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Abstract
The real-time digital implementation of the Kalman filter requires a very fast signal processor
specialised and optimised to perform complex mathematical calculations and manipulate a large
amount of data. In fact, the algorithm is computationally intensive, and all of the steps involved require
vector and/or matrix operation.
In this paper the analysis of an actual fixed point implementation of the Kalman filter is discussed
based on a last generation µC DSP (TMS320F240). The considered case study refers to rotor speed and
position estimation in AC drives when using low resolution position transducers. It is shown that the
adopted processor is suitable for an efficient and relatively simple implementation of the filter allowing
to increase the resolution in speed calculation with respect to the classical differentiation solution.

Introduction
As known, the Kalman filter is an optimal recursive algorithm which provides the minimum variance
state estimation for a time-varying linear system. It is able to tolerate system modelling and
measurement errors, which are considered as noise processes in the state estimation. It processes all
available measurements regardless of their precision, to provide a quick and accurate estimate of the
variables of interest, also achieving a fast convergence. Its extension to non-linear systems, the
Extended Kalman Filter (EKF), does not assure the minimum variance estimate and no convergence
proof can be given. Nevertheless, the approach behaves well in most situations, as demonstrated by
numerous applications (e.g. [1][2]).
For a straightforward application of this algorithm, the non-linear discrete-time state equations of the
system are written in the following form:
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where xk is the system state vector, yk is the system output, uk is the system input, wk and vk are zero-
mean white Gaussian additive noises with covariance Q and R, respectively (independent from the
system state xk). The vector wk takes into account the system disturbances and model inaccuracies,
while vk represents the measurement noise. A block diagram of the EKF for the system (1) is given in
Fig. 1 together with the list of the steps of a recursive implementation [3]. The filter provides a first
estimate of x ( x~ , prediction) based on the model equations supposing that the model noise is zero.

Then the measurements and noise models are used to generate the sub-optimal estimate x̂ . P
~

 and P̂
are, respectively, the prediction and the estimation error covariance matrices.
In the following sections a brief review of the basic applications of the EKF to the estimation of the
state variables of electrical drives is reported.

I)

),~(~),ˆ(~ uxhy      uxf=  x =

xxx

xf
F

ˆ

)(

=∂
∂=

xxx

xh
H

ˆ

)(

=∂
∂=

II) QFPFP += Tˆ~

III) [ ] 1TT ~~ −
+= RHPHHPK

IV) )~(~ˆ yyKx=  x −+

V) PKHPP
~~ˆ −=

y

x̂

u

P̂
P
~

+

Q R

P̂

x~ y~

-(I) (I)

(II) (III)

K

(IV)

(V)
P
~

HF

Fig. 1. EKF recursive computational scheme.
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Sensorless Field Oriented Control (FOC) of Induction Motors (IM)
Sensorless FOC of IM requires rotor flux and speed information, which are supposed to be provided by
the EKF. The filter is usually arranged in the two-phase fixed reference frame and it includes the four
electrical (stator and rotor) equations and an additional equation for speed estimation. Stator voltage
(vs) is the filter input and stator current (is) is the output (2) (Fig. 2).

[ ]Trrss ii ωϕϕ βαβα=x [ ]Tss ii βα=y [ ]Tss vv βα=u (2)

An actual implementation of the 5th order filter on the TMS320F240 takes about 150 µs. The system
performance are quite good both during transient and low speed operations, as it is shown in Fig. 3 [1].

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motors (PMSM)
In the case of PMSM, FOC requires the knowledge of the rotor magnet position. In sensorless schemes
this information is estimated together with the speed one in order to close the speed control loop. The
filter is usually arranged in the two-phase fixed reference frame and it includes the two stator electrical
equations and the mechanical ones (3) (Fig. 4).

[ ]Tss ii θωβα=x [ ]Tss ii βα=y [ ]Tss vv βα=u (3)

As for the IM, stator voltage is assumed as the system input while stator current as output. An actual
implementation of the 4th order filter on the TMS320F240 takes about 120 µs. The system performance
is resumed in Fig. 5 [2].

A case study: speed estimation with low resolution position transducers
Position and rotor speed are required for high performance servo drive systems. Almost all of those
systems are provided with optical encoders, but requirements for cost reduction suggest the use of low
resolution transducers. This causes a reduction in the system performance, especially at low speed.
Several methods have been developed in order to obtain high precision position and speed detection at
low speed or when low resolution transducers are employed. In this paper a Kalman filter based
solution for this problem is investigated [4]. The main concern is about the best choice of the filter
parameters in order to obtain good dynamic and steady-state performance when a fixed point arithmetic
is considered for the actual implementation.
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Fig. 2. EKF estimation for Induction Motor.
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Fig. 5. PMSM sensorless operation: measured and estimated position.
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Statement of the problem
Speed information is usually provide by the derivative of the encoder position, that is the counted
pulses divided by the elapsed time. As a result, one has a quantization error superimposed to the
effective speed. If Np is the number of
pulses per revolution, the quantization
error ∆ω is:

]rpm[
TN

60

scp
=∆ω . (4)

The last equation shows that the
quantization error is independent on
the operating speed and it depends only
on the number of encoder pulses and
the speed control period (Tsc). In Fig. 6
this situation is resumed in graphical
format for some practical cases. In
middle-high speed region the
quantization error causes a percentage
error which in many cases is
acceptable, but in very low speed
region the amplitude of the
quantization error is the same as the effective speed and the percentage error becomes intolerable. A
way to reduce this error is to increase the speed control period, but this solution reduces the bandwidth
of the speed control loop. Furthermore, the increase of the number of encoder pulses means a higher
cost of the drive system.

Solution using EKF
In addition to the application as an observer, which has been resumed in the previous sections, the
Kalman filter can be used as a filter itself, provided that a proper state model is arranged for each
particular case. The non-linear state model which has been considered in the present paper is based on
the orthogonal components (sin-cos) representation of a rotating space vector, generated from the
encoder position, which is highly affected by the quantization noise (Fig. 7). The filter allows to
estimate both the components of the vector position (sin-cos) and the frequency (ω) with an accuracy
which is independent from the transducers resolution. Moreover one sample of the estimated
orthogonal components and the estimated frequency is available at each execution of the EKF.

This algorithm is suitable in each application where similar signals are available [5]. The non-linear
discrete time state model of the system is shown below, where the scaling factor ωb has been
introduced for the speed.

[ ]Tkkkk sencos ωθθ=x [ ]Tkkk sencos θθ=y [ ]Tk 00=u (5)
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Fig. 6. Speed quantization error.
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Fig. 7. Configuration for position filtering and speed estimation.
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Performance analysis
In order to analyse the performance of the considered EKF algorithm, simulation results assuming
floating point implementation have been carried out using a Simulink model. Then, the same
algorithm has been implemented using the TMS320F24x fixed point DSP. The results are presented
and compared in order to show the influence of the fixed point implementation with respect to the
‘ideal’ floating point simulation. Particularly, when
a fixed point processing architecture is considered,
different aspects of the actual implementation have
to be addressed. In fact the dynamic range in fixed
point arithmetic with a 16-bit word length is [-1;(1-
2-15)]. Therefore, to avoid the overflow and
underflow problems, all variables in the filter
equations must be scaled to values less than one.
The adopted choice of the scaling values influences
both the possibility to represent the coefficients of
the filter matrices and the performance of the filter
itself. In order to achieve a full comparison, these
constraints are included in the floating point
simulations.

Simulation results
Fig. 8 shows the steady state estimation error  with floating point implementation, as a function of the
speed scaling factor ωb and the modelling error covariance matrix parameter q (7). The figure refers
to low speed operation (ωref = 10 rpm) where the quantization error is more important. By comparison
of the Fig. 8 and Fig. 6, one can notice that the speed error is greatly reduced by the use of EKF
algorithm when certain values of q are
considered. Particularly, assuming q = 0 the
error is null independently on the speed scaling
factor (this result is presented in the subsequent
Fig. 9). Unfortunately, as far as the transient
response is concerned, high values of q should
be adopted, which means a large gain K in the
filter. Moreover, the choice of q = 0 causes the
element of the estimation error covariance
matrix to overcame the underflow limit, as
experimented in the fixed point 16-bit
implementation. This conditions is not reached
when q is set to the minimum positive value
achieved by the 1.15 format, i.e. 2-15. Fig. 9
shows the corresponding behaviour of the
estimated speed when two different solutions are adopted for the generation of the senθ-cosθ
functions, that is a look-up table with 256 elements and a 6th order Taylor’s series. It must be noted
the increment of precision obtained by using the Taylor’s series.

Implementation issues
In order to verify the effectiveness of the considered solution in the whole speed range a certain
hardware set-up has been adopted which makes uses of a digital function generator supplying the
quadrature encoder pulses interface (QEP) of the TMS320F240. This solutions allows to simulate and
to accurately define the frequency of the signals from an encoder which in a real system would be
mounted on the shaft of the motor.

Function
Generator PC host

TMS320F240

The algorithm under investigation has been written in assembly language with 16-bit fixed point
numerical representation. All the matrix calculations has been implemented by means of dedicated
macros. The execution time of the whole algorithm is about 75 µs (72 µs for the EKF and 3 µs for the
Taylor’s series). A host PC has been used to elaborate and display the results of the computation.
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Fig. 8. Steady state estimation error with:
Np = 480, Tsc = 150 µs, ωref = 10 rpm, r = 1.
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Fig. 9. Steady state estimation with:
ωb = 10 rad/s, Np = 480, Tsc = 150 µs, ωref = 10 rpm, r = 1.
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Experimental Results
Fig.10 and 11 show the comparison between floating point simulation and TMS320F240 fixed point
implementation results in the case of a reference speed of 8 rpm and a 12 pulses/revolution encoder.
The parameter q is set to the lower limit of the format (2-15), while the speed scaling value ωb is set to
1 rad/s, in order to reduce the steady-state error (see Fig. 8). The speed control period (Tsc) is
increased to 16 ms in order to achieve a better correspondence with the low number of
pulses/revolution available. It must be noted the good correspondence between  the simulation and
experimental results. Also, the difference between floating point simulation and fixed point
implementation (apart for the discussed limitation on the value of q) is negligible. The responses
show slow transient and small steady state error due to the assumed low value of q.

Finally, Fig. 12 and Fig. 13 show very low speed operation with different number of pulses for
revolution. One can notice the decrease of the steady-state error as the number of pulses for
revolution increases.

Conclusions
In this paper a method for speed and position estimation for low resolution position transducers is
presented, based on the Extended Kalman Filter. The influence of the scaling factor and the filter
parameters in the case of a fixed point implementation with the TMS320F24x is discussed.
Particularly, small values of the speed scaling factor reduce the speed error at steady-state but cause
the format overflow for increasing speed. A possible solution for this problem, is to adjust this
parameter on-line with the change of the speed operating region.
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Fig. 11. Fixed point experimental results with:
q = 2-15, ωb = 1 rad/s, ωref = 8 rpm, Np = 12, Tsc = 16 ms
(a) actual and estimated sen-cos; (b) estimated speed.
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Fig. 10. Floating point simulations with:
q = 2-15, ωb = 1 rad/s, ωref = 8 rpm, Np = 12, Tsc = 16  ms
(a) actual and estimated sen-cos; (b) estimated speed.
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Fig. 12. Fixed point experimental results with:
q = 2-15, ωb = 1 rad/s, ωref = 0.5/1 rpm, Np = 480, Tsc = 16 ms.
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Fig. 13. Fixed point experimental results with:
q = 2-15, ωb =1 rad/s, ωref =0.5 rpm, Np = 2000, Tsc = 16 ms.


