
C Language Features

 2012-2013 Microchip Technology Inc. DS50002053D-page 147

5.4 SUPPORTED DATA TYPES AND VARIABLES

5.4.1 Identifiers

A C variable identifier (the following is also true for function identifiers) is a sequence
of letters and digits, where the underscore character “_” counts as a letter. Identifiers
cannot start with a digit. Although they can start with an underscore, such identifiers are
reserved for the compiler’s use and should not be defined by your programs. Such is
not the case for assembly domain identifiers, which often begin with an underscore,
see Section 5.12.3.1 “Equivalent Assembly Symbols”.

Identifiers are case sensitive, so main is different to Main.

Not every character is significant in an identifier. The maximum number of significant
characters can be set using an option, see Section 4.8.8 “-N: Identifier Length”. If
two identifiers differ only after the maximum number of significant characters, then the
compiler will consider them to be the same symbol.

5.4.2 Integer Data Types

The MPLAB XC8 compiler supports integer data types with 1, 2, 3 and 4 byte sizes as
well as a single bit type. Table 5-1 shows the data types and their corresponding size
and arithmetic type. The default type for each type is underlined.

The bit and short long types are non-standard types available in this implementa-
tion. The long long types are C99 Standard types, but this implementation limits their
size to only 32 bits.

All integer values are represented in little endian format with the Least Significant bit
(LSb) at the lower address.

If no signedness is specified in the type, then the type will be signed except for the
char types which are always unsigned. The bit type is always unsigned and the
concept of a signed bit is meaningless.

Signed values are stored as a two’s complement integer value.

The range of values capable of being held by these types is summarized in Table 5-2
The symbols in this table are preprocessor macros which are available after including
<limits.h> in your source code.

TABLE 5-1: INTEGER DATA TYPES

Type Size (bits) Arithmetic Type

bit 1 Unsigned integer

signed char 8 Signed integer

unsigned char 8 Unsigned integer

signed short 16 Signed integer

unsigned short 16 Unsigned integer

signed int 16 Signed integer

unsigned int 16 Unsigned integer

signed short long 24 Signed integer

unsigned short long 24 Unsigned integer

signed long 32 Signed integer

unsigned long 32 Unsigned integer

signed long long 32 Signed integer

unsigned long long 32 Unsigned integer

MPLAB® XC8 C Compiler User’s Guide

DS50002053D-page 148 2012-2013 Microchip Technology Inc.

As the size of data types are not fully specified by the ANSI Standard, these macros
allow for more portable code which can check the limits of the range of values held by
the type on this implementation.

The macros associated with the short long type are non-standard macros available
in this implementation; those associated with the long long types are defined by the
C99 Standard.

Macros are also available in <stdint.h> which define values associated with
fixed-width types.

When specifying a signed or unsigned short int, short long int, long int
or long long int type, the keyword int can be omitted. Thus a variable declared
as short will contain a signed short int and a variable declared as unsigned
short will contain an unsigned short int.

It is a common misconception that the C char types are intended purely for ASCII char-
acter manipulation. However, the C language makes no guarantee that the default
character representation is even ASCII. (This implementation does use ASCII as the
character representation.)

The char types are the smallest of the multi-bit integer sizes, and behave in all
respects like integers. The reason for the name “char” is historical and does not mean
that char can only be used to represent characters. It is possible to freely mix char
values with values of other types in C expressions. With the MPLAB XC8 C Compiler,
the char types are used for a number of purposes – as 8-bit integers, as storage for
ASCII characters, and for access to I/O locations.

TABLE 5-2: RANGES OF INTEGER TYPE VALUES

Symbol Meaning Value

CHAR_BIT bits per char 8

CHAR_MAX max. value of a char 127

CHAR_MIN min. value of a char -128

SCHAR_MAX max. value of a signed char 127

SCHAR_MIN min. value of a signed char -128

UCHAR_MAX max. value of an unsigned char 255

SHRT_MAX max. value of a short 32767

SHRT_MIN min. value of a short -32768

USHRT_MAX max. value of an unsigned short 65535

INT_MAX max. value of an int 32767

INT_MIN min. value of a int -32768

UINT_MAX max. value of an unsigned int 65535

SHRTLONG_MAX max. value of a short long 8388607

SHRTLONG_MIN min. value of a short long -8388608

USHRTLONG_MAX max. value of an unsigned short
long

16777215

LONG_MAX max. value of a long 2147483647

LONG_MIN min. value of a long -2147483648

ULONG_MAX max. value of an unsigned long 4294967295

LLONG_MAX max. value of a long long 2147483647

LLONG_MIN min. value of a long long -2147483648

ULLONG_MAX max. value of an unsigned long
long

4294967295

C Language Features

 2012-2013 Microchip Technology Inc. DS50002053D-page 149

5.4.2.1 BIT DATA TYPES AND VARIABLES

The MPLAB XC8 C Compiler supports bit integral types which can hold the values 0
or 1. Single bit variables can be declared using the keyword bit (or __bit), for
example:

bit init_flag;

You can also use the These variables cannot be auto or parameters to a function, but
can be qualified static, allowing them to be defined locally within a function. For
example:

int func(void) {
 static bit flame_on;
 // ...
}

A function can return a bit object by using the bit keyword in the function’s prototype
in the usual way. The 1 or 0 value will be returned in the carry flag in the STATUS reg-
ister.

The bit variables behave in most respects like normal unsigned char variables, but
they can only contain the values 0 and 1, and therefore provide a convenient and effi-
cient method of storing flags. Eight bit objects are packed into each byte of memory
storage, so they don’t consume large amounts of internal RAM.

Operations on bit objects are performed using the single bit instructions (bsf and
bcf) wherever possible, thus the generated code to access bit objects is very
efficient.

It is not possible to declare a pointer to bit types or assign the address of a bit object
to any pointer. Nor is it possible to statically initialize bit variables so they must be
assigned any non-zero starting value (i.e., 1) in the code itself. Bit objects will be
cleared on startup, unless the bit is qualified persistent.

When assigning a larger integral type to a bit variable, only the LSb is used. For
example, if the bit variable bitvar was assigned as in the following:

int data = 0x54;
bit bitvar;
bitvar = data;

it will be cleared by the assignment since the LSb of data is zero. This sets the bit
type apart from the C99 Standard __Bool, which is a boolean type, not a 1-bit wide
integer. The __Bool type is not supported on the MPLAB XC8 compiler. If you want to
set a bit variable to be 0 or 1 depending on whether the larger integral type is zero
(false) or non-zero (true), use the form:

bitvar = (data != 0);

The psects in which bit objects are allocated storage are declared using the bit
PSECT directive flag, see Section 6.4.9.3 “PSECT”. All addresses assigned to bit
objects and psects will be bit addresses. For absolute bit variables (see
Section 5.5.4 “Absolute Variables”), the address specified in code must be a bit
address. Take care when comparing these addresses to byte addresses used by all
other variables.

If the xc8 flag --STRICT is used, the bit keyword becomes unavailable, but you can
use the __bit keyword.

MPLAB® XC8 C Compiler User’s Guide

DS50002053D-page 150 2012-2013 Microchip Technology Inc.

5.4.3 Floating-Point Data Types

The MPLAB XC8 compiler supports 24- and 32-bit floating-point types. Floating point
is implemented using either a IEEE 754 32-bit format, or a modified (truncated) 24-bit
form of this. Table 5-3 shows the data types and their corresponding size and arithmetic
type.

For both float and double values, the 24-bit format is the default. The options
--FLOAT=24 and --DOUBLE=24 can also be used to specify this explicitly. The 32-bit
format is used for double values if the --DOUBLE=32 option is used and for float
values if --FLOAT=32 is used.

Variables can be declared using the float and double keywords, respectively, to
hold values of these types. Floating-point types are always signed and the unsigned
keyword is illegal when specifying a floating-point type. Types declared as long
double will use the same format as types declared as double. All floating-point
values are represented in little endian format with the LSb at the lower address.

This format is described in Table 5-4, where:

• Sign is the sign bit which indicates if the number is positive or negative

• The exponent is 8 bits which is stored as excess 127 (i.e., an exponent of 0 is
stored as 127).

• Mantissa is the mantissa, which is to the right of the radix point. There is an
implied bit to the left of the radix point which is always 1 except for a zero value,
where the implied bit is zero. A zero value is indicated by a zero exponent.

The value of this number is (-1)sign x 2(exponent-127) x 1. mantissa.

Here are some examples of the IEEE 754 32-bit formats shown in Table 5-5. Note that
the Most Significant Bit (MSb) of the mantissa column (i.e., the bit to the left of the radix
point) is the implied bit, which is assumed to be 1 unless the exponent is zero (in which
case the float is zero).

Use the following process to manually calculate the 32-bit example in Table 5-5.

TABLE 5-3: FLOATING-POINT DATA TYPES

Type Size (bits) Arithmetic Type

float 24 or 32 Real

double 24 or 32 Real

long double same as double Real

TABLE 5-4: FLOATING-POINT FORMATS

Format Sign Biased exponent Mantissa

IEEE 754 32-bit x xxxx xxxx xxx xxxx xxxx xxxx xxxx xxxx

modified IEEE 754
24-bit

 x xxxx xxxx xxx xxxx xxxx xxxx

TABLE 5-5: FLOATING-POINT FORMAT EXAMPLE IEEE 754

Format Number Biased exponent 1.mantissa Decimal

32-bit 7DA6B69Bh

11111011b 1.0100110101101101
0011011b

2.77000e+37

(251) (1.302447676659) —

24-bit 42123Ah

10000100b 1.001001000111010b 36.557

(132) (1.142395019531) —

