
Hardware Design with VHDL

Hardware Design with VHDL
An Introduction

Ronald Hecht
ronald.hecht@uni-rostock.de

University of Rostock
Institute of Applied Microelectronics and Computer Engineering

January 12, 2006

mailto:ronald.hecht@uni-rostock.de

Hardware Design with VHDL

Outline

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

Introduction

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

Introduction

Hardware Description Languages

What are HDLs?

Modeling language for electronic designs and systems

VHDL, Verilog

PALASM, ABEL

Net list languages such as EDIF, XNF

Test languages such as e, Vera

SystemC for hardware/software co-design and verification

Hardware Design with VHDL

Introduction

Hardware Description Languages

HDL for . . .

Formal description of hardware

Specification on all abstraction layers

Simulation of designs and whole systems

Design entry for synthesis

Standard interface between CAD tools

Design reuse

Hardware Design with VHDL

Introduction

Hardware Description Languages

Design methodology

Design Entry Test Development

Functional Simulation

Synthesis

Place & Route Timing Simulation

Hardware Design with VHDL

Introduction

Hardware Description Languages

Pros and Cons of HDLs

Pros

Speeds up the whole design process

Powerful tools

Acts as an interface between tools

Standardized

Design reuse

Cons

Learning curve

Limited support for target architecture

Hardware Design with VHDL

Introduction

Abstraction Levels

Design Abstraction Levels

Performance Specifications
Test Benches

Sequential Descriptions
State Machines

Register Transfers
Selected Assignments
Arithmetic Operations

Boolean Equations
Hierarchy

Physical Information

Behavior

Data Flow

Structure

Synthesizable
Abstraction

Level

Behavior Sequential statements, implicit registers

Data flow Register transfer level (RTL), Parallel statements,
explicit registers

Structure Design hierarchy, Wiring components

Hardware Design with VHDL

Introduction

Abstraction Levels

HDL Abstraction Levels

Abstraction
Level

PLD Language Verilog VHDL SystemC

Hardware Design with VHDL

VHDL for Synthesis

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

VHDL for Synthesis

A First Example

A First Example

Multiplexer

library ieee ;
use ieee . std logic 1164 . all ;

entity mux is
port (

a, b : in std logic vector (3 downto 0);
s : in std logic ;
o : out std logic vector (3 downto 0));

end mux;

architecture behavior of mux is
begin −− behavior

o <= a when s = ’0’ else b;
end behavior;

0

1

a[3:0]

b[3:0]
o[3:0]

s

Hardware Design with VHDL

VHDL for Synthesis

A First Example

Library

library ieee ;
use ieee . std logic 1164 . all ;

Makes library ieee visible

Use objects within the library

Use package std logic 1164

Makes std logic and std logic vector visible

Hardware Design with VHDL

VHDL for Synthesis

A First Example

Entity

entity mux is
port (

a, b : in std logic vector (3 downto 0);
s : in std logic ;
o : out std logic vector (3 downto 0));

end mux;

Defines the name of the module

Describes the interface

Name of the ports
Direction
Type

Hardware Design with VHDL

VHDL for Synthesis

A First Example

Architecture

architecture behavior of mux is
begin −− behavior

o <= a when s = ’0’ else b;
end behavior;

Implements the module

Behavior
Structure
RTL description

Entity and architecture are linked by name (mux)

Name of architecture (behavior)

More than one architecture per entity allowed

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Parallel Processing

Half Adder

library ieee ;
use ieee . std logic 1164 . all ;

entity half adder is
port (

a, b : in std logic ;
s , co : out std logic);

end half adder ;

architecture rtl of half adder is
begin −− rtl

s <= a xor b;
co <= a and b;

end rtl ;

a
b

s

co

Implicit gates

Signals are used to wire
gates

Computes signals s and
co from a and b in parallel

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Full Adder

entity full adder is
port (

a, b, ci : in std logic ;
s , co : out std logic);

end full adder ;

architecture beh par of full adder is
signal s1, s2, c1, c2 : std logic ;

begin −− behavior
−− half adder 1
s1 <= a xor b;
c1 <= a and b;
−− half adder 2
s2 <= s1 xor ci;
c2 <= s1 and ci;
−− evaluate s and co
s <= s2;
co <= c1 or c2;

end beh par;

a
b

ci

s

co

s1

c1

c2

s2

All statements are processed
in parallel

A signal must not be driven
at two places

Order of statements is
irrelevant

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Sequential Processing – Processes

architecture beh seq of full adder is
begin −− beh seq

add: process (a, b, ci)
variable s tmp, c tmp : std logic ;

begin −− process add
−− half adder 1
s tmp := a xor b;
c tmp := a and b;
−− half adder 2
c tmp := c tmp or (s tmp and ci);
s tmp := s tmp xor ci ;
−− drive signals
s <= s tmp;
co <= c tmp;

end process add;

end beh seq;

All statements are
processed sequential

Sensitivity list (a, b, ci)

Multiple variable
assignments are allowed

Order of statements is
relevant

Variables are updated
immediately

Signals are updated at the
end of a process

Try to avoid multiple
signal assignments

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Parallel versus Sequential Processing

p1: process (a, b)
begin −− process p1
−− sequential statements
−− ...
−− drive process outputs
x <= ...

end process p1;

p2: process (c, x)
begin −− process p2
−− sequential statements
−− ...
−− drive process outputs
y <= ...

end process p2;

−− drive module outputs
o <= x or y;

process p1, process p2 and o are
processed in parallel

Statements within processes are
sequential

Inter-process communication
with signals

Signal values are evaluated
recursively in zero time

Simulator uses delta cycles

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Real time and delta cycles

t/ns

∆

Real time

Delta
 time

Hardware Design with VHDL

VHDL for Synthesis

Combinational Logic

Signals and Variables

Signals

Inside and outside processes

Communication between parallel statements and processes

Only the last assignment within a process is evaluated

Signal is updated at the end of a process

Signals are wires

Variables

Inside processes only

For intermediate results

Multiple assignments allowed

Immediate update

Hardware Design with VHDL

VHDL for Synthesis

Structural Description

Structural Description

Module composition

Wiring of Modules

Design Hierarchy

“Divide and conquer”

half
adder

half
adder

ci

a

b

s

co
s

co

a

b

s

co

a

b
c2

c1

s1

Hardware Design with VHDL

VHDL for Synthesis

Structural Description

architecture structural of full adder is
component half adder

port (
a, b : in std logic ;
s , co : out std logic);

end component;
signal s1, c1, c2 : std logic ;

begin −− structural
half adder 1 : half adder

port map (
a => a, b => b,
s => s1, co => c1);

half adder 2 : half adder
port map (

a => ci, b => s1,
s => s, co => c2);

co <= c1 or c2;

end structural ;

Make module half adder
known with component
declaration

Module instantiation

Connect ports and signals

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Register

entity reg is
port (

d, clk : in std logic ;
q : out std logic);

end reg;

architecture rtl of reg is
begin −− rtl

reg : process (clk)
begin −− process reg

if rising edge (clk) then
q <= d;

end if ;
end process reg ;

end rtl ;

d q

clk

Sensitivity list only contains the
clock

Assignment on the rising edge
of the clock

Not transparent

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Latch

entity latch is
port (

d, le : in std logic ;
q : out std logic);

end latch ;

architecture rtl of latch is
begin −− rtl

latch : process (le , d)
begin −− process latch

if le = ’1’ then
q <= d;

end if ;
end process latch ;

end rtl ;

d q

le

Sensitivity list contains latch
enable and data input

Assignment during high phase
of latch enable

Transparent

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Register with Asynchronous Reset

architecture rtl of reg areset is
begin −− rtl

reg : process (clk , rst)
begin −− process reg

if rising edge (clk) then
q <= d;

end if ;
if rst = ’0’ then

q <= ’0’;
end if ;

end process reg;

end rtl ;

d q

rst

Sensitivity list contains clock
and reset

Reset statement is the last
statement within the process

Reset has highest priority

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Register with Synchronous Reset

architecture rtl of reg sreset is
begin −− rtl

reg : process (clk)
begin −− process reg

if rising edge (clk) then
q <= d;
if rst = ’0’ then

q <= ’0’;
end if ;

end if ;
end process reg;

end rtl ;

Sensitivity list only contains
clock

Reset statement is the last
statement within the clock
statement

Should be used if target
architecture supports
synchronous resets

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Register with Clock Enable

architecture rtl of reg enable is
begin −− rtl

reg : process (clk , rst)
begin −− process reg

if rising edge (clk) then
if en = ’1’ then

q <= d;
end if ;

end if ;
if rst = ’0’ then

q <= ’0’;
end if ;

end process reg;

end rtl ;

d q

rst

en

Enable statement around signal
assignment

Use this semantic!

Hardware Design with VHDL

VHDL for Synthesis

Storage Elements

Storage Elements – Summary

Before you start

Register or latch?
What kind of reset?
Clock enable?

When you code, be precise

Sensitivity list
Clock statement
Enable semantic
Reset order/priority

Prefer registers with synchronous resets

Check synthesis results

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Register Transfer Level (RTL)

A Module may consist of
Pure combinational elements
Storage elements
Mixture of combinational and storage elements

Use RTL for
shift registers, counters
Finite state machines (FSMs)
Complex Modules

State
Memory

Transition
Logic

Output
Logic

clk

rst

i

o

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Shift register

library ieee ;
use ieee . std logic 1164 . all ;
use ieee .numeric std. all ;

entity shifter is

port (
clk : in std logic ;
rst : in std logic ;
o : out std logic vector (3 downto 0));

end shifter ;

architecture beh of shifter is

signal value : unsigned(3 downto 0);

Use ieee.numeric std
for VHDL arithmetics

Always std logic for
ports

Internal signal for
register

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

begin −− beh

shift : process (clk , rst)
begin −− process shift

if rising edge (clk) then
value <= value rol 1;

end if ;
if rst = ’0’ then

value <= (others => ’0’);
end if ;

end process shift ;

o <= std logic vector (value);

end beh;

Clocked signal assignments are
synthesized to registers

Do not forget to drive the
outputs

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Counter

library ieee ;
use ieee . std logic 1164 . all ;
use ieee .numeric std. all ;

entity counter is

port (
clk , rst : in std logic ;
o : out std logic vector (3 downto 0));

end counter;

architecture beh of counter is

signal value : integer range 0 to 15;

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

begin −− beh

count: process (clk , rst)
begin −− process count

if rising edge (clk) then
value <= value + 1;

end if ;
if rst = ’0’ then

value <= 0;
end if ;

end process count;

o <= std logic vector (to unsigned(value , 4));

end beh;

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Finite State Machine: OPC

library ieee ;
use ieee . std logic 1164 . all ;

entity opc is
port (

i : in std logic ;
o : out std logic ;
clk , rst : in std logic);

end opc;

architecture rtl of opc is

type state type is (even, odd);
signal state : state type ;

odd
o = ‚1'

even
o = ‚0'

i = 1

i = 1

i = 0 i = 0

Declare state types

Signal for state memory

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

−− State memory and transition logic
trans : process (clk , rst)
begin −− process trans

if rising edge (clk) then
case state is

when even =>
if i = ’1’ then state <= odd;
end if ;

when odd =>
if i = ’1’ then state <= even;
end if ;

end case;
end if ;
if rst = ’0’ then

state <= even;
end if ;

end process trans ;

Transition logic and
memory in one process

Always reset state
machines!

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

−− Output logic
output : process (state)
begin −− process output

case state is
when even => o <= ’0’;
when odd => o <= ’1’;

end case;
end process output;

end rtl ;

Output logic is placed in a
second process

Unregistered outputs are often
problematic

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Unregistered Outputs

Difficult timing analysis

Combinational loops possible

Undefined input delay for attached modules

Glitches

Attention,
Problematic!

Hardware Design with VHDL

VHDL for Synthesis

Register Transfer Level

Registered Outputs

Prefer registered module outputs

Simplifies the design process

Prevents glitches and combinational loops

Exception: Single-cycle handshake

Request registered
Acknowledge unregistered

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Problems of Traditional RTL Design

Error-prone

Many processes and parallel statements

Many signals

Accidental latches, multiple signal drivers

Inflexible Design Patterns

Combinational logic

Registers, FSMs

Schematic-VHDL

Difficult to understand, to debug, and to maintain

Focused on the schematic and not on the algorithm

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Solution: Abstracting Digital Logic

Synchronous designs consist of

Combinational logic
Registers

Comb.
Logic

in

clk
rst

Registered
out

Unregistered
out

Registers

Forget about Moore and Mealy when designing large modules

They are inflexible and they have unregistered outputs

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

VHDL Realization

A module only consists of two processes

Combinational process rin = f (in, r)
Clocked process r = rin

Combinational process is sensitive to inputs and registers

Sequential process is sensitive to clock and reset

Comb.
Process
f(in, r)in

clk
rst

Registered and
Unregistered
out

rin rRegister
Process
r <= rin

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Two-Process Methodology

architecture rtl of edge detect is
type state type is (low, high);
type reg type is

record
state : state type ;
o : std logic ;

end record;
signal r , rin : reg type ;

begin −− rtl
reg : process (clk , rst)
begin −− process reg

if rising edge (clk) then
r <= rin;

end if ;
if rst = ’0’ then

r . state <= low;
end if ;

end process reg ;

rin r

{state, o}

clk

rst

reg

Record type for all registers

Register input rin and output r

Single process for all registers

Simplifies adding new registers
to the module

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

comb : process (r , i)
variable v : reg type ;

begin −− process comb
−− Default assignment
v := r ;
−− Output is mostly ’0’
v.o := ’0’;
−− Finite state machine
case r . state is

when low => if i = ’1’ then
v. state := high;
v.o := ’1’;

end if ;
when high => if i = ’0’ then

v. state := low;
end if ;

end case;
−− Drive outputs
rin <= v;
o <= r.o;

end process comb;
end rtl ;

comb

Variable v

r

i

rin

o

Single process for combinational
logic

Variable v to evaluate the next
register state rin

Default assignment avoids
accidental latches

Modify v with respect to r and
inputs

Assign v to rin and drive outputs

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Advantages

Consistent Coding Style

Easy to write, to read, and to maintain

Less error-prone

High abstraction level

Concentrates on the algorithm and not on the schematic

Increases productivity

Excellent Tool Support

Fast simulation

Easy to debug

Perfect synthesis results

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Debugging

Hardware Design with VHDL

VHDL for Synthesis

Two-Process Methodology

Tips

Keep the Naming Style

signal r , rin : reg type ;
variable v : reg type ;

Use Default Assignments

v.ack := ’0’;
if condition then v.ack := ’1’;
end if ;

Use Variables for Intermediates

variable vinc ;
vinc := r . value + 1;

Use Functions and Procedures

v. crc := crc next (r . crc , data, CRC32);
seven segment <= int2seg(value);
full add (a, b, ci , s , co);

Variables for Unregistered Outs

variable v : reg type
variable vaddr;
ack <= v.ack;
addr <= vaddr;

Hardware Design with VHDL

VHDL for Synthesis

Design Strategies

Design Strategies

Raise the Abstraction Level!

Use the two-process methodology

Use variables

Use integers, booleans, signed, and unsigned

Use functions and procedures

Use synthesizable operators

Structural Design

“Devide and Conquer”

Do not overuse structural design

But keep the modules testable

Hardware Design with VHDL

Simulation with VHDL

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

Simulation with VHDL

Testbenches

Testbench

UUT
Unit Under Test

Testbench
Automatic Verification

Testbed for unit under test (UUT), Not synthesizable

Testbench instantiates UUT

Generates inputs

Checks outputs

Hardware Design with VHDL

Simulation with VHDL

Testbenches

A simple VHDL Testbench

library ieee ;
use ieee . std logic 1164 . all ;

entity half adder tb is
end half adder tb ;

architecture behavior of half adder tb is

component half adder
port (

a, b : in std logic ;
s , co : out std logic);

end component;

signal a, b : std logic ;
signal s , co : std logic ;

Entity is empty

Declare UUT half adder

Declare signals to
interface UUT

Hardware Design with VHDL

Simulation with VHDL

Testbenches

begin −− behavior

−− Unit Under Test
UUT: half adder

port map (
a => a,
b => b,
s => s,
co => co);

Instantiate UUT

Connect signals

Hardware Design with VHDL

Simulation with VHDL

Testbenches

stimuli : process
begin −− process stimuli
−− generate signals
a <= ’0’; b <= ’0’;
wait for 10 ns;
a <= ’1’;
wait for 10 ns;
a <= ’0’; b <= ’1’;
wait for 10 ns;
a <= ’1’;
wait for 10 ns;
−− stop simulation
wait;

end process stimuli ;

end behavior;

Process to generate test pattern

No sensitivity list

Execution until wait statement

Without wait: Cyclic execution

Hardware Design with VHDL

Simulation with VHDL

Testbenches

Automatic Verification and Bus-functional Procedures

library ieee ;
use ieee . std logic 1164 . all ;
use ieee .numeric std. all ;
use work. syslog . all ;

entity adder tb is
generic (
−− Adder delay
period : time := 10 ns);

end adder tb;

architecture behavior of adder tb is

component adder
port (

a, b : in std logic vector (3 downto 0);
sum : out std logic vector (3 downto 0);
co : out std logic);

end component;

Syslog package to
generate messages

Parametrized testbench

UUT declaration

Hardware Design with VHDL

Simulation with VHDL

Testbenches

signal a, b : std logic vector (3 downto 0)
:= (others => ’0’);

signal sum : std logic vector (3 downto 0);
signal co : std logic ;

begin −− behavior
−− Unit Under Test
UUT : adder

port map (
a => a,
b => b,
sum => sum,
co => co);

Declare UUT signals

Initialize inputs

Instantiate UUT

Connect signals

Hardware Design with VHDL

Simulation with VHDL

Testbenches

−− Stimuli and Verification
tester : process

−− Bus−functional procedure for UUT
procedure add (m, n : in integer range 0 to 15; s : out integer) is
begin −− do operation
−− set UUT operand inputs
a <= std logic vector (to unsigned(m, a’ length));
b <= std logic vector (to unsigned(n, b’ length));
−− wait some time
wait for period ;
−− get UUT result
s := to integer (unsigned(co & sum));

end add;

Bus-functional procedure abstracts UUT interface

Hardware Design with VHDL

Simulation with VHDL

Testbenches

begin

syslog testcase (”Test all input combinations”);
for i in 0 to 15 loop

syslog (debug, ”Operand a = ” & image(i) & ” ...”);
for j in 0 to 15 loop

add(i , j , s);
if s /= i + j then

syslog (error , ”Bad result for ” &
image(i) & ” + ” & image(j) & ” = ” & image(i + j) &
”, obtained: ” & image(s));

end if ;
end loop;

end loop;

syslog terminate ;
end process tester ;

end behavior ;

Automatic verification, Debug messages, Termination

Hardware Design with VHDL

Simulation with VHDL

Reference Models

Testing with Reference Models

Unit Under Test

Testbench
Automatic Verification

Reference Design

Instantiate UUT and reference model

Same test pattern

Compare results

Hardware Design with VHDL

Simulation with VHDL

Timing Simulation

Backannotation and Timing Simulation

Synthesize and place & route UUT

Backannotate: Extract netlist and timing

Simulation with testbench

Use the same testbench as for functional simulation

Testbench has to consider real delays

Setup and hold time of registers
Pads and wires

Never set inputs on clock edge

Hardware Design with VHDL

Simulation with VHDL

Timing Simulation

Setup and Hold Time

d q

clk

tsu th

tcko

Setup Violation

Hold Violation

clk

d

q

The setup time tsu defines the time a signal must be stable before
the active clock edge

The hold time th defines the time a signal must be stable after the
active clock edge

The clock-to-out time defines the output delay of the register after
the active clock edge

When setup or hold violation occurs the output is undefined

Hardware Design with VHDL

Simulation with VHDL

Timing Simulation

Hardware Testbench

A synthesizable testbench allows to download it into an FPGA

Examples:

Testbench with reference model
Build-in self test (BIST)
Microprocessor for test pattern generation

Testbench has ports such as clock, reset and test results

Very fast

Considers real wire and logic delays

Most accurate

Hardware Design with VHDL

Frequent Mistakes

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

Frequent Mistakes

Case versus If

If statement

good if : process (a, b, sel)
begin −− process good if

if sel = ’1’ then
o <= a;

else
o <= b;

end if ;
end process good if ;

0

1

a

b
o

sel

Implements a multiplexer

This description is optimal

Hardware Design with VHDL

Frequent Mistakes

Case versus If

Cascaded If

bad if : process (a, b, c, d, sel)
begin −− process bad if

if sel = ”00” then
o <= a;

elsif sel = ”01” then
o <= b;

elsif sel = ”10” then
o <= c;

else
o <= d;

end if ;
end process bad if ;

0

1
0

1
0

1a
b

c

d

sel=“10“
sel=“01“

sel=“00“

o

Cascaded if statements

Results in a cascaded
multiplexer

Long delay

Hardware Design with VHDL

Frequent Mistakes

Case versus If

Case statement

good case: process (a, b, c, d, sel)
begin −− process bad if

case sel is
when ”00” => o <= a;
when ”01” => o <= b;
when ”10” => o <= c;
when others => o <= d;

end case;
end process good case;

sel

a
b
c
d

00
01
10
11

Use case statement for
multiplexers

Best synthesis results

Hardware Design with VHDL

Frequent Mistakes

Missing sensitivities

Missing sensitivities

mux: process (a, b)
begin −− process mux

if sel = ’1’ then
o <= a;

else
o <= b;

end if ;
end process mux;

Signal sel is missing in sensitivity
list

Process is only activated on a or b

Simulation error

Synthesis often correct

Watch out for synthesis warnings

Hardware Design with VHDL

Frequent Mistakes

Accidental Latches

Accidental Latches with If Statements

if latch : process (a, b, sel)
begin −− process if latch

if sel = ”01” then
o <= a;

elsif sel = ”10” then
o <= b;

end if ;
end process if latch ;

Only cases “01” and “10” are covered, other cases missing

During missing cases o must be stored

Accidental latch is inferred by synthesis tool

sel = “01” or sel = “10” acts as latch enable

Hardware Design with VHDL

Frequent Mistakes

Accidental Latches

Accidental Latches with Case Statements

case latch : process (a, b, c, d, sel)
begin −− process case latch

case sel is
when ”00” => o1 <= a;

o2 <= b;
when ”01” => o1 <= b;
when ”10” => o1 <= c;

o2 <= a;
when others => o1 <= d;

o2 <= c;
end case;

end process case latch ;

Assignment for o2 is missing in case sel = “01”

Accidental latch to store o2

Hardware Design with VHDL

Frequent Mistakes

Accidental Latches

Circumvent Accidental Latches

case default : process (a, b, c, d, sel)
begin −− process case default

o1 <= a; o2 <= c;
case sel is

when ”00” => o2 <= b;
when ”01” => o1 <= b;
when ”10” => o1 <= c;

o2 <= a;
when others => o1 <= d;

end case;
end process case default ;

Use default assignments

Missing cases are intentional

Hardware Design with VHDL

Frequent Mistakes

Signals versus Variables

Incorrect use of Signals and Variables

entity full adder is
port (

a, b, ci : in std logic ;
s , co : out std logic);

end full adder ;

architecture str of full adder is

component half adder
port (

a, b : in std logic ;
s , co : out std logic);

end component;

signal s1, c1, c2 : std logic ;

begin −− str

This description is correct

Do not declare s tmp and c tmp
as signals

If signals

Only last assignment is
significant
Half adder 1 is removed
Combinational loops

Use signals for wires

Use varibles for combinational
intermediate results

Hardware Design with VHDL

Frequent Mistakes

The Package ieee.numeric std

The Package ieee.numeric std

library ieee ;
use ieee . std logic 1164 . all ;
use ieee .numeric std. all ;

Use the package numeric std instead of obsolete
std logic signed and std logic unsigned

Avoids ambiguous expressions

Strict destinction between signed and unsigned vectors

Sometimes a bit cumbersome but exact

Hardware Design with VHDL

Frequent Mistakes

Clocking and Resetting

Clocking

One phase, One clock!

No clock gating

Use rising edge(clk)

Avoid latches, Check synthesis results

clk

Hardware Design with VHDL

Frequent Mistakes

Clocking and Resetting

Clock scaling

Scale clock with synchronous counters and enables

en
clk

+1 =0

Use DLLs and PLLs to create other clocks

clk clk_in

clk_fb

clk_out
clk_2x

DLL

clk_4x

Hardware Design with VHDL

Frequent Mistakes

Clocking and Resetting

Asynchronous Signals

Synchronize asynchronous signals with at least two Registers

clk

Asynchronous
Input

Synchronized
Input

Prefer registered module outputs – on-chip and off-chip

Hardware Design with VHDL

Frequent Mistakes

Clocking and Resetting

Resetting

Do not touch reset without knowledge

This may cause problems

rst

Synchronize reset to clock

Not Synchronized
Reset

clk

‚1'

Synchronized
Reset

Hardware Design with VHDL

Frequent Mistakes

Other Mistakes

Other Mistakes

Use downto for all logic vectors

std logic vector (3 downto 0);

Constrain integers

integer range 0 to 7;

Be careful in testbenches with setup and hold time

Implement signal assignments close to reality

Hardware Design with VHDL

Frequent Mistakes

Not Synthesizable VHDL

Not Synthesizable VHDL

Initializing signals

signal q : std logic := ’0’;

Run-time loops

Timing specification

wait for 10 ns; r <= ’1’ after 1 ns;

Text I/O

Floating point

Hardware Design with VHDL

Advanced Concepts

Outline

1 Introduction

2 VHDL for Synthesis

3 Simulation with VHDL

4 Frequent Mistakes

5 Advanced Concepts

Hardware Design with VHDL

Advanced Concepts

Packages

Design Units

entity c
architecture rtl of c
component a
instance_1 : a
instance_2 : a

entity b
architecture rtl of b
component a
instance : a

entity d
architecture rtl of d
component a
instance : a
configuration ...

a.vhd

b.vhd c.vhd d.vhd

entity a
architecture rtl of a

Entities, architectures, components, instances

Only one module (entity, architecture) in a single file

Multiple component declarations are redundant

Hardware Design with VHDL

Advanced Concepts

Packages

Packages

package package name is
−− Declaration of
−− Types and Subtypes
−− Constants, Aliases
−− Signals , Files , Attributes
−− Functions, Procedures
−− Components
−− Definition of
−− Constants, Attributes

end package name;

package body package name is
−− Definition of earlier
−− declared Objects
−− Funktions, Procedures
−− Constants
−− Decaration/Definition
−− of additional Objects

end package name;

Place global objects and
parameters in packages

Solves redundancies

Package holds
declarations

Package body holds
definitions

Include the package with

use work.package name.all;

Hardware Design with VHDL

Advanced Concepts

Libraries

Libraries

A library contains design units

Entities, architectures
Packages and package bodies
Configurations

Mapped to a physical path

work ⇒ ./work
ieee ⇒ $MODEL TECH/../ieee

Tools place all design units in library work by default

Library work and std are visible by default

Include other libraries with

library library name ;

Hardware Design with VHDL

Advanced Concepts

Flexible Interfaces

Flexible Interfaces

Problem of large designs

Entities have many ports, confusing, difficult naming
Redundant interface descripion (entity, component, instance)
Modifying an interface is cumbersome and error-prone

Solution: Define complex signal records

Record aggregates wires of an interface

type clk type is
record

clk : std logic ;
clkn : std logic ;
clk 2x : std logic ;
clk 90 : std logic ;
clk 270 : std logic ;

end record;

−− Create and buffer clocks
entity clk gen is

port (
clk pad : in std logic ;
clk : out clk type);

end clk gen ;

Hardware Design with VHDL

Advanced Concepts

Flexible Interfaces

Flexible Interfaces – In and Out

Split interface in input and output records

Declare name in type and name out type

type mem in type is
record

data : mem data type;
end record;

type mem out type is
record

address : mem address type;
data : mem data type;
drive datan : std logic ;
csn : std logic ;
oen : std logic ;
writen : std logic ;

end record;

−− Memory controller
entity mem ctrl is

port (
clk : in clk type ;
reset : in reset type ;
memo : out mem out type;
memi : in mem in type
−− Other signals
−− Control and data wires
);

end mem ctrl;

Hardware Design with VHDL

Advanced Concepts

Flexible Interfaces

entity top is
port (

data : inout mem data type;
address : out mem address type;
csn : out std logic ;
oen : out std logic ;
writen : out std logic
−− other signals
);

end top;

Pads of a chip are often
bidirectional

Infer tristate buffers in top
entity

Do not use inout records

Strictly avoid bidirectional
on-chip wires/buses

top
mem_ctrl memo

memi

memo.driven

memo.data

memi.data

data

Hardware Design with VHDL

Advanced Concepts

Flexible Interfaces

Flexible Interfaces – Inout Implementation

Memory Controller

−− instantiate memory controller
mem ctrl i : mem ctrl

port map (
clk => clk,
reset => reset,
memo => memo,
memi => memi);

−− drive data out
data <= memo.data when memo.drive datan = ’0’ else (others => ’Z’);
−− read data in
memi.data <= data;

Use the ’Z’ value of std logic to describe tri-state buffers

Hardware Design with VHDL

Advanced Concepts

Flexible Interfaces

Design Strategies

Aggregate signals belonging to a logical interface

System bus
Control and status
Receive
Transmit

Use hierarchical records to aggregate multiple interfaces

Do not place clock and reset into records

Do not use records for top entity

Advantages

Reduces the number of signals

Simplifies adding and removing of interface signals

Simplifies route-through of interfaces

Raises the abstraction level, Improves maintainability

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Customizable VHDL Designs

What’s this?

VHDL Design is made configurable by parameters

Modifies its structure, functionality, or behavior

Facilitates design reuse

Flexibility

VHDL gives you

Entity Signals

Entity Generics

Package Constants

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Control Signals

Entity contains additional control signals

Locally to module

Customization at runtime

Consumes additional hardware

UART

rx tx

rx txctrl

baud
flow

System Interface
Physical InterfaceALU

op

a

b

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Generics

Entity contains parameters, Locally to module

Customization at design (compile) time

Consumes no additional hardware

Unused logic will be removed

entity adder is
generic (

n : integer := 4);
port (

a, b : in std logic vector (n−1 downto 0);
ci : in std logic ;
s : out std logic vector (n−1 downto 0);
co : out std logic);

end adder;

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Constants

Define constants in a package

Visible for all design units using the package

Global parameters

Be careful with naming, Use upper case

constant MEM ADDRESS WIDTH : integer := 16;
constant MEM DATA WIDTH : integer := 8;

subtype mem address type is
std logic vector (MEM ADDRESS WIDTH−1 downto 0);

subtype mem data type is
std logic vector (MEM DATA WIDTH−1 downto 0);

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Hierarchical Customization

Reducing the number of global constants

Structuring the parameters in configuration records

Aggregate configurations hierarchically

Simple and flexible selection of configurations

CONFIG

MEM_CONFIG

TARGET

ETH_CONFIG

PROC_CONFIG

IU_CONFIG

FP_CONFIG

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

type mem config type is
record

address width , data width, banks : integer ;
read wait states , write wait states : integer ;

end record;

type config type is
record

mem : mem config type; target : target config type ;
end record;

constant MEM SMALL FAST : mem config type := (
address width => 16, data width => 8, banks => 1,
read wait states => 0, write wait states => 1);

constant MEM LARGE SLOW : mem config type := (
address width => 20, data width => 32, banks => 4,
read wait states => 4, write wait states => 4);

constant MY SYSTEM : config type := (
mem => MEM LARGE SLOW, target => VIRTEX);

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Generate Statement

Generic Adder

begin −− struct

c(0) <= ci; co <= c(n);

fa for : for i in 0 to n−1 generate
fa 1 : full adder

port map (
a => a(i),
b => b(i),
ci => c(i),
s => s(i),
co => c(i+1));

end generate fa for ;

end struct ;

Use generate for structural
composition

Applicable for components,
processes and parallel
statements

“For”-generate

“If”-generate but no “else”

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

Loops Instead of Generate

Generic Adder

add : process (a, b, ci)
variable sv : std logic vector (n−1 downto 0);
variable cv : std logic vector (n downto 0);

begin −− process add

cv(0) := ci ;

for i in 0 to n−1 loop
full add (a(i), b(i), cv(i), sv(i), cv(i+1));

end loop; −− i

s <= sv;
co <= cv(n);

end process add;

Use loops for generic
designs

Inside processes

Much simpler than
generate statement

Loop range must be
known at compile time

Hardware Design with VHDL

Advanced Concepts

Customizable Designs

If-Then-Else Instead of Generate

if CALIBRATE then
−− remove this logic when
−− CALIBRATE = false
v. period counter := r . period counter + 1;
if rising then

v.period := v. period counter ;
v. period counter := 0;

end if ;
else
−− remove this logic when
−− CALIBRATE = true
v.period := CLK RATE / FREQUENCY;

end if ;

If-Then-Else is much
simpler than generate

Inside processes

Unused logic is removed

CALIBRATE must be
known at compile time

	Outline
	Introduction
	Hardware Description Languages
	Abstraction Levels

	VHDL for Synthesis
	A First Example
	Combinational Logic
	Structural Description
	Storage Elements
	Register Transfer Level
	Two-Process Methodology
	Design Strategies

	Simulation with VHDL
	Testbenches
	Reference Models
	Timing Simulation

	Frequent Mistakes
	Case versus If
	Missing sensitivities
	Accidental Latches
	Signals versus Variables
	The Package ieee.numeric_std
	Clocking and Resetting
	Other Mistakes
	Not Synthesizable VHDL

	Advanced Concepts
	Packages
	Libraries
	Flexible Interfaces
	Customizable Designs

