
Low Cost Design Authentication
for Spartan-3E

Ken Chapman

Rev1 – 12th December 2006

A Reference Design for the Spartan-3E Starter Kit

Xilinx Ltd

Low Cost Design Authentication 2

Limitations
Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is notsupported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: ken.chapman@xilinx.com

The author would also be pleased to hear from anyone using KCPSM3 or the UART macros with information about your
application and how these macros have been useful.

mailto:ken.chapman@xilinx.com

Low Cost Design Authentication 3

Design Overview
This reference design has been provided as a demonstration of anti-cloning design security using a technique known as ‘Design
Authentication’. The reference design also contains features which enable you evaluate the authentication procedure and it is
also hoped that it will form the basis for your own experiments and commercial designs.

The design is provided for the Spartan-3E Starter Kit and employs the 8-bit PicoBlaze processor as the principle element
implementing the design security. A second PicoBlaze processor is used to represent a real application which is being protected
by the design authentication technique.

To use this design properly you will need the following equipment……

USB cable.
Used to configure the

Spartan-3E or program the
Platform FLASH.

(The cable plus devices on
the board provide the same
functionality as a Platform
Cable USB to be used in

conjunction with iMPACT)

RS232 Serial Cable.
Used for programming of the NOR
FLASH memory (optional) and for
communicating and controlling the
authentication status of your board

Cable connects J9 on the board to
your PC serial port. For this you will

need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

+5v supply
Don’t forget to switch on

(SWP) the board too!

PC

PC installed with Xilinx ISE tools and with access to HyperTerminal
(or similar) to monitor RS232 serial communications

Spartan-3E Starter Kit
with XC3S500E device

(The design could be recompiled
for other device sizes but the
configuration files provided

assume the default 500E device)

Low Cost Design Authentication 4

Before You Continue…..

Have you implemented a Xilinx FPGA design of your
own or at least modified a existing reference design ?

Yes No
Have you successfully experimented with a different

reference design for the Spartan-3E Starter Kit board?

Yes No

Have you successfully programmed at least one type of
configuration FLASH memory on the Spartan-3E Starter Kit?

Yes No

Are you familiar with the Spartan-3E Starter Kit board? Yes No

Have you previously establishing an RS232 communication
between the Starter Kit board and your PC using HyperTerminal?

Have you previously used the 8-bit PicoBlaze processor in
a design or reviewed a reference design containing PicoBlaze?

Yes No

Yes No

If you have answered ‘No’ to any of the above questions then it is highly recommended that you do not continue with this
particular reference design until you have the required experience. This document is not written for the novice user and assumes
that you are competent in the use of the Spartan-3E Starter Kit as well as fundamental FPGA design techniques.

Reference Designs you are recommended to download, study and try are….

Pulse Width Modulation (PWM) Generation and Control with PicoBlaze
PicoBlaze RS-232 StrataFlash™ Programmer

http://www.xilinx.com/products/boards/s3estarter/reference_designs.htmThese can be downloaded from……

Low Cost Design Authentication 5

Ready for More?
So now I assume you are familiar with Spartan devices and the Spartan-3E Starter Kit and are suitably prepared to investigate
design authentication security techniques. This document will attempt to use the reference design to introduce to you the
fundamental concepts as well as highlight the factors which you should consider when going on to implement design security in
your own products. This document will take you on a short ‘journey’. Obviously you are free to take a different route, but I would
ask you to resist that temptation because you may miss some vital concepts and recommendations if you do.

See your clone fail to work!
In the first stage you will configure your board with the configuration image provided. Your Starter Kit is essentially a hardware
clone of the Starter Kit that I have and now I am giving you the same configuration image. My board works but yours will not!

Theory
Sorry about this, but there is some reading to do next. I will try to explain the basic concept being used to prevent your clone of
my design from working. I hope this theory is made more interesting by observing the information the reference design provides
as it is carrying out the authentication procedure.

Attack!
Although by this stage you will have already learnt things about my authentication design that would normally be hidden, I want
to give you the opportunity to see if you can make your board work without using the obvious facility I have provided. At this
point I will also tell you the potential weaknesses of the technique that a real attacker would be looking to exploit.

Making authorised products
You will be able to validate your Starter Kit and make it an authorised copy which will then work correctly. Likewise you will be
able to return it to the original unauthorised state.

Revealing my Secrets
Finally I will walk you through my design in more detail revealing how it works and what measures I have taken to make it
difficult to bypass the security.

Coming next……

Low Cost Design Authentication 6

Create Your Cloned Product
The reference design is supplied with a configuration image for you to program into the FLASH memory on your Spartan-3E
Starter Kit board. Select one of the following options to complete the copy of the board and design that I have.

Option 1 – Program the Intel StrataFLASH Parallel NOR FLASH (IC22)
This option is the most realistic because you will see later that it is the Intel FLASH device
that is also playing a critical role in the design security. You can use the NOR FLASH
Programmer reference design to enable you to do this. I recommend that you erase the
whole device before programming with the above file. Once programmed, set the jumpers
on J30 for BPI-UP mode.

low_cost_design_authentication_for_spartan_3e.mcsConfiguration file provided:

Option 2 – Program the Xilinx platformFLASH (IC11)
This is less realistic but still adequate for the purposes of demonstration and
evaluation. The PlaformFLASH can be programmed directly from iMPACT
using the USB cable so it is the fast and straightforward option. Once
programmed, set the jumpers on J30 for Master Serial (M.S) mode.

Option 3 – Program the ST Microelectronics SPI FLASH (IC4)
To be honest there is not many reasons to take this option, but if you want to,
then go ahead and set the jumpers on J30 appropriately.

Option 4 – Volatile
If you really do not want to program any of the FLASH devices on the board then you can download the provided configuration
BIT file ‘low_cost_design_authentication_for_spartan_3e.bit’ directly into the Spartan-3E device. However, during your
evaluations you will be cycling the power or reconfiguring the Spartan device many times and you will soon find having a FLASH
programmed is easier, faster and far more realistic.

Low Cost Design Authentication 7

Does Your Clone Work?
Assuming you have programmed a FLASH memory with the configuration image, you should be able to disconnect the USB cable
and use the board standalone as if it were a real product. At this stage I would also like you to disconnect any RS232 Serial
cables and/or close any HyperTerminal session on your PC. Then cycle the power or press PROG button.

XC-DONE LED should turn on indicating that the Spartan
device does configure from the image programmed in the
FLASH. Your product cloning task is complete!

The 8 general purpose LEDs should
modulate left to right. These LEDs are
controlled by a PicoBlaze processor
and are being driven using 8-bit PWM
with a PRF of 1KHz. You can find
more details about this in the reference
design shown to the right.

NOTICE: For the purposes of this reference design, it is this drive
pattern of the LEDs which is representing the real application to be
protected by the design authentication security.

This LCD display is being controlled by a
second PicoBlaze processor which is
responsible for design security. This ‘welcome’
message will be displayed for 10 seconds.

For the first 10 seconds after configuration your cloned product will
indeed be working 100%. This was planned behaviour and illustrates how
products can be fully tested in production even before they are authorised.
This could also be the basis of a scheme in which your customers could
have limited ‘try before you buy’ periods to evaluate optional upgrades.
Later you will read that this behaviour is also part of the security scheme.

You should initially see the following happen…..

Low Cost Design Authentication 8

It Worked, but now watch it Fail!
After the first 10 seconds of normal operation (LEDs nicely modulated from side to side), the design authentication security starts
to take effect and you should observe the following…..

The security focused PicoBlaze will read and display on the LCD the 64-bit
unique serial number which is provided in the Intel FLASH memory. Obviously
the number displayed on your board should be different to the one shown here
using my board. This number will also be display for 10 seconds and the LEDs
will still be working normally because the ‘real’ application is still enabled to
operate correctly.

In a real design you probably wouldn’t display this serial number information.
That said, it could be displayed and used as the serial number for the product
or as a identification number which you would request your customers to
provide when contacting your technical support.

Then things will go wrong! The first indication is that the LCD displays a failure
message. At the same time that this message appears, the LEDs will all turn
off. Your cloned product is not
authorised and it has failed!

After approximately 5 seconds the LEDs
suddenly appear to be working again but
then after a short while that start flashing
in a very strange way. Some LEDs are off
and others are flashing almost randomly.

Finally, all the LEDs are turned on and then slowly fade to off and everything has stops. Only a power cycle or pressing PROG
makes the whole sequence repeat. This has demonstrated that cloned hardware and a copied configuration image doesn’t mean
that a design will work. Indeed, it has failed by design. The way in which it failed was totally my choice and later you will discover
why it failed in the rather strange ways that it did �

Low Cost Design Authentication 9

Low Cost Design Authentication
Purpose
The advantage of using a programmable FPGA is that it is standard product enabling rapid product development and reduced
time to market. A potential down side is that it makes products more susceptible to being cloned by unscrupulous organisations
who can obtain the same devices and copy the configuration program image stored in the configuration FLASH memory (just as
you have just done). The aim of Spartan low cost design authentication is to prevent illegal clones from operating even if they
are a perfect hardware and firmware copy whilst keeping the cost of security to a minimum.

Know Your Enemy
Low cost design authentication is intended to be a deterrent to an organisation or individual (hereafter called ‘The Attacker’) that
has an interest in cloning your product. To be a viable proposition, your product would be of reasonable unit value and produced
in significant volumes. The Attacker must be able to copy, manufacture and sell clones at a lower cost than your original product
otherwise the exercise is pointless. Therefore, The Attacker will be deterred if their clone requires the additional cost of more
components to bypass the security measures included in your design. Furthermore, adding components will require rework of
the PCB and The Attacker will only have a certain amount of time and resources to commit to bypassing your security
mechanism; by default they are second to market and will want to be in production quickly.

Low cost design authentication is analogous to home security. You probably secure your home using a reasonable quality of
doors and windows fitted with reasonably sized locks or bolts. Your objective is to have adequate security to act as a deterrent to
burglars that would be interested in seeing if you have some possessions worth stealing. Design authentication is initially
intended to deter The Attacker from even attempting to clone your product and to move on to something else.

Some people feel that they need additional home security and will install a burglar alarm system. Typically this includes some
obvious looking boxes and lights mounted outside the house which are again supposed to act as a deterrent to the burglar
although some would argue that such visual indicators also imply that the house in question must contain items of value worth
investigation! Regardless, the alarm system is intended to impede the progress of the burglar should they attempt to bypass one
of the locks (e.g. break a window) and enter the house. Design authentication can also contain mechanisms to thwart The
Attacker that attempts to bypass the design authentication ‘lock’.

As with deciding a level of your home security, you must decide who your enemy is and how much to spend (engineering time
and device resources) on design authentication security. Spartan devices allow you to decide what is sufficient.

Low Cost Design Authentication 10

Low Cost Design Authentication
Principle

In its simplest form, design authentication involves reading two pieces of information and deciding if they are a related in the way
which is expected. A valid combination will then allow the design to operate and an invalid combination will result in the design
being disabled. This is almost identical to the way a PC or a Web site requests you to enter a ‘User Name’ and a ‘password’ and
then decides if the combination is valid before allowing you to continue.

The Spartan-3E device has no specific features for security. Therefore design authentication is implemented as a small part of
your main application using the same device features and development tools as the rest of your design. Eventually the
authentication process becomes part of the device configuration image typically stored in a configuration FLASH memory. In this
reference design the configuration image is (ideally) stored in the Intel StrataFlash NOR FLASH memory (IC22). When the board
is first turned on, the Spartan XC3S500E reads the configuration image from the memory and the design, including the design
authentication circuits, begin to operate.

Intel StrataFlash 28F128
128MBit (16 M-Byte)

Parallel NOR FLASH memoryConfiguration

Authentication

Serial Number

XC3S500E

The design authentication circuit then reads two pieces of information from the memory. The
first value is a 64-bit unique serial number that Intel provide for ‘code’ security. The serial
number is like a ‘User Name’ that it is totally unique. It means that every Spartan-3E Starter
Kit is also unique and no one can make a board identical to mine or to yours.

Secondly, the design authentication circuit reads an authentication value from the memory.
This is like reading the ‘password’ and the design authentication circuit decides if this authentication value (password) is a correct
partner to the serial number (User Name). The only difference between this scheme and the username/password analogy is that it
is possible for someone to read the authentication value from the memory and copy it. Therefore the strength of the security lies in
the fact that the serial number is unique combined with the algorithm which defines its relationship with the authentication value.

Low Cost Design Authentication 11

Authorizing Your Clone
We are now going to see why your board is failing in slightly more detail and then authorise it to work.

To do this, you will need to connect a serial cable between J9 on the board and your PC serial port. The cable needs to be a male
to female straight through cable (critically pin2-pin2, pin3-pin3 and pin5-pin5). You also need to set up HyperTermninal or a
monitor utility using the settings advised on the next two pages.

It is important that you understand that much of what you are about to see and do is only because this is a design intended to
help you learn the concepts and experiment. Much of what you actually see and do would NOT be included in a real production
design because it would compromise security. You are about to see and do two major things….

CRITICAL – Understand what you are about to see and do

Design Authentication Process in Action

You will see the way in which the PicoBlaze performing design authentication is ‘thinking’ and the serial number and
authentication values it is reading. You will see the values it computes using an algorithm and then see it make the decision
to authorise or disable the design. A real design would NOT display such information.

Authorise a product

You will be able to authenticate your clone to make it a valid working ‘product’. You will instruct PicoBlaze to generate the
authentication value to match the unique serial number of the StrataFLASH memory and then the store that authentication
value somewhere else in FLASH memory. This is the process that genuine products would need to go though at some
stage during production by either shipping pre-programmed FLASH memories to the contract board manufacturer or by post
programming the complete product (like your Starter Kit) at a trusted facility using a special FPGA configuration that is only
loaded temporarily via JTAG. So what you are about to see and do would NOT be part of a normal production design unless
there were significant measures taken to prevent it being used by an Attacker (i.e. the product could be authorised in the
field using a web registration process or by inserting a SIM card but that technique would need to be secure in its own right).

Low Cost Design Authentication 12

Serial Terminal Setup
An RS232 serial link is used to communicate with the design. Any simple terminal program can be used, but HyperTerminal is adequate for the task and
available on most PCs.

A new HyperTerminal session can be initiated and configured as shown in the following steps. The communication settings and protocol required by an
alternative terminal utility are also included in these two pages.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 9600
Data bits: 8
Parity: None
Stop bits: 1
Flow control: None

Go to next page to
complete set up…

Low Cost Design Authentication 13

HyperTerminal Setup

4 - Disconnect

5 - Open the properties dialogue

To select a different
COM port and change
settings (if not correct).

6 - Open Settings

7 - Open ASCII Setup
Ensure boxes are filled in as shown.
The design will echo characters that
you type so you do not need the ‘Echo
typed characters locally’ option.

The design transmits carriage return
characters (ODHEX) to indicate end of
line so you do need the ‘Append line
feeds to incoming line ends’ option to
be enabled.

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are
few other protocol settings which need to be set or verified for the PicoBlaze
design to work as expected.

8 - ‘OK’ the boxes to get back to
main screen and then Connect.

Optional steps…..
Select VT100 and then click
‘Terminal Setup’
Set ‘Rows’ to 40.
(May require you to stretch main
screen later to fit).

Optional step…..
Set Font to
Courier New,
Regular, 10

Low Cost Design Authentication 14

Why You Fail!
When you are ready, cycle the power or press PROG on your ‘illegally cloned’ Spartan-3E Starter Kit clone. You should see
PicoBlaze performing the design authentication task and display the following information on your PC terminal as the board goes
through the steps we reviewed previously (i.e. this all takes time to appear on your screen).

So this is just a text message to confirm what is talking to you �

A copyright message is also just a text message and as such it
would not prevent the design from being copied. However, it
does have legal implications and a simple UART output on a
spare pin could prove to be a powerful feature in a court of law.
If The Attacker realises this copyright message exists then it is
something will need to be removed (more of that later).

PicoBlaze reads the StrataFLASH serial number. It now has the
knowledge about what is unique on your board.

PicoBlaze computes the authentication value that is required to match
with the StrataFLASH serial number. The label is a big clue as to the
nature of the algorithm which I used!

IMPORTANT – A real security design should NEVER output such useful information.

PicoBlaze then reads the authentication value stored in a particular
location of the StrataFLASH memory.

Finally, PicoBlaze compares the authentication value read with the
authentication value expected and clearly notices the mismatch with the
result that it knows that this is an illegal copy and the failed product
sequence begins.

WHEN? Carefully observe and note at
what point during the failing design
sequence that this menu is displayed.
Then proceed to the next page.

Low Cost Design Authentication 15

Authorizing Your Clone
This is the point at which we see where the authentication value is stored in the StrataFLASH memory and you get to authorise
your clone as if you were a trusted programming facility.

Before authorising your board, enter ‘R’ at your keyboard
to issue the ‘Read Authorisation’ command to the
PicoBlaze processor.

This displays the area of memory in which the PicoBlaze
processor looks for the authentication value. Assuming
you have a blank StrataFLASH memory then you will see
like this display that all memory locations contain ‘FF’ hex
which is the default erased state of the memory.

As you can see, PicoBlaze is interested in the 256 bytes
from address 060000 through to 0600FF hex. Again, such
information should NOT be given away quite so quickly
and obviously in a real design although we must accept
that an Attacker could still determine these memory
locations using a logic analyser and enough effort.

R

A

Now enter ‘A’ at your keyboard to issue ‘Authorise Command’. This tells
PicoBlaze to write the computed authentication value into the StrataFLASH
memory to make your product a genuine ‘product’.

Once complete…. PLEASE cycle the power on your board or press PROG and
watch what happens. Does your board now work continuously? Is your board
authorised?

Low Cost Design Authentication 16

Authorized Products
Hopefully you have seen your authorised board
continue to work (LEDs continue to sequence left to
right). The LCD display should now be indicating
the authorised status along with the display on your
PC screen.

Use the ‘R’ command to display the authentication value.
Are you surprised to see all of this rather than just the 16-
bit value PicoBlaze said that it had read? Why do you
think all 256 bytes are now programmed? Where is the
authentication value?

Feel free to experiment with the ‘E’ command. This erases
block 3 of the StartaFLASH memory which covers the
address range 060000 to 07FFFF. Hence it will erase the
authentication value but will preserve the configuration
image allowing you to repeat these steps again and again.

This time PicoBlaze reads the correct authentication
value stored in the StrataFLASH memory and allows
the design to continue with normal operation.

Notice how fast the menu now appears compared with when the authorisation failed.

Low Cost Design Authentication 17

Attack!
Soon I will reveal you how the design authentication circuits of this reference design are
actually implemented. However, as soon as I do that you will know all my ‘secrets’. It is
rather like putting my money in a good combination safe but then telling you the
combination. At that point the security is mechanism is virtually useless.

So I now invite you to become a criminal for a moment and attempt to
break into my reference design.

Erase the authentication value from your board and then see if you can
find a way to make the design work (sequence the LEDs left and right
continuously) without using the facility that I provided. The next pages
will reveal potential ways to attack a Spartan design with authentication
circuits to see how easy or difficult you think it is to ‘break in’.

Always bear in mind that all security can be broken eventually (even banks and art galleries are not 100% safe!). Low cost
design authentication security is about being ‘good enough’ to deter The Attacker. In this case, ‘good enough’ is when it takes
too long for The Attacker to succeed. So see how long it takes you to break in. Even if you don’t physically try yourself, then
think of what you would try and estimate how long you think they would take to carry out. Always consider that in the long term
you would need to make ANY Starter Kit work and not just the one that you have.

Remember that I have already provided you with helpful information that would already have taken an
attacker some time to derive. I have also given you some significant clues you would not normally have;
you know it uses PicoBlaze and the authentication algorithm has something to do with a 16-bit

CRC value. So do stop to consider how The Attacker would even find that out that privileged information. Obviously
at this stage you must not cheat by looking further into this document or reading the design source files but you can

read the MCS file if you like and you can use the NOR FLASH programmer design to write or read the FLASH memory.

Before we get that far, I want you to recognise the potential strengths and weaknesses of
the design authentication techniques such that you will always be able to provide adequate
security for your own designs in future. The best way to do this is always to put yourself in
the position of The Attacker and not the position of the defender (product designer).

Low Cost Design Authentication 18

Strengths and Weaknesses

Intel StrataFlash

Configuration

Authentication

Serial Number

Algorithm - The algorithm links the unique StrataFLASH serial number and the authentication value. Therefore it is the
algorithm which ultimately makes authorised real products work and causes clones to fail.

XC3S500E

F[sn,a]

Pass �

Original Product

Intel StrataFlash

Configuration

Authentication

Serial Number
XC3S500E

F[sn,a]

Fail �

Clone of Product

In the original product, the authentication value programmed
into the FLASH memory is the correct partner for the serial
number in that same FLASH device. The authentication
design confirms this match by reading both the serial
number and authentication value and testing them with the
algorithm or function (F[sn,a])

The algorithm (F[sn,a]) is kept secret, and if well chosen, it
will mean that the authentication values required are also
unique to each board.

So if the board is cloned exactly, it does not matter from
which original board the authentication value is copied, the
clone will not have a correctly matching authentication value
for the unique serial number contained in the Intel
StrataFLASH device installed on that clone board.

Note that the configuration image loads in both cases but
the design itself will fail to operate in the cloned product.

So the first point of attack is the authentication value itself. If the algorithm is too obvious or to simple to deduce then The Attacker
will be able to program authentication values at will. It is therefore very important to use an algorithm and techniques that makes
the task of deducing the algorithm adequately difficult and time consuming for The Attacker. It would be advisable to investigate
cryptographically secure algorithms as well as incorporating your own ideas.

So can you work out the algorithm that I have used? Can you work out how to program the FLASH manually to make your board
work. Does your theory hold true for my board too? If you succeed, then how long did it take you and how much did you base
your deduction on the information that I had already revealed and how much time did that save you?

Low Cost Design Authentication 19

Strengths and Weaknesses
Brute Force Attacks – One way to generate an authentication value for a given board would be to run through every
permutation of authentication value until you stumble upon the value that works. In my design, the actual authentication value is
only 16-bits which means that there are only 65,536 possible combinations to try. Such a Brute force attack is made much easier
by having such a low number of bits and consequently your algorithm should yield larger authentication values. However, my
design recognises this weakness and has taken two measures to strengthen it again…..

Time Delays – Every time you try the design it actually works for 20 seconds before starting to fail. Therefore it takes at least 20
secondd to try each combination. It would now take 15 days to try all 65,536 combinations and that would average out to 7½
days per board. The more time delay you add into a design authentication design then the stronger your security. Security
schemes that instantly indicates failure enables an Attacker to make rapid iterations and should be avoided. In fact, consider
how a delay of a week or more could make The Attacker think you had no security until they were in production!

Concealment – Although I stupidly gave away my ‘secret’ about having only a 16-bit authentication value, it appears that the
authentication value stored in the FLASH is 256 bytes. I have hidden the actual authentication value somewhere in there and
that makes it far less obvious which bits need to be changed. FLASH memory tends to be very big, so imagine how difficult you
could make it to find those bits and remember that a real Attacker wouldn't even know what to look for to begin with. So did you
manage where the actual authentication value is hiding in the 256 bytes?

Diversity - In many way you can consider the concealment of the authentication value as being a second algorithm. The design
authentication technique allows you to layer algorithms like having multiple layers of defence. There is also nothing to stop you
having multiple authentication values each associated with a separate authentication value like a safe requiring three separate
keys to open it. Each of your products and product revisions can (and should) use a totally different algorithm. Even if The
Attacker succeeds in breaking your algorithm they are forced to start all over again because there is no one definitive receipt to
breaking in.

IMPORTANT – Under no circumstances should you use this reference design without major modifications because I have
revealed all the ‘secrets’ of my rather simplistic algorithm. This design provides ideas and it is not a
solution to be copied.

Low Cost Design Authentication 20

Strengths and Weaknesses
Spoof Attacks vs Economics – The ultimate weakness in this scheme is that both the serial number and authentication value
of an original product can be openly read. This is like providing your user name and password to someone. Therefore a clone
product can be manufactured if it has the same serial number. The strength of this scheme is that every Intel FLASH device has
a unique serial number so you simply can not purchase devices with the same number. This forces the Attacker to spoof the
serial number. The diagram below illustrates how a CPLD could be used to intercept the request to read a serial number and
respond with the same serial number of an original product.

Intel StrataFlashXC3S500E

F[sn,a]

Modified Clone of Product

Hint – If your Spartan device can read other unique serial numbers in your system, then those too would need to be spoofed
adding to the economic burden of The Attacker.

CPLD

Pass �

As well as the time and effort required to modify the PCB and generate the CPLD design, The Attacker is
being forced to add the cost of a CPLD to every cloned product. The Attacker will have a board with
a larger bill of materials (BOM) than the original manufacturer and that is a bad starting point when
attempting to copy high volume products and produce them at a lower unit price. Design authentication wins economically.

This sounds easy in theory, but now
look at your board and consider the
implications. The Attacker is being
forced to generate a modified PCB
layout which is far more difficult than
a pure photographic copy. It takes
real engineering effort and time to do
this.

CPLD

Low Cost Design Authentication 21

Strengths and Weaknesses
Configuration Image – The configuration image for an XC3S500E device is 2,276,344 bits. A mass of ‘0’s and ‘1’s with no
humanly obvious correlation to the design it represents once loaded into the FPGA. Obviously there is a mapping of these bits to
the elements inside the Spartan device but this mapping information is not published. So although it is not impossible to reverse
engineer a configuration image, it would be an incredibly time consuming task to do so. As if that wasn’t enough of a deterrent to
The Attacker, the result of a reverse engineered image would be a circuit description with absolutely no structure (no design
hierarchy) and no signal names to help understand functionality. If you have ever seen an schematic generated from an HDL
description by a synthesis tool then you will have just what a mess The Attacker would be faced with trying to understand. Then
somehow The Attacker would need to locate the small design authentication circuit and understand or bypass it. This reference
design contains far more than the pure validation process and still occupies less than 5% of the XC3S500E device.

The potential for diversity of algorithms means that The Attacker doesn’t know exactly what to look for in your design.
Furthermore, it is well known that even a slight modification to a design can result in PAR (place an route) making quite different
use of the device resources so the location of the design authentication circuits could be anywhere on the device. In conclusion,
the reverse engineering a complete configuration image is not considered economically viable and an adequate deterrent when
combating high volume cloning of products.

Design Manipulation – Although reverse engineering a complete configuration image is not a practical proposition, it must be
recognised that The Attacker may attempt to tamper with the configuration image looking for a simple way to bypass the design
authentication process. In this situation The Attacker is less interested in the algorithm itself but more in the way the
authentication circuit enables or disables the main application. If The Attacker can manipulate the configuration in a way that
permanently enables the design then the serial number and authentication values are irrelevant.

A design authentication scheme should combat this type of attack by ensuring there is no single point of weakness. Your design
can contain any number of design authentication tests, each test can then provide multiple enable/disable controls over the
application and the design can contain deliberate anti-tampering logic. Again the use of time delays will significantly slow down
The Attacker’s ability to determine if each attack attempt is a success or failure. Employing multiple enable/disable mechanisms
each with a different time delay will lead The Attacker to wonder if they have ever fully succeed even if they bypass the first one
or two signals.

Can you reverse engineer this reference design from the configuration image? Can you bypass the authentication process?
Obviously you have to do it with the MCS file or image in the FLASH memory and not look at the design source files provided.

Low Cost Design Authentication 22

Revealing my Secrets
From this point onwards, I will go into greater detail about how my particular design authentication circuit is implemented and
operates. This totally gives away the secrets of my design and of course this totally compromises the security and therefore it is
vital that you recognize that this design must not be used directly in your own designs. My design is intended to illustrate the
techniques which can be employed but you must think of your own secrets and implement them. Good security is about keeping
secrets, so if you have a brilliant idea, remember to keep that idea to yourself. Ensure that source code for your design are kept in
safe storage and can not be stolen.

In this section, we will take another look at the reference design as it works on your board, but this time I will reveal exactly what is
happening at each stage. At each stage we will examine what is happening in both the unauthorised and authorised situations and
I encourage you to experiment as you read. At this stage I also invite you to look at the source files of the design which are as
follows…..

low_cost_design_authentication_for_spartan_3e.vhd Top level file and main description of hardware.

kcpsm3.vhd PicoBlaze processor used as the ‘application processor’ controlling the LEDs.

led_ctrl.vhd

I/O constraints and timing specifications for Spartan-3E Starter Kit.

Assembled program ‘led_ctrl.psm’ for the ‘application processor’ generated using the standard ‘ROM_form.vhd’ template.

Note: The files shown in green are not included with the reference
design as they are provided with the PicoBlaze download. Of course
you already have these files because you answered ‘yes’ to one of the
questions on page 4, but if you should still require a copy then please
visit the PicoBlaze Web site……

www.xilinx.com/picoblaze

bbfifo_16x8.vhd
kc_uart_tx.vhd

uart_rx.vhd

bbfifo_16x8.vhd
kc_uart_rx.vhd

uart_tx.vhd

UART transmitter and
receiver with 16-byte
FIFO buffers.

low_cost_design_authentication_for_spartan_3e.ucf

kcpsm3.vhd PicoBlaze processor used as the ‘security processor’ performing design authentication.

security.vhd Assembled program ‘security.psm’ for the ‘security processor’ generated using the template ‘ROM_form_dual_port_ROM.vhd’.

bbfifo_16x8.vhd FIFO buffer used to link between the two processors.

Low Cost Design Authentication 23

‘Real’ Application & Security
The whole point of having design security is to protect the real application. In this reference design, the ‘real’ application is
represented by a PicoBlaze processor controlling the LEDs. However, this combined with all the security logic is still less than
10% of the XC3S500E device resources so it is not truly representative of a real design. It means that the security aspects of this
small reference design are made easier to locate and attack than real design that is so much bigger. So were you successful?

Number of occupied Slices: 320 out of 4,656 6%
Number of Block RAMs: 2 out of 20 10%

Total equivalent gate count for design: 155,540

PicoBlaze and the UART macros make extensive use of the distributed
memory features of the Spartan-3E device leading to very high design
efficiency. If this design was replicated to fill the XC3S500E device, it
would represent the equivalent of over 1.5 million gates. Not bad for a
device even marketing claims to be 500 thousand gates �

MAP report

FPGA Editor view Floorplanner view

XC3S500E

Low Cost Design Authentication 24

The ‘Real’ Application PicoBlaze

application_interrupt_control

application_
interrupt_event

port_id

kcpsm3application_processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

a
p
p
l
i
c
a
t
i
o
n
_
i
n
s
t
r
u
c
t
i
o
n

a
p
p
l
i
c
a
t
i
o
n
_
a
d
d
r
e
s
s

led_ctrl

application_program_rom

instruction

addressclk

a
p
p
l
i
c
a
t
i
o
n
_
p
o
r
t
_
i
d

a
p
p
l
i
c
a
t
i
o
n
_
o
u
t
_
p
o
r
t

a
p
p
l
i
c
a
t
i
o
n
_
r
e
a
d
_
s
t
r
o
b
e

application_interrupt_ack

application_interrupt

[1:0]

read_link_fifo

write_link_fifo

0

7

a
p
p
l
i
c
a
t
i
o
n
_
w
r
i
t
e
_
s
t
r
o
b
e

led_drive

8

application_
interrupt_count

counter
Decode 195

Interrupt generated every 3.92µs

clk

All circuits are
clocked by
signal ’clk’.

security_disable
_interrupts

CE

bbfifo_16x8

link_fifo

data_in

clk

data_out

reset

read

write

full

half_full

data_present
[0]

[1]

[2]

application_
input_ports

application
_in_port

led[7]

led[6]

led[5]

led[4]

led[3]

led[2]

led[1]

led[0]

[2]

[7]

[7]

[3]

[6]

[5]

[4]

[2]

[1]

[0]

security_disable_outputs

application_
output_ports

security_out_port

5
[0]

security_interrupt
6

[0]

reset_link_fifo

1

The ‘real’ application uses PicoBlaze to PWM (pulse width modulate) control the LEDs. You can learn more about this in the reference design ‘Pulse Width
Modulation (PWM) Generation and Control with PicoBlaze’ (see web: http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm).

In this reference design what we need to focus on is the ways in which the ‘real’ application
can be enabled/disabled by the design authentication process. Earlier it was stated that
there should be no one point of attack and therefore even this small example has 3 separate
enable/disable control mechanisms built in to it as indicated by the & arrows.

A

C

B

C

A - This signal can disable interrupt generation and cease
PWM generation by the PicoBlaze processor.

B - This signal can disable certain output pins and swap
the connections to others resulting in erratic behaviour.

C - This is a a software hand shake mechanism in which
this processor makes a request to the security processor
and then expects to receive a message via a FOFO buffer.

Low Cost Design Authentication 25

A Closer Look at Failure
Make sure the authentication value is erased on your board and cycle the power or press PROG. Take a much closer look at
what happens and relate this to the schematic and design source code.

For the first 20 seconds the ‘real’ application is working normally. During this time all three
enable/disable mechanisms are allowing things to proceed.

A – The ‘security_disable_interrupts‘ signal initialises in the Low state and therefore the
counter used to generate interrupts at 3.92µs intervals can operate. These interrupts
mean that PicoBlaze executes an interrupt service routine at 256KHz and this results in a
1KHz PRF with 8-bit resolution.
B – The ‘security_disable_outputs‘ signal also initialises in the Low state and therefore all
LED outputs are driven with the corresponding PWM output channel.

C – This ‘enable’ is a little more complex and less obvious.
To understand this one we need to look at the application
PicoBlaze program file ‘led_ctrl.psm’ as well as the
schematic. Approximately once every 8 seconds the main
program jumps to a routine called ‘authentication_check’
(part of which is shown on the right).

LOAD s0, link_fifo_reset
OUTPUT s0, link_fifo_control_port
LOAD s0, 00
OUTPUT s0, link_fifo_control_port
;
LOAD s0, security_interrupt
OUTPUT s0, security_request_port
LOAD s0, 00
OUTPUT s0, security_request_port
;
CALL read_link_FIFO
COMPARE s0, character_P
JUMP NZ, fail_confirm
CALL read_link_FIFO
COMPARE s0, character_A
JUMP NZ, fail_confirm
CALL read_link_FIFO
COMPARE s0, character_S
JUMP NZ, fail_confirm
CALL read_link_FIFO
COMPARE s0, character_S
JUMP NZ, fail_confirm
JUMP normal_LED_sequence

Clear Link
FIFO buffer

Generate interrupt to
security processor

security_interrupt

reset_link_fifo

Read Link FIFO
and tests for the
four character

message ‘PASS’

����

����

����

����

����

This routine begins by ensuring that the Link FIFO buffer is clear
of any previous characters and then issues an interrupt to the
security processor. The security processor responds by writing
either the message ‘PASS’ or ‘FAIL’ into the Link FIFO. Until 20
seconds have elapsed, the security processor it will always
respond with ‘PASS’ so the ‘real’ application processor receives
the correct message and the normal main program continues.

Security
PicoBlaze

Application
PicoBlaze

Link
FIFO

reset
interrupt

‘PASS’ or ‘FAIL’

Low Cost Design Authentication 26

A Closer Look at Failure
After 20 seconds have elapsed the security processor performs the actual authentication check and
recognises that the product in not authenticated. The reference design makes this clear by
displaying the ‘Authentication Failed’ message on the LCD and PC displays. However, what
interests now is how it actually disables the ‘real application’. This is where you need to study really
closely what happens during the failure sequence.

A – Initially all the LEDs appear to turn off. This is the effect caused by the security PicoBlaze
driving the ‘security_disable_interrupts‘ signal High and disabling preventing the generation of
interrupts at 3.92µs intervals. The ‘real’ application processor is still actually working but the
execution sequence has been altered significantly. The security PicoBlaze has total control over
this disable signal so it could do anything with it. In this case it only activates it for 5 seconds and
then returns it Low allowing the ‘real’ application to work again.

B – After another 5 seconds of apparently normal operation the LEDs then behave very erratically. This time the security
PicoBlaze is driving the ‘security_disable_outputs‘ signal High and although the ‘real’ application PicoBlaze is working perfectly
normally the PWM outputs that it generates are scrambled or turned off at a hardware level. Look carefully and you will see that
LEDs 0, 2, 5 and 6 are always off and LEDs 3 and 7 blink out of order; confusing isn’t it! Once again the security PicoBlaze only
activates this disable signal for 5 seconds and normal operation resumes again very briefly.

C – Moments after normal operation is restored, all the LEDs turn on together and then slowly fade away to off. This failure
mechanism is now actually part of the ‘real’ application processor program (see routine called ‘failed_LED_sequence’ in
‘led_ctrl.psm’). The security processor is now responding with the message ‘FAIL’ rather than ‘PASS’ each time it receives an
interrupt. So in this case the failure occurred once the ‘real’ application processor made the request and it decided in what way
the operation should be effected.

Resistance to Attack – Even this simple reference design has demonstrated enable/disable mechanisms in a small design.
Both ‘A’ and ‘B’ are single points of attack which, in theory, could be found and permanently forced Low. In a real design,
simultaneous activation of these signals would mean The Attacker would need to find both at the same time which would be
extremely difficult without reverse engineering the whole configuration image. Mechanism ‘C’ can not be overridden by forcing
signals High or Low which really means that the design must be reverse engineered and then modified. Dynamic signalling
techniques will always offer stronger security and can be implemented with hardware state machines as well as software. In
conclusion, the more enable/disable signals and mechanisms a design has, then the stronger the security.

Low Cost Design Authentication 27

Security PicoBlaze
This processor is responsible for implementing the authentication algorithm. Please keep in mind that
in a real design the circuit could be greatly simplified because the LCD display and UART connections
were provided to make this reference design more educational. The key sections to notice are…..
• Interface to StrataFLASH memory for reading serial number and authentication value.
• Authentication enable/disable links ‘A’, ‘B’ and ‘C’ to the ‘real’ application.
• Pseudo random number generator.
• Anti-tamper circuit (covered separately).

port_id

kcpsm3 security_processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port
s
e
c
u
r
i
t
y
_
i
n
s
t
r
u
c
t
i
o
n

s
e
c
u
r
i
t
y
_
a
d
d
r
e
s
s

security

security_program_rom

instruction

addressclk

security_read_strobe

[2:0]

clk

All circuits are
clocked by
signal ’clk’.

security_disable_interrupts

security_
input_ports

security
_in_port

security_disable_outputs

application_
output_ports

security_interrupt

6

B

C

check_address

check_data

strataflash_d

6

strataflash_oe

strataflash_ce

strataflash_we

strataflash_read

[7:0]

[15:8]

[23:16]

strataflash_a

strataflash_read

[23:0]

[7:0]

0

7
1

0

7
1

0

7
1

0

7
1

lcd_rs

lcd_e

lcd_rw

lcd(7)

lcd(6)

lcd(5)

lcd(4)

bidirectional
LCD data

5

write_link_fifo

security_out_port C2

[0]

[1]

A

security_write_strobe

security_port_id

rx_data

UART_status

PN_value

lcd(7)

lcd(6)

lcd(5)

lcd(4)

(See next page for UART
and PN generator)

Anti-tamper
Circuit

S
tra

ta
FL

A
S

H
m

em
or

y

Low Cost Design Authentication 28

Security PicoBlaze Peripherals

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full rx_half_full

rx_full

rx_data_present

read_from_uart
rx_data

rx_female

buffer_full

uart_tx
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full
tx_half_full

tx_full

security_out_port
tx_female

write_to_uart

9

baud_count

Decode 32510

en_16_x_baud

UART macros include 16-byte
FIFO buffers

baud_timer

counter

s
t
a
t
u
s
_
p
o
r
t

Baud rate = 9600

strataflash_sts

[0]

All circuits are
clocked by
signal ’clk’.

[1]

[2]

[3]

[4]

[0]

The Strataflash STS signal is not actually
used in the PicoBlaze code provided so STS

signal is here for future experiments only.

UART_status

Pseudo Random
Number Generator

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

See XAPP052 and comments in source VHDL file for operation

[4]

[13]

[15]

[16]

PN_value
[12,9,4,6,11,7,16,2]

* Other devices on the Starter Kit
board are disabled to prevent
interference when working with
the StrataFLASH memory.

spi_rom_cs

spi_dac_cs

spi_adc_conv

Vcc

*
*

*
spi_sck

*
*

platformflash_oe

strataflash_byte

The design uses the StrataFLASH
in byte access mode meaning that
the upper data bits [15:8] are
unused at all times.

en_16_x_baud

security_read_strobe

0

2
1

3

security_write_strobe

security_port_id

Low Cost Design Authentication 29

The Algorithm
The actual authentication algorithm at the heart of this reference design is a rather simple 16-bit Cyclic Redundency Check CRC.
As discussed previously, it would be advisable to have a more complex algorithm resulting in a value represented by a greater
number of bits and ideally an algorithm which is cryptographically strong. Anyway, in this case the CRC value is computed by
PicoBlaze as a software routine but it would also be possible to implement the computation in pure hardware or using a
combination of hardware and embedded software depending on your preference.

The whole purpose of the algorithm is generate an authentication value from the unique serial number of the StrataFLASH
memory. The algorithms needs to be of a type that produces different authentication values for each unique number in a way that
does not make the relationship between the serial numbers and authentication values easy to determine. For example adding a
64-bit constant to the 64-bit serial number is an ‘algorithm’ but not very difficult to break. The CRC computation I have used is a
reasonable demonstration but really something better should be used in a real design.

CRC details

Question – Besides using the StrataFLASH serial number with the CRC polynomial, what else did I do to make
the authentication value less obvious?

It is left as an exercise for you to discover the fully details of the CRC computation by examining the source code
of the security PicoBlaze processor provided in the file ‘security.psm’. All source files contain numerous
comments to help you understand.

Hint - For more algorithm inspiration take a look at the ‘SHA-1 Algorithm for use with DS2432’
reference design for the Spartan-3E Starter Kit and XAPP780

In 1918, Engineer Arthur Scherbius patented the famous cipher machine which
used a combination of rotors, reflectors and wires with plugs. Even the simplest
Enigma machine had in excess of 15,000,000,000,000,000,000 combinations.
Between 1932 and 1939, Marian Rejewski, Henryk Zygalski and Jerzy Rozicki
succeeded in breaking the first Enigma codes in the days before computers and
electronic calculators existed so please do not underestimate the ability that
some people have to deduce algorithms from data sets. That said, an Attacker
of your designs will have far less data sets to work with (unless they buy many
original products) and they do not have years available to break your code.

ENIGMA

Low Cost Design Authentication 30

Hiding the Authentication Value
The second effective technique used in this reference design is one of hiding or obscuring the authentication value. In many
respects the obscuring of the authentication value is also an algorithm making it difficult for an Attacker to know which bits stored
in the FLASH memory are even used in the real algorithm.

060000 1B 7B BC 1C 13 EC 0F 6A D3 26 F0 62 83 19 55 B1
060010 95 62 8B 8A 1E 9A 7A E8 52 11 BF 55 CD 57 39 1A
060020 D5 E9 E5 E2 28 4C 02 17 94 FF 9F 4F AC 47 B6 DF
060030 09 33 B2 27 0D 09 79 80 31 47 04 56 0B 39 71 14
060040 2E 7F AB A6 7D 10 C4 2B A4 10 E4 AC 5B 4F 0F 95
060050 DD B5 6E 6B BD 4D 22 E3 5A 6A A4 39 77 E2 86 9B
060060 86 52 BB 35 76 3B 8E C3 67 2E B7 00 FD 8F 39 40
060070 2F 6B 90 51 F7 E9 46 39 F2 38 8D 23 0F D8 79 50
060080 C9 A4 AD 62 E9 3A 6E 9F 60 72 00 9D 22 68 BC CE
060090 14 61 64 30 08 32 BF 94 58 BE E4 6F 62 28 92 0E
0600A0 AD 09 5C 51 32 15 8C F9 EE 26 96 F3 C8 3F 53 DD
0600B0 2B 41 24 AE 5D 14 56 A8 95 24 4F CC E0 AE D5 47
0600C0 53 33 CE 9C A4 5A 0A 85 7C 82 10 09 17 26 3D D8
0600D0 8B DD 53 E1 26 80 0A E2 72 3C A7 E7 BD 34 78 DF
0600E0 64 D8 CB 61 D4 38 BB F7 52 D5 8F C0 8C 02 83 1D
0600F0 26 35 67 DA C6 45 B0 BF DA 80 0F B6 A3 08 72 1C

Computed CRC = 4F90When you authenticate this reference design on your board it
writes 256 bytes of data into the FLASH memory . Of these 2048
bits only 16 are the real authentication CRC value.

To prevent a simple comparison of two or more boards, it is vital
that all 256 bytes appear different in each original product.
Therefore, each time you use PicoBlaze to authorised your board
you will notice that it fills most locations with pseudo random
numbers. Try erasing and writing the authorisation several times
and you will see how it changes every time just as it should
appear different in every original product.

So where is the CRC value hiding?
I will leave this for you to discover. I have only used a very
simple method so see how long it takes you to find it. Remember
that unlike an Attacker, you know what value you are looking for.

If you really can not find the hidden authentication value then it is documented in the PicoBalze source code ‘security.psm’.

There are almost no limits to the ways in which you could hide authentication values. The random numbers could play a more
active role rather than just looking like data. For example, using the values in the box above, consider the following possibility.
The first random number ‘1B’ could be used to mean move forward 27 locations where you then find the value ‘55’ which in turn
means move forward 85 locations where the real authentication value is located. In that way the real authentication value would
be a moving target as well as looking hidden. Again remember that an Attacker doesn't even know what sort of authentication
value to look for whilst doing this.

Design Hint– “Steganography”

Low Cost Design Authentication 31

Do Not Provide Clues!
I think you will agree that trying to spot the location of the real authentication value in a block of random data is really very difficult.
A child playing ‘hide and seek’ would soon be asking for a clue and the “warmer” and “colder” guidance messages from the child's
parents keep the game alive �

Start Address

Read Byte

Is byte
Important?

No Yes

Extract bits

Store bits

Increment Address

Last byte?

No Yes

So having done a marvellous job of hiding the real authentication value, it is very important not to give clues to an Attacker as to
where the important information is hidden. In this reference design there are only 4 address locations that hold the important
information. If PicoBlaze performing the authentication process only read those 4 key locations then it would be a very obvious
clue to an Attacker equipped with a logic analyser. The address locations read by PicoBlaze would immediately identify the critical
locations and all others could be ignored. So to prevent this type of attack. PicoBlaze always reads all 256 bytes of information
and it then internally extracts the important information and ignores the rest.

However, even when reading all locations, some care needs to be taken. This flow
diagram illustrates the actions a program needs to execute in order to read all locations
and extract the key information. The sequential execution of instructions by PicoBlaze
means that everything takes time. So when the program executes a different code
sequence to handle the important bytes there is a high probability that the time taken will
be longer than the cases where the data is simply ignored.

These small differences in time between FLASH read operations could be a clue for an
attacker. In this simple case the observed timing ‘glitches’ would immediately identify
important address locations.

FA
S

T

S
LO

W

FLASH Output
Enable (/OE)

FLASH Address ????

Longer than normal time between OE pulses is
a clue to important locations.

Low Cost Design Authentication 32

Do Not Provide Clues!
PicoBlaze in this reference design ensures that it gives no outward clues as to which locations are important when reading the
authentication bytes.

The plot to the left shows the OE pulses when PicoBlaze reads the 64-bit unique
serial number. In this case each of the 8 bytes are read and stored in scratch
pad memory; a process that has uniform timing. By monitoring the signals to the
FLASH memory it is obvious that the serial number is being read but the regular
timing of the read cycles provides no clue about the algorithm in which the serial
number is subsequently used. So uniform reading is a good technique.

SF_byte_read: OUTPUT s9, SF_addr_hi_port
OUTPUT s8, SF_addr_mi_port
OUTPUT s7, SF_addr_lo_port
LOAD s1, 05
OUTPUT s1, SF_control_port
LOAD s1, 06
LOAD s1, 06
INPUT s0, SF_data_in_port
OUTPUT s1, SF_control_port
RETURN

Set 24-bit address

Enable FLASH
(/OE=‘1’)

Read data
(delay > 75ns required)

Disable FLASH
(/OE=‘1’)

Firstly a review of PicoBlaze timing. Each instruction takes 2 clock cycles. Therefore each instruction takes 40ns to execute
when using the 50MHz clock provided on the Spartan-3E Starter Kit. The following extract of code form ‘security.psm’ shows
how PicoBlaze reads a byte from the StrataFLASH memory. There are 4 instructions between the OUTPUT instructions which
control the OE signal which therefore result in OE pulses that are Low for 160ns as shown in the oscilloscope plot measured at
pin 54 of the memory (also connects to R96).

160ns

Low Cost Design Authentication 33

Do Not Provide Clues!
The problem with reading the authentication value is that it would be a lot of data to store before extracting the important bits. It
really is more desirable to extract the key information as it is read but this must avoid introducing timing difference clues for an
Attacker to observe.

In some cases it may be possible to add artificial delay when ignoring data to equal
the time taken when extracting key information but that soon becomes challenging
software to write. So in this design I decided to deliberately insert a random
duration delay between all read cycles. These random delays are large enough to
obscure the small differences in execution times required to process the key
information.

These three oscilloscope plots capture the OE pluses associated with reading the
authentication data block from the FLASH memory. Approximately the first 30 of
the 256 read cycles are shown in each case. It can be seen that every time the
authentication value is read result in different read cycle timing (thanks to the PN
generator). This random timing provides no clues to an Attacker.

Note – These traces were captured
when the authentication process was
executing. The ‘R’ command does not
have this timing because it is for
evaluation and diagnosis purposes only.

Faster hardware based memory
reading circuits may also be used
to read the authentication values
but care should also be taken
with their implementation to
ensure that no timing clues are
presented to an Attacker.

Low Cost Design Authentication 34

PicoBlaze Anti-Tampering Detection

port_id

kcpsm3 security_processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

s
e
c
u
r
i
t
y
_
i
n
s
t
r
u
c
t
i
o
n

s
e
c
u
r
i
t
y
_
a
d
d
r
e
s
s

security

security_program_rom

instruction

addressclk

check_address

check_data

anti_tamper_address
anti_tamper_data

anti_tamper_
compute[15:0]

Decode=001

9-bit
counter

16-bit
Accumulator

LOAD “ABCD”

[3:0]

[7:4]

[7:0]
[7:0]

[15:12]

[11:8]

+D Q

[11:4]

Decode=E990

Decode=7FF

CE
security_disable_clock

clk_50mhz

clk

BUFGMUX

Increasing Resistance to Attack – This design has used PicoBlaze extensively in the
implementation of the design authentication process. It is a useful and powerful building
block for its small size. However, PicoBlaze is also very well known and clearly
documented and it may present an Attacker with a new opportunity. PicoBlaze is a soft
macro occupying 96 out of 4656 slices and would be extremely difficult to locate in the
configuration image. In contrast, the program is stored in 1 of just 20 BRAMs and could
now be considered as a single point of attack and a security weakness. It would still be
difficult to locate the BRAM contents in the configuration image, but if recovered it has to
be said that reverse engineering processor op-codes is not so challenging. The Attacker
could then replace the program with one which removed the authentication algorithms
and simply provided authenticated design controls and responses.

The file ‘MODIFIED_low_cost_design_authentication_for_spartan_3e.mcs’ (and BIT
file) is provided for you to try. This is exactly the same design but with only the
copyright message changed from 'Copyright Ken Chapman 2006‘ to 'Copyright Xilinx
2006‘. Try loading this configuration image; does your board still work?

To prevent this type of attack from being successful, the reference design includes this
hardware based anti-tampering circuit which continuously computes a value based on
the contents of the BRAM (read via the second port of the dual port BRAM). If the
program were to be changed, then the computed value would no longer match the
expected value and the clock to the whole design will be stopped.

Low Cost Design Authentication 35

Your Own Security Designs
I do hope that you have found this reference design a useful introduction to low cost design authentication security. I know that for
some of you, design protection is very important so again I hope that I have included sufficient details in this document and the
design source code for you to fully understand the intricacies as well as the basic concepts.

Let me emphasize once again; DO NOT COPY THIS DESIGN FOR YOUR PRODUCT SECURITY because I have revealed all
my secrets and it will be the first things that an Attacker would try. Please have fun creating your own schemes and variations.

The key to good security is recognising who your enemy is likely to be and thinking about the ways in which they may unlock or
bypass your security measures. In this document I have been so open about the potential weaknesses of the design
authentication technique; only by recognising the potential weaknesses was I able to introduce suitable counter measures. You
must also take the time to identify the weaknesses of security schemes you implement and then strengthen your overall solution.

Be sure to design security protection into your project from the very beginning because, if you leave it until you have completed
your main design, then you will then find it difficult to insert multiple authentication disable signals and mechanisms that penetrate
deep enough into your design. However good the authentication algorithm is that you include, a single global enable/diasable
signal would offer a single point of attack which is to be avoided.

Finally, keep your secrets - If you have a good security idea, then keep it to yourself and use it! Make sure your design source
code is also kept in a secure place and be careful who you share your code with in future.

Make a feature of security

As a closing thought, consider how you can make design authentication a valuable addition to your product as well as providing
the design security which can be so important. The scheme gives you total control over how authorised and unauthorised
products do and do not work.
• Would it be useful for all your products to leave the factory only permitting an evaluation level of use until they are registered via
the internet? Authentication value programmed into FLASH remotely under your direct control.
• Would it be useful to control the level of features available to your customers? ‘Try before you buy’ evaluations and charged
upgrades all under the control of authentication values that are specific to the serial number of the product.

