
MPLAB® XC8 C Compiler User’s Guide

DS50002053D-page 160 2012-2013 Microchip Technology Inc.

5.4.6 Constant Types and Formats

A constant is used to represent an immediate value in the source code, as opposed to
a variable that could hold the same value. For example 123 is a constant.

Like any value, a constant must have a C type. In addition to a constant’s type, the
actual value can be specified in one of several formats.

5.4.6.1 INTEGRAL CONSTANTS

The format of integral constants specifies their radix. MPLAB XC8 supports the ANSI
standard radix specifiers, as well as ones which enables binary constants to be
specified in C code.

The formats used to specify the radices are given in Table 5-7. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral constant will have a type of int, long int or long long int, so that
the type can hold the value without overflow. Constants specified in octal or hexadeci-
mal can also be assigned a type of unsigned int, unsigned long int or
unsigned long long int if the signed counterparts are too small to hold the value.

The default types of constants can be changed by the addition of a suffix after the digits;
e.g., 23U, where U is the suffix. Table 5-8 shows the possible combination of suffixes
and the types that are considered when assigning a type. So, for example, if the suffix
l is specified and the value is a decimal constant, the compiler will assign the type
long int, if that type will hold the constant; otherwise, it will assigned long long
int. If the constant was specified as an octal or hexadecimal constant, then unsigned
types are also considered.

TABLE 5-7: RADIX FORMATS

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F

TABLE 5-8: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int

C Language Features

 2012-2013 Microchip Technology Inc. DS50002053D-page 161

Here is an example of code that can fail because the default type assigned to a
constant is not appropriate:

unsigned long int result;
unsigned char shifter;

void main(void)
{

shifter = 20;
result = 1 << shifter;
// code that uses result

}

The constant 1 (one) will be assigned an int type, hence the result of the shift opera-
tion will be an int. Even though this result is assigned to the long variable, result,
it can never become larger than the size of an int, regardless of how much the con-
stant is shifted. In this case, the value 1 shifted left 20 bits will yield the result 0, not
0x100000.

The following uses a suffix to change the type of the constant, hence ensure the shift
result has an unsigned long type.

result = 1UL << shifter;

5.4.6.2 FLOATING-POINT CONSTANT

Floating-point constants have double type unless suffixed by f or F, in which case it
is a float constant. The suffixes l or L specify a long double type which is
considered an identical type to double by MPLAB XC8.

5.4.6.3 CHARACTER AND STRING CONSTANTS

Character constants are enclosed by single quote characters, ’, for example ’a’. A
character constant has int type, although this can be later optimized to a char type
by the compiler.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example.

const char name[] = "Bj\370rk";
printf("%s's Resum\351", name); \\ prints "Bjørk's Resumé"

Multi-byte character constants are not supported by this implementation.

String constants, or string literals, are enclosed by double quote characters “, for exam-
ple “hello world”. The type of string constants is const char * and the character
that make up the string are stored in the program memory, as are all objects qualified
const.

A common warning relates to assigning a string literal to a pointer that does not specify
a const target, for example:

char * cp = "hello world\n";

The string characters cannot be modified, but this type of pointer allows writes to take
place, hence the warning. To prevent yourself from trying to overwrite the string,
qualifier the pointer target as follows. See also Section 5.4.5.1 “Combining Type
Qualifiers and Pointers”.

const char * cp = "hello world\n";

