
This material exempt per Department of Commerce license exception TSU

FPGA Design Techniques

FPGA Design Techniques 2

Objectives

• Increase design performance by duplicating flip-flops
• Increase design performance by adding pipeline stages
• Increase board performance by using I/O flip-flops
• Build reliable synchronization circuits

After completing this module, you will be able to:

FPGA Design Techniques 3

Outline

• Duplicating Flip-Flops
• Pipelining
• I/O Flip-Flops
• Synchronization Circuits
• Summary

D Qfn1

D Qfn1

D Qfn1

Duplicating Flip-Flops
• High-fanout nets can be slow

and hard to route
• Duplicating flip-flops can fix both

problems
– Reduced fanout shortens net

delays
– Each flip-flop can fanout to a

different physical region of the chip
to reduce routing congestion

• Design trade-offs
– Gain routability and performance
– Increase design area
– Increase fanout of other nets

Duplicating Flip-Flops Example

• The source flip-flop drives two
register banks that are
constrained to different
regions of the chip

• The source flip-flop and pad
are not constrained

• PERIOD = 5 ns timing
constraint

• Implemented with default
options

• Longest path = 6.806 ns
– Fails to meet timing constraint

• The source flip-flop has
been duplicated

• Each flip-flop drives a
region of the chip
– Each flip-flop can be placed

closer to the register that it is
driving

– Shorter routing delays
• Longest path = 4.666 ns

– Meets timing constraint

Duplicating Flip-Flops Example

FPGA Design Techniques 7

Tips on Duplicating Flip-Flops

• Name duplicated flip-flops _a, _b; NOT _1, _2
– Numbered flip-flops are mapped into the same slice by default
– Duplicated flip-flops should be separated

• Especially if the loads are spread across the chip
• Explicitly create duplicate flip-flops in your HDL code

– Most synthesis tools have automatic fanout-control features
• However, they do not always pick the best division of loads
• Also, duplicated flip-flops will be named _1, _2

– Many synthesis tools will optimize-out duplicated flip-flops
• Set your synthesis tool to keep redundant logic

• Do not duplicate flip-flops that are sourced by asynchronous signals
– Synchronize the signal first
– Feed the synchronized signal to multiple flip-flops

FPGA Design Techniques 8

Outline

• Duplicating Flip-Flops
• Pipelining
• I/O Flip-Flops
• Synchronization Circuits
• Summary

FPGA Design Techniques 9

Pipelining Concept

D QfMAX =
n MHz

fMAX ≈
2n MHz

two logic levels

one
level

one
level

D Q

D Q D Q D Q

Pipelining Considerations
• Are enough flip-flops available?

– Refer to the MAP Report
– In general, you will not run out of flip-flops

• Are there multiple logic levels between flip-flops?
– If there is only one logic level between flip-flops, pipelining will not improve

performance
– Refer to the Post-Map Static Timing Report or Post-Place & Route Static

Timing Report
• Can the system tolerate latency?

Latency in Pipelines

• Each pipeline stage
adds one clock cycle
of delay before the
first output will be
available
– Also called “filling the

pipeline”
• After the pipeline is

filled, a new output is
available every clock
cycle

• Original circuit
– Two logic levels between SOURCE_FFS and DEST_FF
– fMAX = ~233 MHz

Pipelining Example

Q

DEST_FF
LUT

D Q

DLUT
LUT

LUT

SOURCE_FFS

Pipelining Example
• Pipelined circuit

– One logic level between each set of flip-flops
– fMAX = ~385 MHz

LUT

D Q

D QLUT

DEST_FF

LUT

LUT

SOURCE_FFS

D Q

D Q

D Q

PIPE_FFS

Review Questions
• Given the original circuit, what is wrong with the pipelined circuit?
• How can the problem be corrected?

• What is wrong with the
pipelined circuit?
– Latency mismatch
– Older data is mixed with

newer data
– Circuit output is incorrect

• How can the problem be
corrected?
– Add a flip-flop on SELECT
– All data inputs now

experience the same
amount of latency

Answers

FPGA Design Techniques 16

Outline

• Duplicating Flip-Flops
• Pipelining
• I/O Flip-Flops
• Synchronization Circuits
• Summary

I/O Flip-Flop Overview
• Each I/O block in the Virtex™-II Pro device contains six flip-flops

– IN FF on the input, OUT FF on the output, EN FF on the 3-state enable*
– Single data rate or double data rate support

• I/O flip-flops provide guaranteed setup, hold, and clock-to-out
times when the clock signal comes from a BUFG

FPGA Design Techniques 18

Accessing I/O Flip-Flops
• During synthesis

– Timing-driven synthesis can force flip-flops into Input/Output Blocks (IOBs)
– Some tools support attributes or synthesis directives to mark flip-flops for

placement in an IOB
• Xilinx Constraint Editor

– Select the Misc tab and specify registers that should be placed into IOBs
• You need to know the instance name for each register

• During the MAP phase of implementation
– In the Map Properties dialog box, the Pack I/O Registers/Latches into IOBs

option is selected by default
– Timing-driven packing will also move registers into IOBs for critical paths

• Check the MAP Report to confirm that IOB flip-flops have been
used
– IOB Properties section

FPGA Design Techniques 19

Outline

• Duplicating Flip-Flops
• Pipelining
• I/O Flip-Flops
• Synchronization Circuits
• Summary

Synchronization Circuits
• What is a synchronization circuit?

– Captures an asynchronous input signal and outputs it on a clock edge
• Why do you need synchronization circuits?

– To prevent setup and hold time violations
– To ensure a more reliable design

• When do you need synchronization circuits?
– Signals cross between unrelated clock domains

• Between related clock domains, relative PERIOD constraints are sufficient
– Chip inputs that are asynchronous

• Violations occur when
the flip-flop input
changes too close to a
clock edge

• Three possible results:
– Flip-flop clocks in an old

data value
– Flip-flop clocks in a new

data value
– Flip-flop output becomes

metastable

Setup and Hold
Time Violations

Metastability

• Flip-flop output enters a transitory state
– Neither a valid 0 nor a valid 1

• Can be interpreted as 0 by some loads and as 1 by others
– Remains in this state for an unpredictable length of time before settling to a

valid 0 or 1
• Due to a statistical nature, the occurrence of metastable events

can only be reduced, not eliminated
• Mean Time Between Failure (MTBF) is exponentially related to the

length of time the flip-flop is given to recover
– A few extra ns of recovery time can dramatically reduce the chances of a

metastable event
• The circuits shown in this section allow a full clock cycle for

metastable recovery

FPGA Design Techniques 23

Synchronization Circuit 1

Asynchronous input

CLK

Synchronized signal
D Q D Q

Guards against metastability

FF2FF1

• Use when input pulses will always be at least one clock period
wide

• The “extra” flip-flops guard against metastability

FPGA Design Techniques 24

D

Synchronization Circuit 2
• Use when input pulses may be less than one clock period wide

– FF1 captures short pulses

D Q

CLR
Asynchronous input

CLK

Synchronized signal
D Q

Guards against metastabilityVCC

FF3FF2FF1

Q

FPGA Design Techniques 25

Capturing a Bus
• Leading edge detector

– Input pulses must be at least one CLK period wide

Asynchronous
input CLK

Synchronized
bus inputsCLK

One-shot enable

D

FF2FF1

D Q

n bit
bus

D Q

CE

Sync_Reg

Q D Q

D Q

D Q

FPGA Design Techniques 26

Capturing a Bus

VCC

Q

Asynchronous
Input CLK

CLK

One-shot enable

D Q

FF3
D Q

FF2
D

CLR

FF1

n bit
bus

CE
Synchronized
bus inputs

Sync_RegD Q

D Q

• Leading edge detector
– Input pulses may be less than one CLK period wide

FPGA Design Techniques 27

Synchronization Circuit 3
• Use a FIFO to cross domains

Status Flag
Logic

RAMB16
COREWRCOUNT RDCOUNT

WRCLK
WREN

RDCLK
RDEN

RESET

Read
Pointer

FULL
EMPTY
AFULL
AEMPTY
RDERR
W

RERR

waddr

oe

mem_ren

mem_wen

Write
Pointer

raddr

DI DO
FIFO16FIFO16

FPGA Design Techniques 28

Outline

• Duplicating Flip-Flops
• Pipelining
• I/O Flip-Flops
• Synchronization Circuits
• Summary

FPGA Design Techniques 29

Review Questions
• High fanout is one reason to duplicate a flip-flop. What is another

reason?

• Provide an example of when you do not need to resynchronize a
signal that crosses between clock domains

• What is the purpose of the “extra” flip-flop in the synchronization
circuits shown in this module?

FPGA Design Techniques 30

Answers
• High fanout is one reason to duplicate a flip-flop. What is another

reason?
– Loads are divided among multiple locations on the chip

• Provide an example of when you do not need to resynchronize a
signal that crosses between clock domains
– Well-defined phase relationship between the clocks
– Example: Clocks are the same frequency, 180 degrees out of phase
– Use related PERIOD constraints to ensure that datapaths will meet timing

• What is the purpose of the “extra” flip-flop in the synchronization
circuits shown in this module?
– To allow the first flip-flop time to recover from metastability

FPGA Design Techniques 31

Summary
• You can increase circuit performance by:

– Duplicating flip-flops
– Adding pipeline stages
– Using I/O flip-flops

• Some trade-offs
– Duplicating flip-flops increases circuit area
– Pipelining introduces latency and increases circuit area

• Synchronization circuits increase reliability

FPGA Design Techniques 32

Where Can I Learn More?
• User Guides: www.xilinx.com → Documentation → User

Guides
– Switching Characteristics
– Detailed Functional Description → Input/Output Blocks (IOBs)

• Application Notes: www.xilinx.com → Documentation →
Application Notes
– XAPP094: Metastability Recovery
– XAPP225: Data-to-Clock Phase Alignment

	FPGA Design Techniques
	Objectives
	Outline
	Duplicating Flip-Flops
	Duplicating Flip-Flops Example
	Duplicating Flip-Flops Example
	Tips on Duplicating Flip-Flops
	Outline
	Pipelining Concept
	Pipelining Considerations
	Latency in Pipelines
	Pipelining Example
	Pipelining Example
	Review Questions
	Answers
	Outline
	I/O Flip-Flop Overview
	Accessing I/O Flip-Flops
	Outline
	Synchronization Circuits
	Setup and Hold Time Violations
	Metastability
	Synchronization Circuit 2
	Capturing a Bus
	Synchronization Circuit 3
	Outline
	Review Questions
	Answers
	Summary
	Where Can I Learn More?

