

AVR240: 4 x 4 Keypad - Wake-up on Keypress

Features
• 16 Key Pushbutton Pad in 4 x 4 Matrix
• Very Low Power Consumption
• AVR in Sleep Mode and Wakes Up on Keypress
• Minimum External Components
• ESD Protection Included if Necessary
• Efficient Code
• Complete Program Included for AT90S1200
• Suitable for Any AVR MCU

1 Introduction
This application note describes a simple interface to a 4 x 4 keypad designed for
low power battery operation. The AVR spends most of its time in Power-down
mode, waking up when a key is pressed to instigate a simple test program that
flashes one of two LEDs according to the key pressed. If “0” (zero) is pressed the
RED LED flashes 10 times. All other keys flash the GREEN LED the number of
times marked on the key (e.g., if “C” is pressed the GREEN LED flashes twelve
times).

Figure 1-1. Keypad and LED Connections

PB7

PB6

PB5

PB4

PB3

PB2 PD2

PB1 PD1

PB0 PD0

AT90S1200

R10

R9

LED2
GREEN

R1

R2

R3

R4

R5

R6

R7

R8

D1

D2

D3

D4

R1

R2

R3

R4

F

E

D

C

3

6

9

B

2

5

8

0

1

4

7

A

C1 C2 C3 C4

ALL
1N4148 4 x 4 KEYPAD

LED1
REDALL

470Ω
ALL

330Ω

VCC

8-bit
Microcontrollers

Application Note

PRELIMINARY

Rev. 1232D-AVR-06/06

2 AVR240
1232D-AVR-06/06

2 Theory of Operation
The keypad columns are connected to the high nibble of port B. The keypad rows are
connected to the low nibble. Resistors R1 to R8 (this is shown in Figure 1-1) serve to
limit input current to a safe level in the event of ESD from the keypad. They can be
omitted in most applications.

In the steady state condition the high nibble is configured as outputs and are in the
low state. The low nibble is configured as inputs and has the internal pull-ups
enabled, removing the need for external pull-up resistors. After initialization the AVR
is put to sleep. When a key is pressed one of the diodes D1 - D4 pull down the
external interrupt line PD2, which also has internal pull-ups enabled. This wakes up
the AVR and causes it to run the interrupt service routine, which scans the keypad
and calculates which key is pressed.

It then returns to the main program and drives the LEDs according to the key
pressed, putting the AVR back to sleep when it has finished.

Resistors R9 and R10 are the traditional current limit resistors for the LEDs and can
be any suitable value for the supply rail. This application note was tested using 330Ω
on a 5V supply. The LEDs are driven in current sink mode (“0” = ON) and provide
about 10 mA of forward current with the values specified.

3 Implementation
The firmware consists of three sections, the reset routine, the test program and the
interrupt service routine sets up the ports, sleep mode, power saving and the
interrupts. The test program flashes the LED on wake-up and the interrupt service
routine responds to the keypress.

3.1 Reset Routine
The flowchart for the Reset Routine is shown in Figure 3-1. On reset the ports are
initialized with their starting directions. These are fixed on port D, with all bits as
outputs except PD2, which must be an input for the external interrupt. This bit has its
pull-up enabled by setting bit 2 of Port D. The unused bits are configured as outputs
to avoid noise pickup or excessive power consumption, which could otherwise occur if
left floating. Port B starts with the high nibble as outputs sending out zeroes, and the
low nibble set as inputs with the pull-ups enabled.

Since we are using a minimum of external components, we must ensure that internal
pull-ups are turned on for all those bits set up as inputs. This is achieved by
configuring the Data Direction Register with “1”s for outputs, “0”s for inputs, and then
writing “1”s to the input bits in the PORT Register. The inputs can then be read or
tested from the PIN register. This program looks for “0”s and uses the SBIS
instruction to skip over the keypress action if not a “0”.

Power-down mode is selected by setting the SE and SM bits of the MCUCR. At the
same time the external interrupt configured by writing “0”s into the ISC00/01 bits. This
will set the external interrupt INT0 to trigger on a LOW level. When using “Power-
down” mode the AVR can only be woken up by LOW LEVEL trigger.

Turning off the Analog Comparator reduces power consumption further. This is done
by setting the ACD bit in the ACSR Register. This must be done with care; otherwise
an unwanted interrupt can be generated. This program disables global interrupts until

 AVR240

 3

1232D-AVR-06/06

the program is ready to be interrupted, solving this problem. If you wish to use the
Analog Comparator this code can be removed, but you will need to change ports for
the keypad since port B is used for this.

The AVR then enters sleep mode. This is placed in the main loop to ensure that it
goes back to sleep after it has finished its interrupt function and carried out the
“Flash” test routine. When the AVR wakes up after a keypress, the “Flash” routine is
called after the interrupt routine is finished. When the “Flash” routine is done, the
external interrupt is enabled, so that another interrupt can occur.

Figure 3-1. Flowchart for Reset and Main Routine
Start

Initialize Ports

Set Up
Onterrupts and

Sleep Mode

Disable
Analog

Comparator

Disable Global
Interrupts

Reset Port
Configuration

Enable Global Interrupts

Sleep

Flash

Enable External
Interrupt

3.2 Flash Test Function
The flow chart is shown in Figure 3-2.

This function can be replaced by your own application to be executed out of “Power-
down” mode. It serves to demonstrate that the key scan routine is working correctly.
The value of the key pressed is taken from the “key” variable and used as a pointer to
access a 16-byte look-up table stored in EEPROM. The look-up table contains the
number of the key pressed.

The table has been used for two reasons, it makes the program much shorter, and it
allows easy extension to provide full ASCII coding for the key press. For the larger
AVRs it would make sense to store this table in program memory and access it using
the LPM instruction.

4 AVR240
1232D-AVR-06/06

The key value derived from the EEPROM is then used as a countdown variable inside
an ON/OFF loop for the LED outputs. If the value is “0” the RED LED is flashed 10
times. If the value is non-zero the GREEN LED is flashed that number of times. For
example, three times for the “3” key, fifteen times for the “F” key etc. The AVR then
repeats the loop and falls asleep.

The LED flashing routine is easily modified for your own application, replacing the
“Flash” function by your routine. The main consideration is the timing. Because the
test program spends some time flashing the LEDs, no extra debounce arrangements
are necessary. If your code is very fast you might need to put a short delay in to allow
time for contact bounce. Wake-up from sleep mode typically takes 16 ms or so,
although this is being reduced on the newer devices. This also provides some
debouncing.

Figure 3-2. Flowchart for “Flash” Function

Flash Red
LED Ten
Times

Flash

Read
EEPROM at
Key Value

Value
=0?

Flash Green
LED Value

Ttimes

Return

Y

N

3.3 Long Time Delay Subroutine (delay)
To see the LEDs flash requires a delay of at least 0.25 second. This is achieved using
a conventional FOR loop to keep the Timer/Counter free for other work. To achieve
over 0.25 seconds delay with a 4 MHz clock requires three nested loops. Three local
variables contained in registers “fine”, “medium” and “coarse” are used for the loop.
The fine and medium counters run the maximum of 255 times with the coarse
Counter set to 5, giving about 0.25 second delay. The flowchart is shown in Figure 3-
3.

 AVR240

 5

1232D-AVR-06/06

Figure 3-3. Flowchart for Delay Subroutine
delay

Coarse=8

Medium=255

Fine=255

Fine = Fine-1

0?

Medium=
Medium-1

0?

Coarse=
Coarse-1

0?

Return

Y

N

N

Y

N

Y

3.4 Interrupt Service Routine
On entry the Status Register is preserved to avoid corrupting any work the main
program was doing. In this application it may be left out for optimization if you wish.
The flowchart is shown in Figure 3-4 and Figure 3-5.

The key row is first detected by testing each row input in turn looking for “0”. A base
number 0, 4, 8, or 12 is then assigned to the variable “key”. The ports are then
reinitialized with Port B I/O swapped over so that the key rows are tested.

A short time delay “settle” is used to allow the pins time to discharge. This takes the
form of a conventional time waste loop using a FOR loop arrangement.

The key column is then detected and a number assigned in a temporary variable
“temp” of 0, 1, 2, or 3. The final keypress is then computed by adding “key” and
“temp”, placing the result in “key” ready for use by the “Flash” function. This method is
easier to code than the conventional single bit scan in this application.

6 AVR240
1232D-AVR-06/06

The Port B configuration is the swapped back prior to restoring the Status Register.
This saves using the settling delay again.

At the end, the external interrupt is disabled. This is done to avoid the interrupt routine
being triggered again immediately upon exit.

3.5 Short Time Delay Subroutine
This short delay is required when changing the Port B I/O configuration to allow time
for the pin values to settle. The routine uses the Global Scratch Register “temp” as a
single loop counter for the FOR loop, set at maximum 255 passes. This provides a
delay of 0.192 ms at 4 MHz. This value could be shortened by experimentation if time
is of the essence or the pins are set high prior to reconfiguration to speed things up.
This might remove the need for this delay completely.

 AVR240

 7

1232D-AVR-06/06

Figure 3-4. Flowchart for Interrupt Service Routine

Y

N

Y

N

Y

N

Y

N

Key=0

Key=4

Key=8

Key=12

Scan

Preserve Status
Register

Test Rows

Row
1?

Row
2?

Row
3?

Row
4?

Swap Port
I/O Nibbles

Settle
Delay

Test Columns

A

8 AVR240
1232D-AVR-06/06

Figure 3-5. Flowchart for Interrupt Service Routine Continued

Y

N

Y

N

Y

N

Y

N

Key=key+0

Key=key+1

Key=key+2

Key=key+3

A

Col
1?

Col
2?

Col
3?

Col
4?

Reset
Port B I/O

Restore Status
Register

Disable External
Interrupt

Return From
Interrupt

 AVR240

 9

1232D-AVR-06/06

3.6 Resources
Table 3-1. Main CPU and Memory Usage

Function Code Size Cycles Register Usage Interrupt Description

Main 24 words 19 R16 – Initialization

Flash 20 words - R16 – Example program

Scan 31 words 47 typical R16, R17, R21 INTO Scans 4x4 keypad

Delay 10 words 1,000,000 R18, R19, R20 – 0.25 second delay
used in example
program only

Settle 4 words 764 R16 – Pin settling time
delay used in scan

Total 87 words - R16, R17, R18,
R19, R20, R21

 –

Table 3-2. Peripheral Usage

Peripheral Description Interrupts

External Interrupt 0 (INT0) Key pressed wake up signal External Interrupt 0 (Low
Level triggered)

16 bytes EEPROM Key to value mapping –

8 I/O pins 4 x 4 keypad connections –

2 I/O pins Flashing LEDs for example
only

 –

10 AVR240
1232D-AVR-06/06

;**** A P P L I C A T I O N N O T E A V R 2 4 0 **********************

;*

;* Title: 4x4 keypad, wake-up on keypress

;* Version: 1.2

;* Last Updated: 2004.11.11

;* Target: All AVR Devices

;*

;* Support E-mail: avr@atmel.com

;*

;* DESCRIPTION

;* This Application note scans a 4 x 4 keypad and uses sleep mode

;* causing the AVR to wake up on keypress. The design uses a minimum of

;* external components. Included is a test program that wakes up the AVR

;* and performs a scan when a key is pressed and flashes one of two LEDs

;* the number of the key pressed. The external interrupt line is used for

;* wake-up. The example runs on the AT90S1200 but can be any AVR with

;* suitable changes in vectors, EEPROM and stack pointer. The timing

;* assumes a 4 MHz clock. A look up table is used in EEPROM to enable the

;* same structure to be used with more advanced programs e.g ASCII output

;* to displays.

;***

;***** Register used by all programs

;******Global variable used by all routines

.def temp =r16 ;general scratch space

;Port B pins

.equ ROW1 =3 ;keypad input rows

.equ ROW2 =2

.equ ROW3 =1

.equ ROW4 =0

.equ COL1 =7 ;keypad output columns

.equ COL2 =6

.equ COL3 =5

.equ COL4 =4

;Port D pins

.equ GREEN=0 ;green LED

.equ RED =1 ;red LED

.equ INTR =2 ;interrupt input

.include "1200def.inc"

 AVR240

 11

1232D-AVR-06/06

;***** Registers used by interrupt service routine

.def key =r17 ;key pointer for EEPROM

.def status =r21 ;preserve sreg here

;***** Registers used by delay subroutine

;***** as local variables

.def fine =r18 ;loop delay counters

.def medium =r19

.def coarse =r20

;*****Look up table for key conversion*****************************

.eseg ;EEPROM segment

.org 0

 .db 1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12

;****Source code***

.cseg ;CODE segment

.org 0

 rjmp reset ;Reset handler

 rjmp scan ;interrupt service routine

 reti ;unused timer interrupt

 reti ;unused analogue interrupt

;*** Reset handler ***

reset:

 ldi temp,0xFB ;initialise port D as O/I

 out DDRD,temp ;all OUT except PD2 ext.int.

 ldi temp,0x30 ;turn on sleep mode and power

 out MCUCR,temp ;down plus interrupt on low level.

 ldi temp,0x40 ;enable external interrupts

 out GIMSK,temp

 sbi ACSR,ACD ;shut down comparator to save power

main: cli ;disable global interrupts

 ldi temp,0xF0 ;initialise port B as I/O

 out DDRB,temp ; 4 OUT 4 IN

 ldi temp,0x0F ;key columns all low and

 out PORTB,temp ;active pull ups on rows enabled

 ldi temp,0x07 ;enable pull up on PD2 and

 out PORTD,temp ;turn off LEDs

 sei ;enable global interrupts ready

 sleep ;fall asleep

 rcall flash ;flash LEDs for example usage

 ldi temp,0x40

12 AVR240
1232D-AVR-06/06

 out GIMSK,temp ;enable external interrupt

 rjmp main ;go back to sleep after keyscan

;****Interrupt service routine***************************************

scan:

 in status,SREG ;preserve status register

 sbis PINB,ROW1 ;find row of keypress

 ldi key,0 ;and set ROW pointer

 sbis PINB,ROW2

 ldi key,4

 sbis PINB,ROW3

 ldi key,8

 sbis PINB,ROW4

 ldi key,12

 ldi temp,0x0F ;change port B I/O to

 out DDRB,temp ;find column press

 ldi temp,0xF0 ;enable pull ups and

 out PORTB,temp ;write 0s to rows

 rcall settle ;allow time for port to settle

 sbis PINB,COL1 ;find column of keypress

 ldi temp,0 ;and set COL pointer

 sbis PINB,COL2

 ldi temp,1

 sbis PINB,COL3

 ldi temp,2

 sbis PINB,COL4

 ldi temp,3

 add key,temp ;merge ROW and COL for pointer

 ldi temp,0xF0 ;reinitialise port B as I/O

 out DDRB,temp ; 4 OUT 4 IN

 ldi temp,0x0F ;key columns all low and

 out PORTB,temp ;active pull ups on rows enabled

 out SREG,status ;restore status register

 ldi temp,0x00

 out GIMSK,temp ;disable external interrupt

 ;have to do this, because we're

 ;using a level-triggered interrupt

 reti ;go back to main for example program

;***Example test program to flash LEDs using key press data***********

flash: out EEAR,key ;address EEPROM

 sbi EECR,EERE ;strobe EEPROM

 in temp,EEDR ;set number of flashes

 AVR240

 13

1232D-AVR-06/06

 tst temp ;is it zero?

 breq zero ;do RED LED

green_flash:

 cbi PORTD,GREEN;flash green LED 'temp' times

 rcall delay

 sbi PORTD,GREEN

 rcall delay

 dec temp

 brne green_flash

exit: ret

zero: ldi temp,10

flash_again: cbi PORTD,RED ;flash red LED ten times

 rcall delay

 sbi PORTD,RED

 rcall delay

 dec temp

 brne flash_again

 rjmp exit

;****Time Delay Subroutine for LED flash*********************************

delay:

 ldi coarse,5 ;triple nested FOR loop

cagain: ldi medium,255 ;giving about 1/4 second

magain: ldi fine,255 ;delay on 4 MHz clock

fagain: dec fine

 brne fagain

 dec medium

 brne magain

 dec coarse

 brne cagain

 ret

;***Settling time delay for port to stabilise****************************

settle:

 ldi temp,255

tagain: dec temp

 brne tagain

 ret

1232D-AVR-06/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2006 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and others, are the
registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Theory of Operation
	3 Implementation
	3.1 Reset Routine
	3.2 Flash Test Function
	3.3 Long Time Delay Subroutine (delay)
	3.4 Interrupt Service Routine
	3.5 Short Time Delay Subroutine
	3.6 Resources

