
1 of 19 013002

INTRODUCTION
Dallas Semiconductor's 1-Wire® devices each have a 64-bit unique registration number in read-only-
memory (ROM) that is used to address them individually by a 1-Wire master in a 1-Wire network. If the
ROM numbers of the slave devices on the 1-Wire network are not known, then they can be discovered by
using a search algorithm. This document explains the search algorithm in detail and provides an example
implementation for rapid integration. This algorithm is valid for all current and future devices that feature
a 1-Wire interface.

64-BIT UNIQUE ROM ‘REGISTRATION’ NUMBER Figure 1
MSB 64-Bit ‘Registration’ ROM number LSB

8-Bit CRC

MSB LSB

48-Bit Serial Number

MSB LSB

8-Bit Family Code

MSB LSB

SEARCH ALGORITHM
The search algorithm is a binary tree search where branches are followed until a device ROM number, or
leaf, is found. Subsequent searches then take the other branch paths until all of the leaves present are
discovered.

The search algorithm begins with the devices on the 1-Wire being reset using the reset and presence pulse
sequence. If this is successful then the 1-byte search command is sent. The search command readies the
1-Wire devices to begin the search.

There are two types of search commands. The normal search command (0F hex) will perform a search
with all devices participating. The alarm or conditional search command (EC hex) will perform a search
with only the devices that are in some sort of alarm state. This reduces the search pool to quickly respond
to devices that need attention.

Following the search command, the actual search begins with all of the participating devices
simultaneously sending the first bit (least significant) in their ROM number (also called registration
number). (See Figure 1.) As with all 1-Wire communication, the 1-Wire master starts every bit whether it
is data to be read or written to the slave devices. Due to the characteristics of the 1-Wire, when all devices
respond at the same time, the result will be a logical AND of the bits sent. After the devices send the first
bit of their ROM number, the master initiates the next bit and the devices then send the complement of
the first bit. From these two bits, information can be derived about the first bit in the ROM numbers of
the participating devices. (See Table 1.)

Application Note 187
1-Wire Search Algorithm

www.maxim-ic.com

1-Wire is a registered trademark of Dallas Semiconductor.

AN187

2 of 19

BIT SEARCH INFORMATION Table 1
Bit
(true)

Bit
(complement)

Information Known

0 0 There are both 0s and 1s in the current bit position of the
participating ROM numbers. This is a discrepancy.

0 1 There are only 0s in the bit of the participating ROM numbers.
1 0 There are only 1s in the bit of the participating ROM numbers.
1 1 No devices participating in search.

According to the search algorithm, the 1-Wire master must then send a bit back to the participating
devices. If the participating device has that bit value, it continues participating. If it does not have the bit
value, it goes into a wait state until the next 1-Wire reset is detected. This 'read two bits' and 'write one
bit' pattern is then repeated for the remaining 63 bits of the ROM number (see Table 2). In this way the
search algorithm forces all but one device to go into this wait state. At the end of one pass, the ROM
number of this last device is known. On subsequent passes of the search, a different path (or branch) is
taken to find the other device ROM numbers. Note that this document refers to the bit position in the
ROM number as bit 1 (least significant) to bit 64 (most significant). This convention was used instead of
bit 0 to bit 63 for convenience to allow initialization of discrepancy counters to 0 for later comparisons.

1-WIRE MASTER AND SLAVE SEARCH SEQUENCE Table 2
Master Slave
1-Wire reset stimulus Produce presence pulse.
Write search command (normal or alarm) Each slave readies for search.
Read ‘AND’ of bit 1 Each slave sends bit 1 of its ROM number.
Read ‘AND’ of complement bit 1 Each slave sends complement bit 1 of its ROM

number.
Write bit 1 direction (according to algorithm) Each slave receives the bit written by master, if

bit read is not the same as bit 1 of its ROM
number then go into a wait state.

Read ‘AND’ of bit 64 Each slave sends bit 64 of its ROM number.
Read ‘AND’ of complement bit 64 Each slave sends complement bit 64 of its ROM

number.
Write bit 64 direction (according to algorithm) Each slave receives the bit written by master, if

bit read is not the same as bit 64 of its ROM
number then go into a wait state.

AN187

3 of 19

On examination of Table 1, it is obvious that if all of the participating devices have the same value in a bit
position then there is only one choice for the branch path to be taken. The condition where no devices are
participating is an atypical situation that may arise if the device being discovered is removed from the 1-
Wire during the search. The condition where there are both 0s and 1s in the bit position is called a
discrepancy and is the key to finding devices in the subsequent searches. The search algorithm specifies
that on the first pass, when there is a discrepancy (bit/complement = 0/0), the '0' path is taken. Note that
this is arbitrary for this particular algorithm. Another algorithm could be devised to use the ‘1’ path first.
The bit position for the last discrepancy is recorded for use in the next search. Table 3 describes the paths
that are taken on subsequent searches when a discrepancy occurs.

SEARCH PATH DIRECTION Table 3
Search Bit Position vs
Last Discrepancy

Path Taken

= take the '1' path
< take the same path as last time (from last ROM number found)
> take the '0' path

The search algorithm also keeps track of the last discrepancy that occurs within the first eight bits of the
algorithm. The first eight bits of the 64-bit registration number is a family code. As a result, the devices
discovered during the search are grouped into family types. The last discrepancy within that family code
can be used to selectively skip whole groups of 1-Wire devices. See the description of ADVANCED
SEARCH VARIATIONS for doing selective searches. The 64-bit ROM number also contains an 8-bit
cyclic-redundancy-check (CRC). This CRC value is verified to ensure that only the correct ROM
numbers are discovered. See Figure 1 for the layout of the ROM number.

The DS2480B Serial to 1-Wire Line Driver performs some of this same search algorithm in hardware.
Please see the DS2480B data sheet and Application Note 188, Using the DS2480B Serial 1-Wire Line
Driver for details. The DS2490 USB to 1-Wire Bridge performs the entire search in hardware.

Figure 2 shows a flow chart of the search sequence. Note the Reference side bar that explains the terms
used in the flow chart. These terms are also used in the source code appendix to this document.

AN187

4 of 19

SEARCH FLOW Figure 2 (continued on the following pages)

 Presence
 Detected?

Yes

No

Set id_bit_number to 1.
Set last_zero to 0

Reference
cmp_id_bit - the complement of the id_bit.

This bit is the AND of the complement
of all of the id_bit_number bits of the
devices that are still participating in the
search.

id_bit - the first bit read in a bit search
sequence. This bit is the AND of all of
the id_bit_number bits of the devices
that are still participating in the search.

id_bit_number - the ROM bit number 1 to
64 currently being searched

LastDeviceFlag - flag to indicate previous
search was the last device.

LastDiscrepancy - bit index that identifies
from which bit the (next) search
discrepancy check should start.

LastFamilyDiscrepancy - bit index that
identifies the LastDiscrepancy within the
first 8-bit family code of ROM number.

last_zero - bit position of the last zero
written where there was a discrepancy

ROM_NO - 8-byte buffer that contains the
current ROM registration number
discovered.

search_direction - bit value indicating the
direction of the search. All devices with
this bit stay in the search and the rest
go into a wait state for a 1-Wire reset.

Send search command
(0F or EC hex)

 1

 2

 Perform a
 1-Wire Reset

 Is Last-
DeviceFlag
 = 1?

No

Yes

AN187

5 of 19

SEARCH FLOW Figure 2 (continued)

Read bit (id_bit) and
complement ID bit
(cmp_id_bit) from 1-Wire

 id_bit =
cmp_id_bit
 = 1

No

Yes

 id_bit_number =
 LastDiscrepancy
 ?

Yes

No id_bit =
cmp_id_bit
 = 0?

No

Yes id_bit_number >
 LastDiscrepancy
 ?

Yes

No

 1

Set search_direction
bit to id_bit

Set search_direction
bit to 1

Set search_direction
bit to 0

Set search_direction
bit to id_bit_number
bit in ROM_NO search_-

direction =
 0?

No Yes Set last_zero
to current
id_bit_number

Set id_bit_number bit
in ROM_NO to
search_direction and
send to 1-Wire

Increment
id_bit_number

 id_bit-
number >
 64?

YesNo Set LastDiscrepancy
to last_zero

 Last-
Discrepancy
 = 0?

No

Yes Set
LastDeviceFlag

 3

 2

 Is
last_zero
 < 9?

No Yes Set LastFamily-
Discrepancy to
last_zero

AN187

6 of 19

SEARCH FLOW Figure 2 (continued)

There are two basic types of operations that can be performed by using the search algorithm by
manipulating the LastDiscrepancy, LastFamilyDiscrepancy, LastDeviceFlag, and ROM_NO register
values (see Table 4). These operations concern basic discovery of the ROM numbers of 1-Wire devices.

FIRST
The 'FIRST' operation is to search on the 1-Wire for the first device. This is performed by setting
LastDiscrepancy, LastFamilyDiscrepancy, and LastDeviceFlag to zero and then doing the search. The
resulting ROM number can then be read from the ROM_NO register. If no devices are present on the 1-
Wire the reset sequence will not detect a presence and the search is aborted.

NEXT
The 'NEXT' operation is to search on the 1-Wire for the next device. This search is usually performed
after a 'FIRST' operation or another 'NEXT' operation. It is performed by leaving the state unchanged
from the previous search and performing another search. The resulting ROM number can then be read
from the ROM_NO register. If the previous search was the last device on the 1-Wire then the result will
be FALSE and the condition will be set to execute a ‘FIRST’ with the next call of the search algorithm.

Figure 3 (a, b, c) goes through a simple search example with three devices. For illustration, this example
assumes devices with a 2-bit ROM number only.

 3

 CRC8 of
 ROM_NO
 correct?

Yes

No

Set return value to
TRUE

Set return value to
FALSE

Reset search
LastDiscrepancy = 0
LastFamilyDiscrepancy = 0
LastDeviceFlag = 0

 Done

 2

 Last-
 Discrepancy,
 LastFamily-
 Distrepancy
 equal?

No

Yes
Set LastFamily-
Discrepancy to 0

AN187

7 of 19

SEARCH EXAMPLE Figure 3a
Devices

A = 01 (binary: bit 2, bit 1)
B = 00
C = 11

FIRST

 bit 1 Read Read Write
bit complement-bit direction

 A 1 0
 B 0 1
 C 1 0

 0 0 0 (bit position > LastDiscrepancy)

 bit 2 Read Read Write
bit complement-bit direction

 A (wait state)
 B 0 1
 C (wait state)

 0 1 0 (only one path available)

 Device B is found 00, LastDiscrepancy is now 1

NEXT

 bit 1 Read Read Write
bit complement-bit direction

 A 1 0
 B 0 1
 C 1 0

 0 0 1 (bit position = LastDiscrepancy)

 bit 2 Read Read Write
bit complement-bit direction

 A 0 1
 B (wait state)
 C 1 0

 0 0 0 (bit position > LastDiscrepancy)

 Device A is found 01, LastDiscrepancy is now 2

AND result
of ‘true’ bit
read

AND result
of the
‘complement’
bit read

Bit written by
master, path
taken

AN187

8 of 19

NEXT

 bit 1 Read Read Write
bit complement-bit direction

 A 1 0
 B 0 1
 C 1 0 (bit position < LastDiscrepancy)

 0 0 1

 bit 2 Read Read Write
bit complement-bit direction

 A 0 1
 B (wait state)
 C 1 0 (bit position = LastDiscrepancy)

 0 0 1

 Device C is found 11, LastDeviceFlag is TRUE

SEARCH EXAMPLE TREE GRAPH Figure 3b

FIRST NEXT NEXT

Note: Each branching at a bit level denotes a ‘discrepancy’ where the both the bit and complement-bit
return ‘0’.

00
B

01
A

11
C

00
B

01
A

11
C

00
B

01
A

11
C

bit 1

bit 2

AN187

9 of 19

SEARCH EXAMPLE PSEUDO CODE Figure 3c
(for simplicity the family discrepancy register and tracking has been left out of this example)

FIRST
� LastDiscrepancy = LastDeviceFlag = 0
� Do 1-Wire reset and wait for presence pulse, if no presence pulse then done
� id_bit_number = 1, last_zero = 0
� Send search command, 0F hex
� Read first bit id_bit: 1 (Device A) AND 0 (Device B) AND 1 (Device C) = 0
� Read complement of first bit cmp_id_bit: 0 (Device A) AND 1 (Device B) AND 0 (Device C) = 0
� Since id_bit_number > LastDescrepancy then search_direction = 0, last_zero = 1
� Send search_direction bit of 0, both Devices A and C go into wait state
� Increment id_bit_number to 2
� Read second bit id_bit: 0 (Device B) = 0
� Read complement of second bit cmp_id_bit: 1 (Device B) = 1
� Since bit and complement are different then search_direction = id_bit
� Send search_direction bit of 0, Device B is discovered with ROM_NO of ‘00’ and is now selected
� LastDescrpancy = last_zero

NEXT
� Do 1-Wire reset and wait for presence pulse, if no presence pulse then done
� id_bit_number = 1, last_zero = 0
� Send search command, 0F hex
� Read first bit id_bit: 1 (Device A) AND 0 (Device B) AND 1 (Device C) = 0
� Read complement of first bit cmp_id_bit: 0 (Device A) AND 1 (Device B) AND 0 (Device C) = 0
� Since id_bit_number = LastDescrepancy then search_direction = 1
� Send search_direction bit of 1, Devices B goes into wait state
� Increment id_bit_number to 2
� Read second bit id_bit: 0 (Device A) AND 1 (Device C) = 0
� Read complement of second bit cmp_id_bit: 1 (Device A) AND 0 (Device C) = 0
� Since id_bit_number > LastDescrepancy then search_direction = 0, last_zero = 2
� Send search_direction bit of 0, Devices C goes into wait state
� Device A is discovered with ROM_NO of ‘01’ and is now selected
� LastDescrpancy = last_zero

AN187

10 of 19

NEXT
� Do 1-Wire reset and wait for presence pulse, if no presence pulse then done
� id_bit_number = 1, last_zero = 0
� Send search command, 0F hex
� Read first bit id_bit: 1 (Device A) AND 0 (Device B) AND 1 (Device C) = 0
� Read complement of first bit cmp_id_bit: 0 (Device A) AND 1 (Device B) AND 0 (Device C) = 0
� Since id_bit_number < LastDescrepancy then search_direction = ROM_NO (first bit) = 1
� Send search_direction bit of 1, Devices B goes into wait state
� Increment id_bit_number to 2
� Read second bit id_bit: 0 (Device A) AND 1 (Device C) = 0
� Read complement of second bit cmp_id_bit: 1 (Device A) AND 0 (Device C) = 0
� Since id_bit_number = LastDescrepancy then search_direction = 1
� Send search_direction bit of 1, Devices A goes into wait state
� Device C is discovered with ROM_NO of ‘11’ and is now selected
� LastDescrpancy = last_zero which is 0 so LastDeviceFlag = TRUE

NEXT
� LastDeviceFlag is true so return FALSE
� LastDiscrepancy = LastDeviceFlag = 0

ADVANCED SEARCH VARIATIONS
There are three advanced search variations using the same state information, namely LastDiscrepancy,
LastFamilyDiscrepancy, LastDeviceFlag, and ROM_NO. These variations allow specific family types to
be targeted or skipped and device present verification (see Table 4).

VERIFY
The 'VERIFY' operation verifies if a device with a known ROM number is currently connected to the 1-
Wire. It is accomplished by supplying the ROM number and doing a targeted search on that number to
verify it is present. First, set the ROM_NO register to the known ROM number. Then set the
LastDiscrepancy to 64 (40 hex) and the LastDeviceFlag to 0. Perform the search operation and then read
the ROM_NO result. If the search was successful and the ROM_NO remains the ROM number that was
being searched for, then the device is currently on the 1-Wire.

TARGET SETUP
The 'TARGET SETUP' operation is a way to preset the search state to first find a particular family type.
Each 1-Wire device has a one byte family code embedded within the ROM number (see Figure 1). This
family code allows the 1-Wire master to know what operations this device is capable of. If there are
multiple devices on the 1-Wire it is common practice to target a search to only the family of devices that
are of interest. To target a particular family, set the desired family code byte into the first byte of the
ROM_NO register and fill the rest of the ROM_NO register with zeros. Then set the LastDiscrepancy to
64 (40 hex) and both LastDeviceFlag and LastFamilyDiscrepancy to 0. When the search algorithm is next
performed the first device of the desired family type will be discovered and placed in the ROM_NO
register. Note that if no devices of the desired family are currently on the 1-Wire, then another type will
be found, so the family code in the resulting ROM_NO must be verified after the search.

AN187

11 of 19

FAMILY SKIP SETUP
The 'FAMILY SKIP SETUP' operation sets the search state to skip all of the devices that have the family
code that was found in the previous search. This operation can only be performed after a search. It is
accomplished by copying the LastFamilyDiscrepancy into the LastDiscrepancy and clearing out the
LastDeviceFlag. The next search will then find devices that come after the current family code. If the
current family code group was the last group in the search then the search will return with the
LastDeviceFlag set.

SEARCH VARIATIONS STATE SETUP Table 4
LastDiscrepancy LastFamily-

Discrepancy
LastDeviceFlag ROM_NO

FIRST 0 0 0 result
NEXT leave unchanged leave unchanged leave unchanged result
VERIFY 64 don’t care 0 set with ROM to

verify, check if
same after search

TARGET
SETUP

64 0 0 set first byte to
family code, set
rest to zeros

FAMILY
SKIP
SETUP

copy from
LastFamilyDiscrepancy

leave unchanged 0 leave unchanged

CONCLUSION
The supplied search algorithm allows the discovery of the individually unique ROM numbers from any
given group of 1-Wire devices. This is essential to any multidrop 1-Wire application. With the ROM
numbers in hand, each 1-Wire device can be selected individually for operations. This document also
discussed search variations to find or skip particular 1-Wire device types. See Appendix for a ‘C’ code
example implementation of the search and all of the search variations.

AN187

12 of 19

APPENDIX
Figure 4 shows a ‘C’ code implementation of the search algorithm along with a function for each search
variation. The FamilySkipSetup and TargetSetup functions don’t actually do a search, they just setup the
search registers so that the next 'Next’ skips or finds the desired type. Note that the low-level 1-Wire
functions are implemented with calls to the TMEX API. These calls are for test purposes and can be
replaced with platform specific calls. See Application Note 155 for a description of the TMEX API and
other 1-Wire APIs. For a description of creating a 1-Wire master, see Application Note 153, 1-Wire Bus
Master Programming Guide.

The TMEX API test implementation of the following code example can be download from the following
link:
ftp://ftp.dalsemi.com/pub/auto_id/public/an187.zip

SEARCH ‘C’ CODE SAMPLE Figure 4 (continued on the following pages)
// TMEX API TEST BUILD DECLARATIONS
#define TMEXUTIL
#include "ibtmexcw.h"
long session_handle;
// END TMEX API TEST BUILD DECLARATIONS

// definitions
#define FALSE 0
#define TRUE 1

// method declarations
int OWFirst();
int OWNext();
int OWVerify();
void OWTargetSetup(unsigned char family_code);
void OWFamilySkipSetup();
int OWReset();
void OWWriteByte(unsigned char byte_value);
void OWWriteBit(unsigned char bit_value);
unsigned char OWReadBit();
int OWSearch();
unsigned char docrc8(unsigned char value);

// global search state
unsigned char ROM_NO[8];
int LastDiscrepancy;
int LastFamilyDiscrepancy;
int LastDeviceFlag;
unsigned char crc8;

//--
// Find the 'first' devices on the 1-Wire bus
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : no device present
//
int OWFirst()
{
 // reset the search state
 LastDiscrepancy = 0;
 LastDeviceFlag = FALSE;
 LastFamilyDiscrepancy = 0;

 return OWSearch();
}

AN187

13 of 19

//--
// Find the 'next' devices on the 1-Wire bus
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
int OWNext()
{
 // leave the search state alone
 return OWSearch();
}

//--
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
int OWSearch()
{
 int id_bit_number;
 int last_zero, rom_byte_number, search_result;
 int id_bit, cmp_id_bit;
 unsigned char rom_byte_mask, search_direction;

 // initialize for search
 id_bit_number = 1;
 last_zero = 0;
 rom_byte_number = 0;
 rom_byte_mask = 1;
 search_result = 0;
 crc8 = 0;

 // if the last call was not the last one
 if (!LastDeviceFlag)
 {
 // 1-Wire reset
 if (!OWReset())
 {
 // reset the search
 LastDiscrepancy = 0;
 LastDeviceFlag = FALSE;
 LastFamilyDiscrepancy = 0;
 return FALSE;
 }

 // issue the search command
 OWWriteByte(0xF0);

AN187

14 of 19

 // loop to do the search
 do
 {
 // read a bit and its complement
 id_bit = OWReadBit();
 cmp_id_bit = OWReadBit();

 // check for no devices on 1-wire
 if ((id_bit == 1) && (cmp_id_bit == 1))
 break;
 else
 {
 // all devices coupled have 0 or 1
 if (id_bit != cmp_id_bit)
 search_direction = id_bit; // bit write value for search
 else
 {
 // if this discrepancy if before the Last Discrepancy
 // on a previous next then pick the same as last time
 if (id_bit_number < LastDiscrepancy)
 search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
 else
 // if equal to last pick 1, if not then pick 0
 search_direction = (id_bit_number == LastDiscrepancy);

 // if 0 was picked then record its position in LastZero
 if (search_direction == 0)
 {
 last_zero = id_bit_number;

 // check for Last discrepancy in family
 if (last_zero < 9)
 LastFamilyDiscrepancy = last_zero;
 }
 }

 // set or clear the bit in the ROM byte rom_byte_number
 // with mask rom_byte_mask
 if (search_direction == 1)
 ROM_NO[rom_byte_number] |= rom_byte_mask;
 else
 ROM_NO[rom_byte_number] &= ~rom_byte_mask;

 // serial number search direction write bit
 OWWriteBit(search_direction);

 // increment the byte counter id_bit_number
 // and shift the mask rom_byte_mask
 id_bit_number++;
 rom_byte_mask <<= 1;

 // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
 if (rom_byte_mask == 0)
 {
 docrc8(ROM_NO[rom_byte_number]); // accumulate the CRC
 rom_byte_number++;
 rom_byte_mask = 1;
 }
 }
 }
 while(rom_byte_number < 8); // loop until through all ROM bytes 0-7

AN187

15 of 19

 // if the search was successful then
 if (!((id_bit_number < 65) || (crc8 != 0)))
 {
 // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
 LastDiscrepancy = last_zero;

 // check for last device
 if (LastDiscrepancy == 0)
 LastDeviceFlag = TRUE;

 // check for last family group
 if (LastFamilyDiscrepancy == LastDiscrepancy)
 LastFamilyDiscrepancy = 0;

 search_result = TRUE;
 }
 }

 // if no device found then reset counters so next 'search' will be like a first
 if (!search_result || !ROM_NO[0])
 {
 LastDiscrepancy = 0;
 LastDeviceFlag = FALSE;
 LastFamilyDiscrepancy = 0;
 search_result = FALSE;
 }

 return search_result;
}

//--
// Verify the device with the ROM number in ROM_NO buffer is present.
// Return TRUE : device verified present
// FALSE : device not present
//
int OWVerify()
{
 unsigned char rom_backup[8];
 int i,rslt,ld_backup,ldf_backup,lfd_backup;

 // keep a backup copy of the current state
 for (i = 0; i < 8; i++)
 rom_backup[i] = ROM_NO[i];
 ld_backup = LastDiscrepancy;
 ldf_backup = LastDeviceFlag;
 lfd_backup = LastFamilyDiscrepancy;

 // set search to find the same device
 LastDiscrepancy = 64;
 LastDeviceFlag = FALSE;

 if (OWSearch())
 {
 // check if same device found
 rslt = TRUE;
 for (i = 0; i < 8; i++)
 {
 if (rom_backup[i] != ROM_NO[i])
 {
 rslt = FALSE;
 break;
 }
 }
 }
 else
 rslt = FALSE;

AN187

16 of 19

 // restore the search state
 for (i = 0; i < 8; i++)
 ROM_NO[i] = rom_backup[i];
 LastDiscrepancy = ld_backup;
 LastDeviceFlag = ldf_backup;
 LastFamilyDiscrepancy = lfd_backup;

 // return the result of the verify
 return rslt;
}

//--
// Setup the search to find the device type 'family_code' on the next call
// to OWNext() if it is present.
//
void OWTargetSetup(unsigned char family_code)
{
 int i;

 // set the search state to find SearchFamily type devices
 ROM_NO[0] = family_code;
 for (i = 1; i < 8; i++)
 ROM_NO[i] = 0;
 LastDiscrepancy = 64;
 LastFamilyDiscrepancy = 0;
 LastDeviceFlag = FALSE;
}

//--
// Setup the search to skip the current device type on the next call
// to OWNext().
//
void OWFamilySkipSetup()
{
 // set the Last discrepancy to last family discrepancy
 LastDiscrepancy = LastFamilyDiscrepancy;

 // check for end of list
 if (LastDiscrepancy == 0)
 LastDeviceFlag = TRUE;
}

//--
// 1-Wire Functions to be implemented for a particular platform
//--

//--
// Reset the 1-Wire bus and return the presence of any device
// Return TRUE : device present
// FALSE : no device present
//
int OWReset()
{
 // platform specific
 // TMEX API TEST BUILD
 return (TMTouchReset(session_handle) == 1);
}

AN187

17 of 19

//--
// Send 8 bits of data to the 1-Wire bus
//
void OWWriteByte(unsigned char byte_value)
{
 // platform specific

 // TMEX API TEST BUILD
 TMTouchByte(session_handle,byte_value);
}

//--
// Send 1 bit of data to teh 1-Wire bus
//
void OWWriteBit(unsigned char bit_value)
{
 // platform specific

 // TMEX API TEST BUILD
 TMTouchBit(session_handle,(short)bit_value);
}

//--
// Read 1 bit of data from the 1-Wire bus
// Return 1 : bit read is 1
// 0 : bit read is 0
//
unsigned char OWReadBit()
{
 // platform specific

 // TMEX API TEST BUILD
 return (unsigned char)TMTouchBit(session_handle,0x01);

}

// TEST BUILD
static unsigned char dscrc_table[] = {
 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};

//--
// Calculate the CRC8 of the byte value provided with the current
// global 'crc8' value.
// Returns current global crc8 value
//
unsigned char docrc8(unsigned char value)
{
 // See Application Note 27

 // TEST BUILD
 crc8 = dscrc_table[crc8 ^ value];
 return crc8;
}

AN187

18 of 19

//--
// TEST BUILD MAIN
//
int main(short argc, char **argv)
{
 short PortType=5,PortNum=1;
 int rslt,i,cnt;

 // TMEX API SETUP
 // get a session
 session_handle = TMExtendedStartSession(PortNum,PortType,NULL);
 if (session_handle <= 0)
 {
 printf("No session, %d\n",session_handle);
 exit(0);
 }

 // setup the port
 rslt = TMSetup(session_handle);
 if (rslt != 1)
 {
 printf("Fail setup, %d\n",rslt);
 exit(0);
 }
 // END TMEX API SETUP

 // find ALL devices
 printf("\nFIND ALL\n");
 cnt = 0;
 rslt = OWFirst();
 while (rslt)
 {
 // print device found
 for (i = 7; i >= 0; i--)
 printf("%02X", ROM_NO[i]);
 printf(" %d\n",++cnt);

 rslt = OWNext();
 }

 // find only 0x1A
 printf("\nFIND ONLY 0x1A\n");
 cnt = 0;
 OWTargetSetup(0x1A);
 while (OWNext())
 {
 // check for incorrect type
 if (ROM_NO[0] != 0x1A)
 break;

 // print device found
 for (i = 7; i >= 0; i--)
 printf("%02X", ROM_NO[i]);
 printf(" %d\n",++cnt);
 }

AN187

19 of 19

 // find all but 0x04, 0x1A, 0x23, and 0x01
 printf("\nFIND ALL EXCEPT 0x10, 0x04, 0x0A, 0x1A, 0x23, 0x01\n");
 cnt = 0;
 rslt = OWFirst();
 while (rslt)
 {
 // check for incorrect type
 if ((ROM_NO[0] == 0x04) || (ROM_NO[0] == 0x1A) ||
 (ROM_NO[0] == 0x01) || (ROM_NO[0] == 0x23) ||
 (ROM_NO[0] == 0x0A) || (ROM_NO[0] == 0x10))
 OWFamilySkipSetup();
 else
 {
 // print device found
 for (i = 7; i >= 0; i--)
 printf("%02X", ROM_NO[i]);
 printf(" %d\n",++cnt);
 }

 rslt = OWNext();
 }

 // TMEX API CLEANUP
 // release the session
 TMEndSession(session_handle);
 // END TMEX API CLEANUP
}

