /* read median[N] */
         modify(i9,1);                 /* i9 points to median[M] */

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)
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                                       /* where M=N+1 first */
         r15=r15-1, f5=pm(i9,m9);      /* decrement inner loop count */
                                       /* read median[M] */

 /* inner loop finds minimum of the remaining values in median filter buffer */

         lcntr=r15, do inner_loop until lce;
              f2=pass f5;                        /* f2=median[M] */
              comp(f2,f4), f5=pm(i9,m9);         /* cmp median[M], median[N] */
inner_loop:   if lt f4=pass f2, pm(-2,i9)=f4;    /* if median[M] < median[N] */
                                                 /* median[N]=median[M] */
                                                 /* median[M]=median[N] */
outer_loop:

         i9=i8;                                  /* init i9 to median[N+1] */

    rts;                                         /* return is non-delayed */
                                                 /* 3 cycles              */

.endseg;

Listing 9.5  Floating-Point 1-D Median FillterListing 9.5  Floating-Point 1-D Median FillterListing 9.5  Floating-Point 1-D Median FillterListing 9.5  Floating-Point 1-D Median FillterListing 9.5  Floating-Point 1-D Median Fillter
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