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Abstract: The present application note is a guide that can be used to calculate thermal 
convection coefficients. As such it approaches the topic of computational fluid dynamics 
(CFD) since the problem of calculating convection coefficients is situated at the 
intersection between CFD and Thermal analysis. Some basic presentation of the 
theoretical background is also included for more clarity of the approach of the subject. A 
few examples of the computational process are also included and deal with practical 
cases of free convection as well as forced convection. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Procedure to calculate convection coefficients 
 
1. Introduction 
 
As widely known the specification of convection coefficients is a necessity in thermal 
applications when cooling of surfaces in contact with fluids (liquids and/or gases) occurs 
and a thermal convection mechanism takes place. 
 
At its core the problem is in fact one in which the thermal aspect is strongly coupled with 
the fluid flow aspect: temperature distribution influences the fluid flow characteristic 
quantities while the fluid flow parameters influence the temperature distribution. It can be 
said that in such a scenario convection coefficients –if necessary at all- can be obtained as 
one of the results of a coupled Computational Fluid Dynamics (CFD) – Thermal analysis. 
While the full analysis of the coupled problem is quite complicated, there are ways to 
simplify the computational task and produce results for the convection coefficients that 
have acceptable accuracy. One of the most widely spread is the method using 
dimensionless parameters. This method is quite easy to use, however it has the 
disadvantage that it doesn’t allow an understanding of underlying physics of this complex 
phenomenon. This is why in the following paragraphs we’ll also discuss the basics of the 
physical mechanisms of heat convection since a minimal understanding on the physical 
background is necessary. Only after that we’ll present the “mechanics” of calculating the 
convection coefficients based on formulas and “numbers”. 
 
When it comes to convection, two main cases need to be considered. The case of free 
(natural) convection and the case of forced convection.  
 
The essential components of heat transfer by convection mechanisms are given in 
Newton’s law of cooling: 
 

( )∞−⋅⋅= TTAhQ w  

 
where Q is the rate of heat (power) transferred between the exposed surface A of the wall 
and the fluid. wT  is the temperature of the wall, ∞T is the temperature of the free stream of 

fluid, h is the convection coefficient (also called film coefficient), the quantity we want to 
calculate.  
 
An observation is in order regarding (1): the equation should be seen more as a definition 
of the convection coefficient h rather than a law of heat transfer by convection. Indeed, 
equation (1) doesn’t explain anything about the convection mechanism, which is a rather 
complicated one. So the simplicity of (1) is misleading and in sharp contrast with what 
we know about the complexity of the convection phenomenon. All that complexity is 
revealed only when we investigate the ways to find the dependencies of h –the 
convection coefficient- on many factors. We find that h is a complicated function of the 
fluid flow, thermal properties of the fluid, the geometry and orientation in space of the 
system that exhibits convection. Moreover, the convection coefficient is not uniform on 
the entire surface and it also depends on the location where the temperature of the fluid is 
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evaluated. In most cases it is therefore convenient and practical to use average values for 
the convection coefficients.  
 
 
2. Quantities and numbers frequently used in convection coefficient calculations 
 
 
The occurrence of turbulent flow is usually correlated with Rayleigh number, which is 
simply the product of the Grashof and Prandtl numbers: 
 

Pr⋅= GrRa  
  
Grashof number is given by the expression in (3) 
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where L [m] is the characteristic length, g [m / s2] is gravity, ρ  [Kg /m3] is the density of 
the fluid, β [1/K] is the thermal expansion coefficient , µ [Kg / m s] is the dynamic 
viscosity, ν [m2 / s] is the kinematic viscosity. 
 
All fluid characteristics (such as density, viscosity, etc) are evaluated at film temperature,  
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For perfect (ideal) gases 
fT

1=β , while for liquids and non-ideal gases the expansion 

coefficient must be obtained from appropriate property tables. 
 
 
Prandtl number is the ratio of two molecular transport properties, the kinematic viscosity 
ν which affects the velocity profile and the thermal diffusivity α , which affects the 
temperature profile. 
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where k [W/m K] is the fluid thermal conductivity, pc [J/Kg K] is the fluid specific heat. 

 

(2) 

(3) 

(4) 



Nusselt number is used directly to evaluate the convection coefficient according to (5): 
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In equation (5) the bar above quantities signifies an average value. 
 
A few comments are necessary regarding the characteristic length. For a vertical wall the 
characteristic length is the height H of the wall (for free convection), for horizontal 
cylinder or for a sphere the characteristic length is the diameter D. 
 
 
3. The case of free convection 
 
Free convection occurs when an object is immersed in a fluid at a different temperature. 
It is considered that the fluid is in a quiescent state. In this situation there is an energy 
exchange between the fluid and the object. From a physics perspective the heat exchange 
is due to buoyancy forces caused by density gradients developed in the body of the fluid. 
As a result free convection currents are produced that facilitate the heat transfer between 
the object and the fluid. The body force responsible for the free convection currents is – 
as a rule - of gravitational nature (occasionally it may be centrifugal in rotating 
machines). Because gravity plays an important role in the convection phenomenon, the 
orientation in space of the respective walls matters for the calculation process of the 
respective convection coefficients.  
 
Free convection originates from a thermal instability: warmer air moves upward while the 
cooler, heavier air moves downward. A different type of instabilities may also arise: 
hydrodynamic instabilities that relate to a transition between a laminar flow to a turbulent 
flow. The laminar or turbulent character of the fluid flow impact on the heat exchange 
mechanism between object walls and fluids. Therefore we have to have a way to 
characterize the hydrodynamic character of the flow in order to choose the applicable 
formulas for the calculation of the convection coefficients. Since the mechanism of 
convection is strongly dependent on both the fluid flow pattern and on the temperature 
distribution in the vicinity of the wall we’ll take a look at the respective profiles. 
 
 
 
 
 
                          
 
 
 
 

Fig. 1 Temperature and velocity boundary layers 
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Due to the viscosity of the fluid, a very thin layer (a few molecular mean free path thick) 
doesn’t move relative to the wall. This makes the velocity to increase from zero at the 
wall to a maximum value and then decrease back to zero where the uniform temperature 
of the fluid (air) is reached. The temperature decreases from the value at the wall wT  to 

room temperature ∞T in the same distance from the wall. It is now clear that the 
temperature and velocity distributions are strongly interrelated. Also the distance from 
the wall in which they are related is the same since due to the uniformity of the 
temperature (ambient room temperature) the differences in density cease to exist. As a 
direct consequence the buoyancy in the volume of the fluid disappears too. 
 
 Another observation that can be made is that due to the motionless of the air in the 
immediate vicinity of the wall, the heat transfer through this layer is by thermal 
conduction only. The actual convection mechanism is only active away from the wall. So 
in what we usually call convection, both thermal conduction and convection are present 
and interdependent. Considering a constant temperature wall, there is a relatively small 
temperature increase as the air moves upward. The increase of temperature in this 
boundary layer near the wall causes the heat transfer rate to decrease in the upward 
direction. For a sufficiently high wall the flow pattern can change from a laminar flow to 
a turbulent flow. This is another reason why convection is such a complicated 
phenomenon and quite difficult to treat with very high accuracy. The calculation of an 
average convection heat transfer coefficient is an approximation but as a rule a 
satisfactory one in most practical applications where convection is present. 
 
For most engineering calculations the convection coefficient is obtained from a relation 
of the form: 
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where Ra is the Rayleigh number (2), C and n are coefficients. Typically n = 1/4 for 
laminar flow and n = 1/3 for turbulent flow. For turbulent flow Ra > 109, for laminar flow 
Ra < 109.  
 
 
3.1. Vertical walls 
 
Expressions of the form (6) are used for vertical isothermal walls and are plotted in Fig. 
2. All applicable properties of the fluid are evaluated at film temperature fT . For 

Rayleigh numbers less than 104, the Nusselt number should be obtained directly from 
Fig. 2 rather than using (6). 
 
 
 

(6) 



 
 

Fig. 2 Nusselt number for natural convection (vertical wall) 
 
 
 
Strictly speaking equations of form (6) are applicable for isothermal walls. There may be 
situations where the wall may exhibit a uniform heat flux over the surface. In this case, 
the temperature over the surface of the wall is not necessarily constant. The film 
temperature is to be calculated with the temperature of the wall measured at the midpoint 
of the wall. 
 
An alternative formula that can be used for the entire range of Rayleigh numbers is 
presented in (7a): 
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For the case of laminar flow equation (7a) is applicable, however a slightly better 
accuracy is obtained from (7b): 
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turbulent laminar 

C = 0.59 
N = 1/4 

C = 0.1 
N = 1/3 

(7a) 

(7b) 



3.2 Inclined surfaces 
 
The mechanics of the heat transfer is now different from the case with vertical walls. For 
an inclined wall the buoyancy force has a component normal as well as parallel to the 
respective surface. Therefore there will be a reduction in fluid velocity in a direction 
parallel to the plate. This reduction however doesn’t necessarily translate in a reduction 
of the convection coefficient. The other determining factor in the mechanism is the 
whether the surface being considered is the top surface or the bottom surface.  
 
For most frequently encountered situations and for walls inclined from vertical with an 
angle θ  between 0 and 60 degrees, the only change in the calculation of the convection 
coefficient is to replace g with g cos θ  in (3). It should be noted that this is only 
appropriate for top and bottom surfaces of cooled and heated plates respectively. 
 
3.3 Horizontal surfaces 
 
For horizontal plates, the buoyancy forces are essentially normal to the plate. As for 
inclined surfaces the convection mechanism is influenced by whether the surface is 
cooled or heated and by whether the surface is facing upward or downward. For a cold 
surface facing downward and for a hot surface facing upward the convection is much 
more effective than in the opposite cases. In case of horizontal surfaces we define the 
characteristic length as the ratio between the area of the surface and the perimeter (8): 
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The formulas for the Nusselt number are: 
 
Upper surface of heated plate or lower surface of cooled plate: 
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Lower surface of heated plate or upper surface of cooled plate: 
 

)1010(27.0 1054/1 ≤≤⋅= RaRauN  
 
3.4 Long horizontal cylinder 
 
Equation (11) gives the formula valid for the isothermal long cylinder. The formula (11) 
is an average value valid for a large spectrum of Rayleigh numbers. 
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In the calculation regarding the Rayleigh number in (11) as characteristic length is 
considered the diameter D of the cylinder. 
 
4. The case of forced convection 
 
 
The physics of the heat transfer in the case of forced convection is similar to the natural 
(free) convection case. The first step in the process of calculating the convection 
coefficient is to determine the character (laminar or turbulent) of the flow since the 
convection coefficient depends strongly on which of these conditions exist.  
 
Similarly to the situation encountered in the case of free convection, a velocity boundary 
layer is developed. The boundary layer is initially laminar but at some distance from the 
leading edge small disturbances appear, are amplified and after a transition region they 
develop into a completely turbulent flow region. Therefore we’ll assume that at some 
distance (critical distance cx ) from the leading edge the turbulent flow occurs. This 

location is determined by the Reynolds number, 
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where ∞u is the velocity of the free stream of fluid. 
 
The physical interpretation of the Reynolds number is that it represents the ratio between 
inertia forces and viscous forces. In any flow there are some disturbances that can be 
amplified to lead to a turbulent flow. A small value of the Reynolds number means that 
the viscous forces are relatively important and the amplification of the disturbances is 
prevented. Also the thickness of the velocity boundary layer is related to the Reynolds 
number: at low values of the number we expect the thickness of the layer to increase. 
 
The role of the Reynolds number in forced convection is similar to the role of the Grashof 
number in free convection. Note that the Grashof number is a measure of the ratio 
between buoyancy forces to viscous forces in the velocity boundary layer. 
 
The critical value of the Reynolds number for which the flow over a flat plate transitions 
from a laminar to a turbulent flow varies between 105 and 3 ⋅106, depending on the 
roughness of the surface and the turbulence in the free stream. It is usual to consider for 
calculations a representative value of 5 ⋅105. With this value equation (12) can be used to 
determine the critical length where the transition begins. The location where the 
transition begins is more conventional than physical, in reality the transition between 
laminar flow and turbulent occurs in a buffer zone between the two. However the critical 
characteristic length (measured from the leading edge) can be used as an average value in 
calculations for the purpose of determining the appropriate convection coefficient. It is 
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possible in practical applications to encounter situations where on the same surface the 
fluid flow transitions from a laminar flow to a turbulent flow. As a consequence it may be 
necessary to adjust the calculation of the convection coefficient accordingly. 
 
There is another number which is important in forced convection. As in the case of free 
convection one has to consider the Prandtl number. The significance of the Prandtl 
number is that it represents the ratio between energy transport by diffusion in the velocity 
layer and the thermal layer. For gases the Prandtl number is close to 1, for liquid metals 
Pr << 1, for oils the opposite is true, Pr >> 1. 
 
4.1 Laminar flow over flat plates 
 
The convection coefficient is in general a function of distance (from the leading edge) 
mainly due to the fact that the Reynolds number (12) depends on x. Therefore we’ll give 
both a local value and an average value for the Reynolds number. 
 
Equation (13) is used for the laminar flow over isothermal plates for the local value of the 
Nusselt number. Equation (14) yields the average value of the Nusselt number. If the 
flow is laminar over the entire surface the “x” may be replaced by “L” and (14) can be 
used to predict average conditions over the entire surface. 
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As for free convection all fluid properties are evaluated at film temperature using (4). 
Note that the average value given by (14) for a surface from the leading edge to a 
location “x” is twice the local value at that point “x”. 
 
For low Prandtl numbers (the case of liquid metals) equations (13) and (14) cannot be 
applied. In such cases (15) should be used: 
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where PrRe ⋅= xxPe  is the Peclet number 

 
A single equation that can be applied for all Prandtl numbers (laminar flow over an 
isothermal plate) is presented in (16). 
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While (16) can be used for local evaluations of the convection coefficient, the average 
Nusselt number can be calculated with xx NuuN ⋅= 2 as discussed above. 

 
 
4.2 Turbulent flow over flat plates 
 
 
The local Nusselt number for turbulent flow over an isothermal plate is given by: 
 

60Pr6.0PrRe0296.0 3/15/4 ≤≤⋅⋅= xxNu  

 
As for the calculation of an average value for a plate with turbulent flow over its entire 
surface, it is acceptable to consider as average value the local value at the midpoint of the 
plate. 
 
4.3 Mixed flow conditions over flat plates 
 
In the case where there is a transition from laminar to turbulent flow the change in the 
respective convection coefficient is so large that the use of wrong formulas will likely 
cause large inaccuracy in the result. In this case an average value of the convection 
coefficient that takes into account the dual nature of the flow is a must. This task can be 
accomplished using an averaging equation (18): 
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where xc is the critical length where the transition occurs between laminar and turbulent 
flow. 
 
The result of the averaging operation is: 
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with a typical value of Re x,c = 5⋅105, (19) becomes: 
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In situations for which L>>xc (ReL >>Re x,c),  a reasonable approximation of  (20) is (21): 
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4.4 Constant heat flux case (flat plate) 
 
Results in the previous paragraphs dealing with forced convection are only valid for the 
case of isothermal plate. If the plate is subject to a uniform heat flux, the temperature 
distribution over the plate is not uniform. For laminar flow the appropriate formula for 
local Nusselt number is (22): 
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while for turbulent flow it is (23) 
 

60Pr6.0PrRe0308.0 3/15/4 ≤≤⋅⋅= xxNu  

 
4.5 Cylinder in cross flow 
 
First of all let us specify that the Reynolds number is defined as: 
 

ν
Du

D

⋅= ∞Re  

 
The equation to use for the entire range of Re as well as a wide range of Pr (all 
Re⋅Pr>0.2) is (25): 
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where all properties are evaluated at ∞T . 
 
The technical literature mentions a great variety of empirical correlation formulas, which 
– as a rule – yield close values for the calculated quantities (such as convection 
coefficients). As an example for the cylinder in close flow another correlation widely 
used is given by (26): 
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0.7 < Pr < 500;   1 < ReD < 106, 
 
where all properties are evaluated at ∞T , except Prw, which is evaluated at wall 
temperature Tw. 
 
Values of coefficients C and m are listed below. If Pr < 10, n = 0.37; if Pr > 10, n = 0.36. 
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ReD                                C                      m 
 
1 – 40                           0.75                   0.4 
40 – 1000                     0.51                   0.5 
103 – 2 105                   0.26                   0.6 
2 105 – 106                   0.076                 0.7 
 
The relationship between the Nusselt number and the convection coefficient is similarly 
with the previous cases before, 
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4.6  Steps for calculating the convection coefficient 
 
Follow these simple steps to calculate the convection coefficient: 
 
- determine the appropriate geometry (flow over plate, cylinder, etc); 
- estimate the film temperature and evaluate all fluid properties at that temperature; 
- calculate the Reynolds number, determine (for flat plate) if the flow is laminar or 

turbulent; 
- decide on the formula to use (local or average coefficient). 
 
 
 
5. Combined natural (free) and forced convection 
 
To obtain an indication of the relationship between free convection and forced convection 
one can use the ratio between Grashof number and the square of Reynolds number. 
In other words the above mentioned ratio gives a qualitative indication of the influence of 
the buoyancy forces on forced convection. When the Grashof number is of the same 
order of magnitude or larger than the square of the Reynolds number, free convection 
effects cannot be ignored, compared with the effects of forced convection. Similarly, 
when the square of Reynolds number is of the same order of magnitude as the Grashof 
number forced convection has to be taken into account together with natural convection. 
There are three main cases corresponding to different combinations of free convection 
effects and forced convection effects. If the buoyancy-induced motion and forced motion 
have the same direction we have a case of assisting flow. If the two flows are in opposite 
directions we have a transversal flow. 
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In (28) the + sign applies for assisting and transverse flow cases, the – sign applies for the 
case of opposing flow. The forced and natural components are determined according to 
the respective procedures indicated in the previous chapters from the existing formulas. 
For “n” the most used value is n = 3, however for the case of transverse flow over plat 
plates and cylinders n=3.5 may provide a better correlation of data. 
 
Note that (28) should be seen as a first approximation for the mixed convection which is 
a rather complicated phenomenon. Finally we note that although buoyancy effects can 
significantly enhance heat transfer for laminar forced convection, enhancement is 
typically negligible if the forced flow is turbulent. 
 
 
6. Conclusion 
 
There is one important aspect that needs to be highlighted. In all calculations of the fluid 
properties the film temperature has to be used. The film temperature depends however of 
the temperature of the solid (wall) that we want to calculate as part of the thermal 
problem. This means that prior to the calculation of the convection coefficient the 
temperature of the surface exhibiting convection has to be estimated. Then the film 
temperature and the convection coefficient can be calculated. Once the thermal problem 
is solved (using the convection coefficient estimated as above) another iteration may be 
initiated by re-calculating the film temperature, a new convection coefficient and doing 
another thermal simulation. 
 
Another remark is that the process of calculation of convection coefficients based on 
empirical formulas can cause deviations of 15-25 % or more. One should keep in mind 
that the convection process is a very complex one as described in its fundamental aspects 
in the present document. For accurate predictions the integration of boundary layer 
equations has to be included in the computational process.  
 
7. Examples 
 
We present a number of examples of how to use some of the formulas presented in the 
previous chapters. The examples include cases of free (natural) convection and cases of 
forced convection.  
 
7.1 Convection between a warm wall and ambient  
 
We consider the wall with height of L = 0.71 m, width W = 1.02 m at uniform 
temperature °= CTw 232 . The air in the room is quiescent at 23 °C . 

 
 
 
 
 
 



 
 
 
 
 
 
 

Fig. 3 Free convection example 
 

Air properties are evaluated at film temperature, Tf = 400 K. They are:  
 
k = 33.8 10 –3 W/mK,  
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With the above properties we can now calculate the convection coefficient. From (2) and 
(3) one obtains from the Rayleigh number: 
 
Ra = 1.813 109, and from paragraph 3 it follows that transition to turbulent flow occurs 
on the wall. As a consequence equation (7a) will be used to yield: 
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From (6) one obtains: 
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Using Newton’s law of cooling (1), the power (heat rate) transferred from the wall to the 
room air is  
 

Wq 060,1)23232)(71.002.1(0.7 =−⋅⋅=  
 
7.2 Free convection between an air duct and ambient 
 
Let us consider the situation presented in Fig. 4 where the airflow through a duct 0.75 m 
wide and 0.3 m high maintains the outer duct surface at 45 C. The ambient air is assumed 
quiescent at room temperature of 15 C. 

convection 



 
 
 
 
 

Fig. 4 Geometry of the duct 
 
At Tf = 303 K the air properties are: 

mWk

K
T

sm

sm

f

/0265.0

0033.0
1

71.0Pr

/109.22

/102.16

1

26

26

=

==

==

⋅=
⋅=

−

−

−

β

α
ν

α
ν

 

 
This is a case where the convection is considered separately from the sides as well as the 
other two horizontal surfaces (top and bottom). As previously discussed different 
formulas are used as appropriate. 
 
With the above one obtains for the Rayleigh number Ra = 2.62 L3. 
 
For the two sides L = H = 0.3 m, which yields Ra = 7.07 107, corresponding to a laminar 
flow in the boundary layer. Therefore (7b) is used to obtain: 
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For the top and bottom surfaces with (8) one gets L ~ w/2 = 0.375 m and therefore Ra = 
1.38 108. 
 
Using the second equation (9) and equation (10) one obtains: 
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7.3 Forced convection of air over an isothermal flat plate 
 
Assume air at a pressure of 6 kN/m2 and 300 C flows with a velocity of 10 m/s over a flat 
plate 0.5 m long and 27 C surface temperature. It is clear that the convection occurs to 
transfer heat to the plate and not from the plate. 
 
 
 
 
 
 
 
 
 

Fig. 5 Forced air convection over a flat plate 
 

Gas properties are available from tables usually at p = 1 atm (at varying temperatures). 
The majority of properties such as k, Pr, µ are with a very good approximation 
independent of the pressure. However others such as ν depend on pressure. The 
kinematic viscosity varies with pressure because the density varies with pressure. 
According to the ideal gas law: 
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It follows that at the same temperature but at different pressure one has: 
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and therefore the kinematic viscosity of air at 437 K and 6,000 N/m2 is: 
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With (12) the Reynolds number is Re = 9,597 which corresponds to a case of laminar 
flow over the entire surface of the plate. From (14) the average Nusselt number is: 
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7.4 Cross flow forced convection of air over a cylinder 
 
Consider a cylinder 12.7 mm in diameter and 94 mm long placed in a wind tunnel. The 
air flow in the wind tunnel occurs at 10 m/s and the air temperature is 26.2 C. There is a 
power dissipation inside the cylinder due to an electric resistance. As a result, the average 
temperature the cylinder is 128.4 C. 
 
 
 
 
 
 
 
 
 

Fig. 6 Cross flow of air over heated cylinder 
 
For this application one has to get the air properties at three temperatures: the temperature 
of free stream of air, film temperature and wall temperature. 
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At Tf = 350 K: 
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At Tw = 401 K 
 
Prw = 0.69 
 
The Reynolds number: 
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Air flow 



 
The Nusselt number is calculated with (25) with all properties evaluated at Tf: 
 
 

6.40)
000,282

Re
(1

]Pr)/4.0(1[

PrRe62.0
3.0

5/4

8/5
4/13/2

3/12/1

=



 +

+
⋅⋅

+= DD
DuN  

 

KmW
D

k
uNh 2/96=⋅=  

 
When using (26) the values for the constants are C = 0.26, m = 0.6. Since Pr < 10, n = 
0.37. With (26) one calculates: 
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One can see the different value from the one obtained with (25). This is only shown here 
to make clearer the point that some variation should be expected when calculating 
convection coefficients with different formulas. Also note that in the result above the wall 
temperature is involved due to Tw. 
 
 


