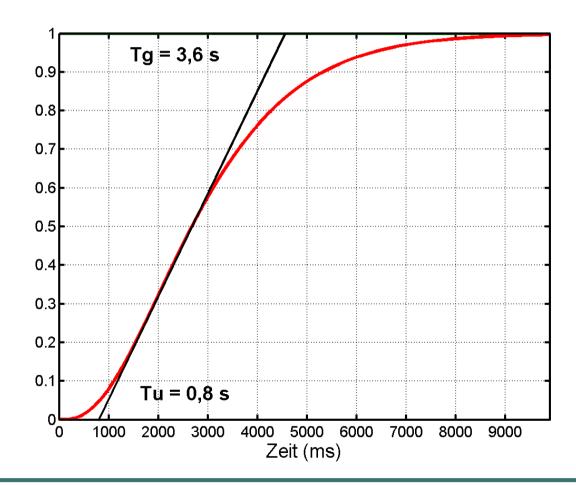


Optimierung von Regelkreisen mit P-, PI und PID Reglern

Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur

Ziegler und Nichols


- Strecke: Annäherung durch Totzeit- und PT1-Glied in Reihe entspricht vielen verfahrenstechnischen Regelstrecken
- Verfahren zur Auslegung: Regelung mit P-Regler
 - Verstärkung KR erhöhen bis Dauerschwingung
 - Ablesen KR_{krit} und T_{krit} (Periode der Dauerschwingung)
 - Regler (Achtung Struktur!) nach Tabelle einstellen

Regler	KR	TN=1/KI	TV=KD
Р	0,5 * KR _{krit}	_	-
PI	0,45 * KR _{krit}	0,83 * T _{krit}	
PID	0,6 * KR _{krit}	0,50 * T _{krit}	0,125 * T _{krit}

Chien, Hrones und Reswick

- Strecke: Mit Verzögerung und ohne Überschwingung
- Verfahren zur Auslegung: Kennwerte aus Sprungantwort ablesen:
 - Verzugszeit Tu,
 - Ausgleichszeit Tg,
 - Verstärkung Ks
 - Einstellregeln anwendbar für Tg > 3*Tu

Chien, Hrones und Reswick

Einstellregeln für:

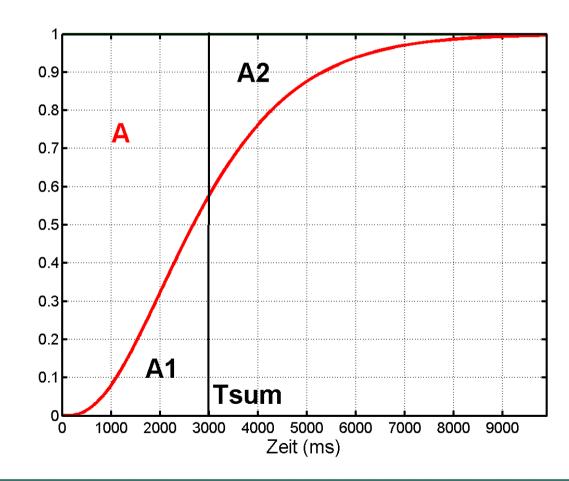
Führungsverhalten ü=20%

Führungsverhalten,

Störverhalten

Aperiodisch

Überschwingen:


$$\ddot{u} = 10\%, 20\%$$

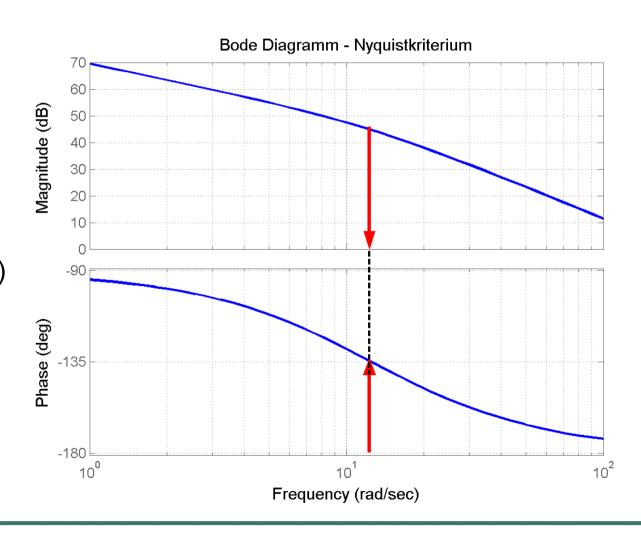
Regler	KR	TN=1/KI	TV=KD
Р	0,7* Tg Tu⋅Ks		-
PI	0,6* <u>Tg</u> Tu⋅Ks	1,0*Tg	
PID	0,95* Tg Tu⋅Ks	1,35*Tg	0,47*Tu

T-Summen-Regel

- Strecke: Sprungantwort beginnt bei Null und hat keine Überschwingung
- Ermitteln der Summenzeitkonstanten, z.B. aus der Fläche A = Tsum * K
- Experimentell: Tsum, wenn A1=A2
- Tabelle, z.B. PID:

Frequenzbereich

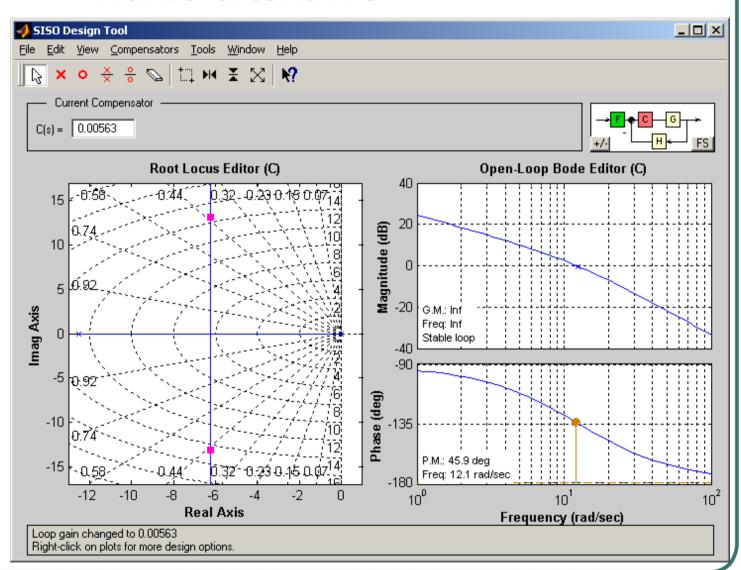
Regler:
$$G_R(s) = k \cdot (1 + \frac{1}{T_N \cdot s} + T_V \cdot s) = K \frac{(1 + T_1 s)(1 + T_2 s)}{s}$$


Wahl Reglernullstellen: Häufig zur Kompensation dominanter (langsamer) Strecken-Zeitkonstanten

Wahl Reglerverstärkung: Siehe Nyquistkriterium, Einstellen Phasenreserve

Frequenzkennlinienverfahren

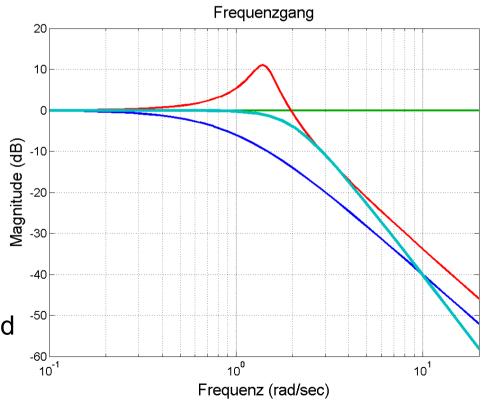
- Wahl der Regler-Zeitkonstanten
- Festlegen Phasenreserve (hier 45°) =
 Maß für Dämpfung
- Ermitteln Durchtrittsfrequenz (hier 12 rad/s)
- Verschieben Betrag
 (durch P-Regler) bis
 Nulldurchgang bei
 gewünschter Frequenz
 (hier –45 dB = 1/180)



Wurzelortskurve

Vorgabe Reglerpolund Nullstellen (offener Regelkreis)

Berechnung Pole geschlossener Kreis als Funktion Reglerverstärkung



Seite 8

Betragsoptimum

- Idee: Frequenzgang des geschlossenen Regelkreises: Betrag = 1 für möglichst breiten Frequenzbereich
- Kompensation dominanter
 Zeitkonstanten
 - (Vereinfachung von Totzeiten)
- ⇒ Optimierung nach Tabelle bei bekannter ÜF Regelstrecke
 - Nur für proportionale, hinreichend gedämpfte Strecken

Seite 9

Betragsoptimum

ÜF Strecke:
$$G_S(s) = \frac{1}{a_0 + a_1 \cdot s + a_2 \cdot s^2 + \dots} = \frac{1}{A(s)}$$

ÜF Regler:
$$G_R(s) = k \cdot (1 + \frac{1}{T_N \cdot s} + T_V \cdot s) = \frac{r_0 + r_1 \cdot s + r_2 \cdot s^2}{2 \cdot s}$$

Führungs-ÜF:
$$F_W(s) = \frac{G_R(s) \cdot G_S(s)}{1 + G_R(s) \cdot G_S(s)}.$$

Frequenzgang Führungs-ÜF: $|F(j\omega)| = \left| \frac{G_R(j\omega) \cdot G_S(j\omega)}{1 + G_R(j\omega) \cdot G_S(j\omega)} \right| = 1$

Betragsoptimum

... zu lösen:
$$(a_0^2 - r_0 a_1 + r_1 a_0)\omega^2 + (-2a_0 a_2 + a_1^2 + r_0 a_3 - r_1 a_2 + r_2 a_1)\omega^4 + \dots$$

 $\dots + (2a_0 a_4 - 2a_1 a_3 + a_2^2 + r_0 a_5 + r_1 a_4 - r_2 a_3)\omega^6 + \dots = 0$

PI-Regler:
$$r_0 = a_0 \frac{a_1^2 - a_0 a_2}{a_1 a_2 - a_0 a_3}$$
 $r_1 = \frac{a_1 (a_1^2 - a_0 a_2)}{a_1 a_2 - a_0 a_3} - a_0$

PID-Regler:
$$r_0 = a_0 \frac{a_0 a_1 a_4 - a_0 a_2 a_3 - a_1^2 a_3 + a_1 a_2^2}{a_0 a_1 a_5 - a_0 a_3^2 - a_1^2 a_4 + a_1 a_2 a_3}$$

$$r_1 = -\frac{a_0^2 a_1 a_5 - a_0^2 a_3^2 - 2a_0 a_1^2 a_4 + 2a_0 a_1 a_2 a_3 + a_1^3 a_3 - a_1^2 a_2^2}{a_0 a_1 a_5 - a_0 a_3^2 - a_1^2 a_4 + a_1 a_2 a_3}$$

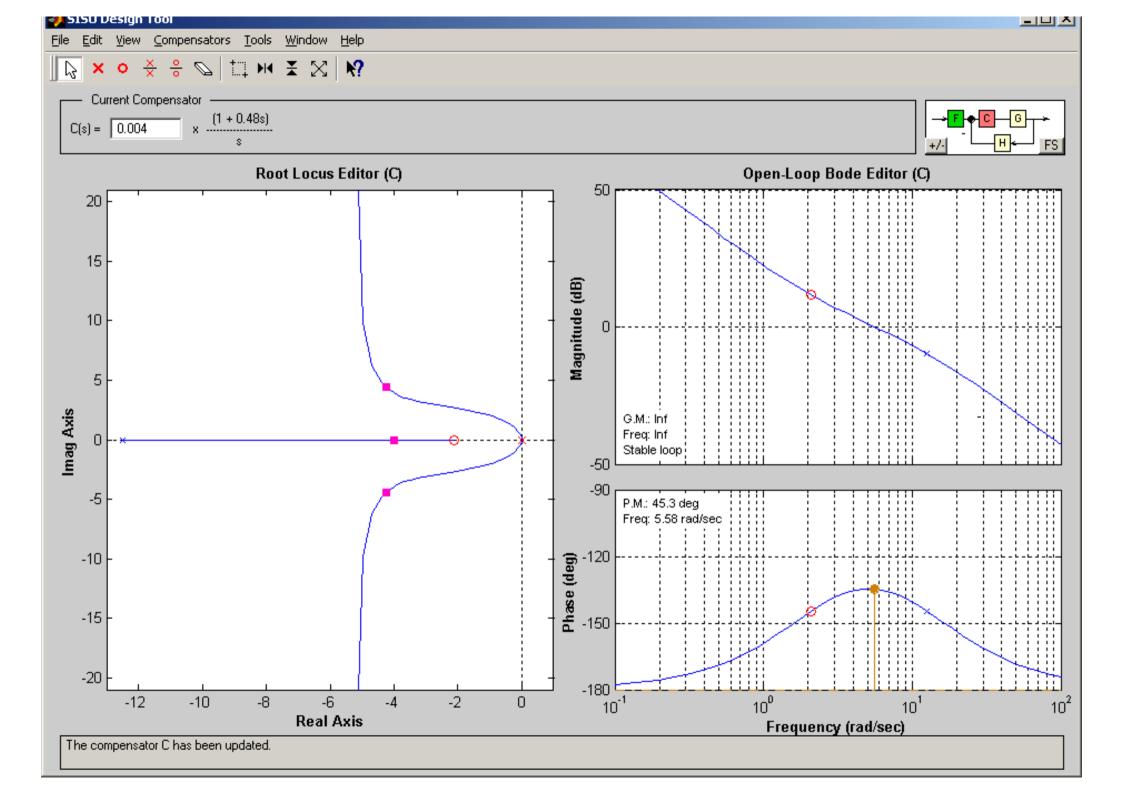
$$r_2 = \frac{a_0^2 a_2 a_5 - a_0^2 a_3 a_4 - a_0 a_1^2 a_5 + 2a_0 a_1 a_3^2 - a_0 a_2^2 a_3 + a_1^3 a_4 - 2a_1^2 a_2 a_3 + a_1 a_2^3}{a_0 a_1 a_5 - a_0 a_3^2 - a_1^2 a_4 + a_1 a_2 a_3}$$

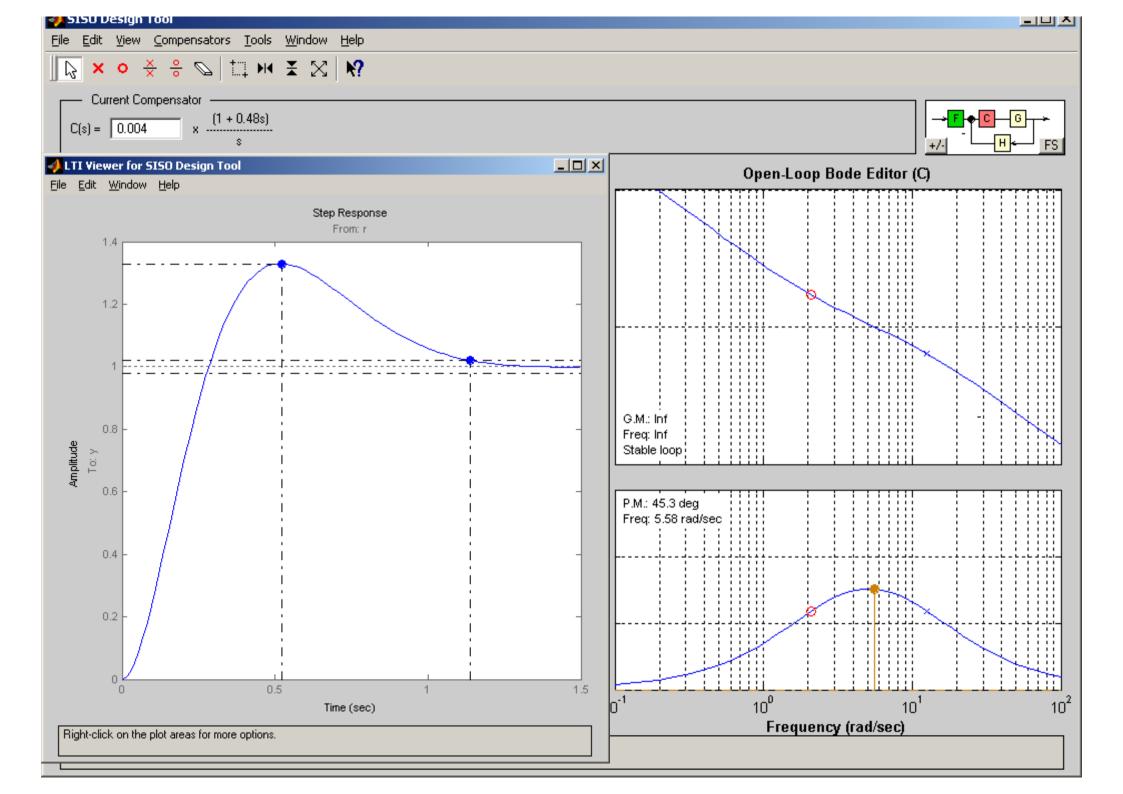
Symmetrisches Optimum

Strecke: Verzögerung und Integrator (→ keine Kompensation)

Antriebstechnik

Maximale Phasenanhebung bei Durchtrittsfrequenz Idee:


Strecke IT₁:
$$G(s) = \frac{K}{s \cdot (1 + T_1 s)}$$
 Regler PI: $G_R(s) = K_R \frac{(1 + T_N s)}{s}$


Wahl
$$T_N$$
 aus Phasenreserve $\varphi: \alpha = \frac{1 + \sin(\varphi)}{\cos(\varphi)} > 1 \implies T_N = \alpha^2 \cdot T_1$

Verstärkung für:
$$\omega_{\text{max}} = \omega_D = \frac{1}{\sqrt{T_N \cdot T_1}}$$

$$T_N = \alpha^2 \cdot T_1$$

$$K_R = \frac{1}{K \cdot T_1}$$

Symmetrisches Optimum

Weitere Anwendung:

- Strecken mit Integrator und Verzögerung höherer Ordnung
 - \rightarrow Bilden $T_E = \sum T_i$
- Proportionale Strecken mit Verzögerung höherer Ordnung
 - → Annahme: Dominantes T = Zeitkonstante I-Glied

•

⇒ Einstellregeln nach Tabelle

"Empirische Optimierung PID Regler"

- Abwechselndes Erhöhen ↑ KP und KD:
 - KP ↑ bis Überschwingung → KD ↑ bis Überschwingung weg
 - Wiederholen bis Grenze erreicht (durch Störungen, Quantisierung etc.)
- Reduktion ↓ KP und KD (z.B. 50%), Erhöhen ↑ KI:
 - Optimierung bis gewünschtes Verhalten erreicht (Überschwingung ↔ Ausregelzeit)
- Feinjustierung der Parameter (Beachten Hilfestellungen)

"Empirische Optimierung" – Hilfestellungen

- "Wirkungen" des P-, I- und D- Anteils separat betrachten; Ziel: Ausgewogenheit
- Zeitkonstante des realen D-Anteils für Wirkung optimieren (Filterung Störungen ↔ Phasendrehung)
- Strukturoptimierung

"Empirische Optimierung" – Strukturoptimierung

- Begrenzung I-Anteil → "Anti-Wind-Up"
- Kompensation Nichtlinearitäten
 - Anstiegsbegrenzung / Vorgabe Trajektorie
 - Vorsteuerung
 - Invertierung Kennlinien im Regler
- Strukturumschaltung
- Weiterführende Regelungskonzepte
 - Kaskadenregelung
 - Zustandsregelung ...