
 

  
 

 
 

AVR240: 4 x 4 Keypad - Wake-up on Keypress 

Features 
• 16 Key Pushbutton Pad in 4 x 4 Matrix 
• Very Low Power Consumption 
• AVR in Sleep Mode and Wakes Up on Keypress 
• Minimum External Components 
• ESD Protection Included if Necessary 
• Efficient Code 
• Complete Program Included for AT90S1200 
• Suitable for Any AVR MCU 

1 Introduction 
This application note describes a simple interface to a 4 x 4 keypad designed for 
low power battery operation. The AVR spends most of its time in Power-down 
mode, waking up when a key is pressed to instigate a simple test program that 
flashes one of two LEDs according to the key pressed. If “0” (zero) is pressed the 
RED LED flashes 10 times. All other keys flash the GREEN LED the number of 
times marked on the key (e.g., if “C” is pressed the GREEN LED flashes twelve 
times). 

Figure 1-1. Keypad and LED Connections 
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2 Theory of Operation  
The keypad columns are connected to the high nibble of port B. The keypad rows are 
connected to the low nibble. Resistors R1 to R8 (this is shown in Figure 1-1) serve to 
limit input current to a safe level in the event of ESD from the keypad. They can be 
omitted in most applications. 

In the steady state condition the high nibble is configured as outputs and are in the 
low state. The low nibble is configured as inputs and has the internal pull-ups 
enabled, removing the need for external pull-up resistors. After initialization the AVR 
is put to sleep.  When a key is pressed one of the diodes D1 - D4 pull down the 
external interrupt line PD2, which also has internal pull-ups enabled. This wakes up 
the AVR and causes it to run the interrupt service routine, which scans the keypad 
and calculates which key is pressed.   

It then returns to the main program and drives the LEDs according to the key 
pressed, putting the AVR back to sleep when it has finished.   

Resistors R9 and R10 are the traditional current limit resistors for the LEDs and can 
be any suitable value for the supply rail. This application note was tested using 330Ω 
on a 5V supply. The LEDs are driven in current sink mode (“0” = ON) and provide 
about 10 mA of forward current with the values specified. 

3 Implementation 
The firmware consists of three sections, the reset routine, the test program and the 
interrupt service routine sets up the ports, sleep mode, power saving and the 
interrupts. The test program flashes the LED on wake-up and the interrupt service 
routine responds to the keypress. 

3.1 Reset Routine  
The flowchart for the Reset Routine is shown in Figure 3-1. On reset the ports are 
initialized with their starting directions. These are fixed on port D, with all bits as 
outputs except PD2, which must be an input for the external interrupt. This bit has its 
pull-up enabled by setting bit 2 of Port D. The unused bits are configured as outputs 
to avoid noise pickup or excessive power consumption, which could otherwise occur if 
left floating. Port B starts with the high nibble as outputs sending out zeroes, and the 
low nibble set as inputs with the pull-ups enabled. 

Since we are using a minimum of external components, we must ensure that internal 
pull-ups are turned on for all those bits set up as inputs. This is achieved by 
configuring the Data Direction Register with “1”s for outputs, “0”s for inputs, and then 
writing “1”s to the input bits in the PORT Register. The inputs can then be read or 
tested from the PIN register. This program looks for “0”s and uses the SBIS 
instruction to skip over the keypress action if not a “0”. 

Power-down mode is selected by setting the SE and SM bits of the MCUCR. At the 
same time the external interrupt configured by writing “0”s into the ISC00/01 bits. This 
will set the external interrupt INT0 to trigger on a LOW level. When using “Power-
down” mode the AVR can only be woken up by LOW LEVEL trigger. 

Turning off the Analog Comparator reduces power consumption further. This is done 
by setting the ACD bit in the ACSR Register. This must be done with care; otherwise 
an unwanted interrupt can be generated. This program disables global interrupts until 
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the program is ready to be interrupted, solving this problem. If you wish to use the 
Analog Comparator this code can be removed, but you will need to change ports for 
the keypad since port B is used for this.  

The AVR then enters sleep mode. This is placed in the main loop to ensure that it 
goes back to sleep after it has finished its interrupt function and carried out the 
“Flash” test routine. When the AVR wakes up after a keypress, the “Flash” routine is 
called after the interrupt routine is finished. When the “Flash” routine is done, the 
external interrupt is enabled, so that another interrupt can occur. 

Figure 3-1. Flowchart for Reset and Main Routine 
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3.2 Flash Test Function 
The flow chart is shown in Figure 3-2. 

This function can be replaced by your own application to be executed out of “Power-
down” mode. It serves to demonstrate that the key scan routine is working correctly.  
The value of the key pressed is taken from the “key” variable and used as a pointer to 
access a 16-byte look-up table stored in EEPROM. The look-up table contains the 
number of the key pressed. 

The table has been used for two reasons, it makes the program much shorter, and it 
allows easy extension to provide full ASCII coding for the key press. For the larger 
AVRs it would make sense to store this table in program memory and access it using 
the LPM instruction.  
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The key value derived from the EEPROM is then used as a countdown variable inside 
an ON/OFF loop for the LED outputs. If the value is “0” the RED LED is flashed 10 
times. If the value is non-zero the GREEN LED is flashed that number of times. For 
example, three times for the “3” key, fifteen times for the “F” key etc. The AVR then 
repeats the loop and falls asleep. 

The LED flashing routine is easily modified for your own application, replacing the 
“Flash” function by your routine. The main consideration is the timing. Because the 
test program spends some time flashing the LEDs, no extra debounce arrangements 
are necessary. If your code is very fast you might need to put a short delay in to allow 
time for contact bounce. Wake-up from sleep mode typically takes 16 ms or so, 
although this is being reduced on the newer devices. This also provides some 
debouncing. 

Figure 3-2. Flowchart for “Flash” Function 
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3.3 Long Time Delay Subroutine (delay) 
To see the LEDs flash requires a delay of at least 0.25 second. This is achieved using 
a conventional FOR loop to keep the Timer/Counter free for other work. To achieve 
over 0.25 seconds delay with a 4 MHz clock requires three nested loops. Three local 
variables contained in registers “fine”, “medium” and “coarse” are used for the loop. 
The fine and medium counters run the maximum of 255 times with the coarse 
Counter set to 5, giving about 0.25 second delay. The flowchart is shown in Figure 3-
3. 
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Figure 3-3. Flowchart for Delay Subroutine 
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3.4 Interrupt Service Routine 
On entry the Status Register is preserved to avoid corrupting any work the main 
program was doing. In this application it may be left out for optimization if you wish. 
The flowchart is shown in Figure 3-4 and Figure 3-5. 

The key row is first detected by testing each row input in turn looking for “0”. A base 
number 0, 4, 8, or 12 is then assigned to the variable “key”. The ports are then 
reinitialized with Port B I/O swapped over so that the key rows are tested. 

A short time delay “settle” is used to allow the pins time to discharge. This takes the 
form of a conventional time waste loop using a FOR loop arrangement. 

The key column is then detected and a number assigned in a temporary variable 
“temp” of 0, 1, 2, or 3. The final keypress is then computed by adding “key” and 
“temp”, placing the result in “key” ready for use by the “Flash” function. This method is 
easier to code than the conventional single bit scan in this application. 
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The Port B configuration is the swapped back prior to restoring the Status Register. 
This saves using the settling delay again. 

At the end, the external interrupt is disabled. This is done to avoid the interrupt routine 
being triggered again immediately upon exit. 

3.5 Short Time Delay Subroutine 
This short delay is required when changing the Port B I/O configuration to allow time 
for the pin values to settle. The routine uses the Global Scratch Register “temp” as a 
single loop counter for the FOR loop, set at maximum 255 passes. This provides a 
delay of 0.192 ms at 4 MHz. This value could be shortened by experimentation if time 
is of the essence or the pins are set high prior to reconfiguration to speed things up. 
This might remove the need for this delay completely. 
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Figure 3-4. Flowchart for Interrupt Service Routine 
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Figure 3-5. Flowchart for Interrupt Service Routine Continued 
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3.6 Resources 
Table 3-1. Main CPU and Memory Usage 

Function Code Size Cycles Register Usage Interrupt Description 

Main 24 words 19 R16  – Initialization 

Flash 20 words - R16  – Example program 

Scan 31 words 47 typical R16, R17, R21 INTO Scans 4x4 keypad 

Delay 10 words 1,000,000 R18, R19, R20  – 0.25 second delay 
used in example 
program only 

Settle 4 words 764 R16  – Pin settling time 
delay used in scan 

Total 87 words - R16, R17, R18, 
R19, R20, R21 

 –  

 

Table 3-2. Peripheral Usage 

Peripheral Description Interrupts 

External Interrupt 0 (INT0) Key pressed wake up signal External Interrupt 0 (Low 
Level triggered) 

16 bytes EEPROM Key to value mapping  – 

8 I/O pins 4 x 4 keypad connections  – 

2 I/O pins Flashing LEDs for example 
only 

 – 
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;**** A P P L I C A T I O N   N O T E   A V R 2 4 0 ********************** 

;*  

;* Title:  4x4 keypad, wake-up on keypress 

;* Version:  1.2 

;* Last Updated: 2004.11.11 

;* Target:  All AVR Devices  

;* 

;* Support E-mail: avr@atmel.com 

;* 

;* DESCRIPTION 

;* This Application note scans a 4 x 4 keypad and uses sleep mode 

;* causing the AVR to wake up on keypress.  The design uses a minimum of 

;* external components. Included is a test program that wakes up the AVR 

;* and performs a scan when a key is pressed and flashes one of two LEDs  

;* the number of the key pressed.  The external interrupt line is used for 

;* wake-up.  The example runs on the AT90S1200 but can be any AVR with  

;* suitable changes in vectors, EEPROM and stack pointer. The timing  

;* assumes a 4 MHz clock. A look up table is used in EEPROM to enable the  

;* same structure to be used with more advanced programs e.g ASCII output 

;* to displays. 

;************************************************************************* 

 

;***** Register used by all programs 

;******Global variable used by all routines 

 

.def temp =r16 ;general scratch space 

 

;Port B pins 

 

.equ ROW1 =3 ;keypad input rows 

.equ ROW2 =2 

.equ ROW3 =1 

.equ ROW4 =0 

.equ COL1 =7 ;keypad output columns 

.equ COL2 =6 

.equ COL3 =5  

.equ COL4 =4  

 

;Port D pins 

 

.equ GREEN=0 ;green LED 

.equ RED =1 ;red LED 

.equ INTR =2 ;interrupt input 

 

.include "1200def.inc" 
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;***** Registers used by interrupt service routine 

 

.def key =r17 ;key pointer for EEPROM 

.def status =r21 ;preserve sreg here 

 

;***** Registers used by delay subroutine 

;***** as local variables 

 

.def fine =r18 ;loop delay counters 

.def medium =r19  

.def  coarse =r20 

 

;*****Look up table for key conversion***************************** 

.eseg     ;EEPROM segment 

.org 0 

 

 .db 1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12 

;****Source code*************************************************** 

.cseg     ;CODE segment 

.org 0 

  rjmp reset ;Reset handler 

  rjmp scan  ;interrupt service routine  

  reti   ;unused timer interrupt 

  reti   ;unused analogue interrupt 

 

;*** Reset handler ************************************************* 

reset:   

   

  ldi temp,0xFB  ;initialise port D as O/I 

  out DDRD,temp  ;all OUT except PD2 ext.int. 

  ldi temp,0x30  ;turn on sleep mode and power 

  out MCUCR,temp  ;down plus interrupt on low level. 

  ldi temp,0x40  ;enable external interrupts 

  out GIMSK,temp 

  sbi ACSR,ACD  ;shut down comparator to save power 

main:  cli   ;disable global interrupts  

  ldi temp,0xF0  ;initialise port B as I/O 

  out DDRB,temp  ; 4 OUT  4 IN 

  ldi temp,0x0F  ;key columns all low and 

  out PORTB,temp  ;active pull ups on rows enabled 

  ldi temp,0x07  ;enable pull up on PD2 and 

  out PORTD,temp  ;turn off LEDs 

  sei   ;enable global interrupts ready 

  sleep  ;fall asleep 

  rcall flash  ;flash LEDs for example usage 

  ldi temp,0x40 
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  out GIMSK,temp  ;enable external interrupt 

  rjmp main  ;go back to sleep after keyscan 

 

;****Interrupt service routine*************************************** 

scan:   

  in status,SREG  ;preserve status register 

  sbis PINB,ROW1  ;find row of keypress 

  ldi key,0  ;and set ROW pointer 

  sbis PINB,ROW2 

  ldi key,4 

  sbis PINB,ROW3 

  ldi key,8 

  sbis PINB,ROW4 

  ldi key,12 

  ldi temp,0x0F  ;change port B I/O to 

  out DDRB,temp  ;find column press 

  ldi temp,0xF0  ;enable pull ups and 

  out PORTB,temp  ;write 0s to rows 

  rcall settle  ;allow time for port to settle 

  sbis PINB,COL1  ;find column of keypress 

  ldi temp,0 ;and set COL pointer 

  sbis PINB,COL2 

  ldi temp,1 

  sbis PINB,COL3 

  ldi temp,2 

  sbis PINB,COL4 

  ldi temp,3 

  add key,temp  ;merge ROW and COL for pointer 

  ldi temp,0xF0  ;reinitialise port B as I/O 

  out DDRB,temp  ; 4 OUT  4 IN 

  ldi temp,0x0F  ;key columns all low and 

  out PORTB,temp  ;active pull ups on rows enabled 

  out SREG,status ;restore status register 

 

  ldi temp,0x00 

  out GIMSK,temp  ;disable external interrupt 

     ;have to do this, because we're 

     ;using a level-triggered interrupt 

 

  reti   ;go back to main for example program 

 

;***Example test program to flash LEDs using key press data*********** 

 

flash:  out EEAR,key  ;address EEPROM 

  sbi EECR,EERE  ;strobe EEPROM 

  in temp,EEDR  ;set number of flashes 
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  tst temp  ;is it zero? 

  breq zero  ;do RED LED 

green_flash: 

   cbi PORTD,GREEN;flash green LED 'temp' times 

   rcall delay 

   sbi PORTD,GREEN 

   rcall delay 

   dec temp 

   brne green_flash 

exit:  ret 

zero:  ldi temp,10 

flash_again:  cbi PORTD,RED ;flash red LED ten times 

   rcall delay 

   sbi PORTD,RED 

   rcall delay 

   dec temp 

   brne flash_again 

  rjmp exit 

 

   

;****Time Delay Subroutine for LED flash********************************* 

delay: 

 ldi coarse,5    ;triple nested FOR loop 

cagain:  ldi medium,255  ;giving about 1/4 second 

magain:   ldi fine,255  ;delay on 4 MHz clock 

fagain:   dec fine 

   brne fagain 

  dec medium 

  brne magain 

 dec coarse 

 brne cagain 

 ret 

 

;***Settling time delay for port to stabilise****************************
  

settle: 

 ldi temp,255 

tagain:  dec temp 

  brne tagain 

 ret 
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