

IST TSic[™] Temperature Sensor IC Application Notes – ZACwire[™] Digital Output

Version 2.6

CONTENTS

1	TSIC	[™] ZACWIRE [™] COMMUNICATION PROTOCOL	2
	1.1	TEMPERATURE TRANSMISSION PACKET FROM A TSIC [™]	2
	1.2	BIT ENCODING	3
	1.3	HOW TO READ A PACKET	3
	1.4	HOW TO READ A PACKET USING A μCONTROLLER	4
		HOW OFTEN DOES THE TSIC [™] TRANSMIT?	4
		SOLUTIONS IF REAL TIME SYSTEM CANNOT TOLERATE THE TSIC [™]	4
_			
2	APPE	NDIX A: AN EXAMPLE OF PIC1 ASSEMBLY CODE FOR READING THE ZACWIRE [™]	5

1 TSic[™] ZACwire[™] Communication Protocol

ZACwireTM is a single wire bi-directional communication protocol. The bit encoding is similar to Manchester in that clocking information is embedded into the signal (falling edges of the signal happen at regular periods). This allows the protocol to be largely insensitive to baud rate differences between the two ICs communicating.

In end-user applications. the TSicTM will be transmitting temperature information, and another IC in the system (most likely a μ Controller) will be reading the temperature data over the ZACwireTM.

1.1 Temperature Transmission Packet from a TSic[™]

The TSic[™] transmits 1-byte packets. These packets consist of a start bit, 8 data bits, and a parity bit. The nominal baud rate is 8kHz (125microsec bit window). The signal is normally high. When a transmission occurs, the start bit occurs first followed by the data bits (MSB first, LSB last). The packet ends with an even parity bit.

Figure 1.1 – ZACwire[™] Transmission Packet

The TSic[™] provides temperature data with 11-bit resolution, and obviously these 11-bits of information cannot be conveyed in a single packet. A complete temperature transmission from the TSic[™] consists of two packets. The first packet contains the most significant 3-bits of temperature information, and the second packet contains the least significant 8-bits of temperature information. There is a single bit window of high signal (stop bit) between the end of the first transmission and the start of the second transmission.

Figure 1.2 – Full ZACwire[™] Temperature Transmission from TSic[™]

Tsic[™] Temperature Sensors IC Application Notes ZACwire[™] Digital Output

1.2 Bit Encoding

The bit format is duty cycle encoded:

- Start bit => 50% duty cycle used to set up strobe time
- Logic 1 => 75% duty cycle
- Logic 0 => 25% duty cycle

Perhaps the best way to show the bit encoding is with an oscilloscope trace of a ZACwireTM transmission. The following shows a single packet of 96Hex being transmitted. Because 96Hex is already even parity, the parity bit is zero.

1.3 How to Read a Packet

When the falling edge of the start bit occurs, measure the time until the rising edge of the start bit. This time (Tstrobe) is the strobe time. When the next falling edge occurs, wait for a time period equal to Tstrobe, and then sample the ZACwireTMsignal. The data present on the signal at this time is the bit being transmitted. Because every bit starts with a falling edge, the sampling window is reset with every bit transmission. This means errors will not accrue for bits downstream from the start bit, as it would with a protocol such as RS232. It is recommended, however, that the sampling rate of the ZACwireTM signal when acquiring the start bit be at least 16x the nominal baud rate. Because the nominal baud rate is 8kHz, a 128kHz sampling rate is recommended when acquiring Tstrobe.

Tsic[™] Temperature Sensors IC Application Notes ZACwire[™] Digital Output

How to Read a Packet using a µController 1.4

It is best to connect the ZACwireTM signal to a pin of the μ Controller that is capable of causing an interrupt on a falling edge. When the falling edge of the start bit occurs, it causes the µController to branch to its ISR. The ISR enters a counting loop incrementing a memory location (Tstrobe) until it sees a rise on the ZACwire[™] signal. When Tstrobe has been acquired, the ISR can simply wait for the next 9 falling edges (8-data, 1-parity). After each falling edge, it waits for Tstrobe to expire and then sample the next bit.

The ZACwire[™] line is driven by a strong CMOS push/pull driver. The parity bit is intended for use when the ZACwireTM is driving long (>2m) interconnects to the μ Controller in a noisy environment. For systems in which the "noise environment is more friendly," the user can choose to have the µController ignore the parity bit.

In the appendix of this document is sample code for reading a TSicTM ZACwireTM transmission using a PIC16F627 µController.

How Often Does the TSic[™] Transmit? 1.4.1

If the TSic[™] is being read via an ISR, how often is it interrupting the µController with data? The update rate of the TSic[™] can be programmed to one of 4 different settings: 250Hz, 10Hz, 1Hz, and 0.1Hz. Servicing a temperature-read ISR requires about 2.7ms. If the update rate of the TSic[™] is programmed to 250Hz, then the µController spends about 66% of its time reading the temperature transmissions. If, however, the update rate is programmed to something more reasonable like 1Hz, then the Controller spends about 0.27% of its time reading the temperature transmissions.

Solutions if Real Time System Cannot Tolerate the TSic[™] Interrupting the µController 1.4.2

Some real time systems cannot tolerate the TSic[™] interrupting the µController. The µController must initiate the temperature read. This can be accomplished by using another pin of the µController to supply VDD to the TSic[™]. The TSic[™] will transmit its first temperature reading approximately 65-85ms after power up. When the μ Controller wants to read the temperature, it first powers the TSicTM using one of its port pins. It will receive a temperature transmission approximately 65 to 85ms later. If during that 85ms, a higher priority interrupt occurs, the µController can simply power down the TSic[™] to ensure it will not cause an interrupt or be in the middle of a transmission when the high priority ISR finishes. This method of powering the TSic[™] has the additional benefit of acting like a power down mode and reducing the quiescent current from a nominal 45µA to zero. The TSic[™] is a mixed signal IC and provides best performance with a clean VDD supply. Powering through a µController pin does subject it to the digital noise present on the µController's power supply. Therefore it is best to use a simple RC filter when powering the TSic[™] with a µController port pin. See the diagram below.

ISTAG, Industriestrasse 2, CH-9630 Wattwil, Switzerland, Phone (+)41 71 987 73 73, Fax (+)41 71 987 73 77 e-mail info@ist-ag.com, www.ist-ag.com

Tsic[™] Temperature Sensors IC Application Notes ZACwire[™] Digital Output

 μ Controller powers TSicTM with a port pin through a simple RC filter.

2 Appendix A: An Example of PIC1 Assembly Code for Reading the ZACwire[™]

In the following code example, it is assumed that the ZACwireTM pin is connected to the interrupt pin (PORTB, 0) of the PIC and that the interrupt is configured for falling edge interruption. This code should work for a PIC running between 2-12MHz.

TEMP_HIGH	EQU	0X24	;; MEMORY LOCATION RESERVED FOR TEMP HIGH BYTE
TEMP_LOW	EQU	0X25	;; MEMORY LOCATION RESERVED FOR TEMP LOW BYTE
			;; THIS BYTE MUST BE CONSECUTIVE FROM TEMP_HIGH
LAST_LOC	EQU	0X26	;; THIS BYTE MUST BE CONSECUTIVE FROM TEMP_LOW
TSTROBE	EQU	0X26	;; LOCATION TO STORE START BIT STROBE TIME.
ORG	0X004		;; ISR LOCATION

```
;; CODE TO SAVE ANY NEEDED STATE AND TO DETERMINE THE SOURCE OF THE ISR ;;
;; GOES HERE. ONCE YOU HAVE DETERMINED THE SOURCE IF THE INTERRUPT WAS ;;
;; A ZAC WIRE TRANSMISSION THEN YOU BRANCH TO ZAC_TX
                                                        ;;
ZAC_TX:
          MOVLW TEMP_HIGH
                         ;; MOVE ADDRESS OF TEMP_HIGH (0X24) TO W REG
                         ;; FSR = INDIRECT POINTER, NOW POINTING TO TEMP_HIGH
          MOVWE ESR
GET_TLOW:
          MOVLW 0X02
                         ;; START TSTROBE COUNTER AT 02 TO ACCOUNT FOR
                         ;; OVERHEAD IN GETTING TO THIS POINT OF ISR
          MOVWF TSTROBE
                         ;; CLEAR THE MEMORY LOCATION POINTED TO BY FSR
          CLRF
               TNDF
```


TSICTM Temperature Sensors IC Application Notes ZACwireTM Digital Output

STRB:	INCF TSTROBE,1	;; INCREMENT TSTROBE
	BTFSC STATUS,Z	;; IF TSTROBE OVERFLOWED TO ZERO THEN
	GOTO RTI	;; SOMETHING WRONG AND RETURN FROM INTERRUPT
	BTFSS PORTB,0	;; LOOK FOR RISE ON ZAC WIRE
	GOTO STRB	;; IF RISE HAS NOT YET HAPPENED INCREMENT TSTROBE
	CLRF BIT_CNT	;; MEMORY LOCATION USED AS BIT COUNTER
BIT_LOOP:	CLRF STRB_CNT	;; MEMORY LOCATION USED AS STROBE COUNTER
	CLRF TIME_OUT	;; MEMORY LOCATION USED FOR EDGE TIME OUT
WAIT_FALL:	BTFSS PORTB,0	;; WAIT FOR FALL OF ZAC WIRE
	GOTO PAUSE_STRB	;; NEXT FALLING EDGE OCCURRED
	INCFSZTIME_OUT,1	;; CHECK IF EDGE TIME OUT COUNTER OVERFLOWED
	GOTO WAIT_FALL	
	GOTO RTI	;; EDGE TIME OUT OCCURRED.
	_	;; EDGE TIME OUT OCCURRED.

PAUSE_STRB:	INCF	STRB_CNT,1	;; INCREMENT THE STROBE COUNTER
	MOVF	TSTROBE,0	;; MOVE TSTROBE TO W REG
	SUBWF	STRB_CNT,0	;; COMPARE STRB_CNT TO TSTROBE
	BTFSS	STATUS,Z	;; IF EQUAL THEN IT IS TIME TO STROBE
	GOTO	PAUSE_STRB	;; ZAC WIRE FOR DATA, OTHERWISE KEEP COUNTING
		;; LENGTH OF	THIS LOOP IS 6-STATES. THIS HAS TO
		;; MATCH THE	LENGTH OF THE LOOP THAT ACQUIRED TSTROBE
	BCF	STATUS,C	;; CLEAR THE CARRY
	BTFSC	PORTB,0	;; SAMPLE THE ZAC WIRE INPUT
	BSF	STATUS,C	;; IF ZAC WIRE WAS HIGH THEN SET THE CARRY
	RLF	INDF,1	;; ROTATE CARRY=ZAC WIRE INTO LSB OF REGISTER
			;; THAT FSR CURRENTLY POINTS TO
	CLRF	TIME_OUT	;; CLEAR THE EDGE TIMEOUT COUNTER

ISTAG, Industriestrasse 2, CH-9630 Wattwil, Switzerland, Phone (+)41 71 987 73 73, Fax (+)41 71 987 73 77 e-mail info@ist-ag.com, www.ist-ag.com

TSICTM Temperature Sensors IC Application Notes ZACwireTM Digital Output

WAIT_RISE:	BTFSC PORTB,0	;; IF RISE HAS OCCURRED THEN WE ARE DONE
	GOTO NEXT_BIT	
	INCFSZ TIME_OUT,1	;; INCREMENT THE EDGE TIME OUT COUNTER
	GOTO WAIT_RISE	
	GOTO RTI	;; EDGE TIME OUT OCCURRED.
NEXT_BIT:	INCF BIT_CNT,1	;; INCREMENT BIT COUNTER
	MOVLW 0X08	;; THERE ARE 8-BITS OF DATA
	SUBWF BIT_CNT,0	;; TEST IF BIT COUNTER AT LIMIT
	BTFSS STATUS,Z	;; IF NOT ZERO THEN GET NEXT BIT
	GOTO BIT_LOOP	
	CLRF TIME_OUT	;; CLEAR THE EDGE TIME OUT COUNTER
WAIT_PF:	BTFSS PORTB,0	;; WAIT FOR FALL OF PARITY
	GOTO P_RISE	
	INCFSZ TIME_OUT,1	;; INCREMENT TIME_OUT COUNTER
	GOTO WAIT_PF	
	GOTO RTI	;; EDGE TIMEOUT OCCURRED
P_RISE:	CLRF TIME_OUT	;; CLEAR THE EDGE TIME OUT COUNTER
WAIT_PR:	BTFSC PORTB,0	;; WAIT FOR RISE OF PARITY
	GOTO NEXT_BYTE	
	INCFSZ TIME_OUT,1	;; INCREMENT EDGE TIME OUT COUNTER
	GOTO WAIT_PR	
	GOTO RTI	;; EDGE TIME OUT OCCURRED

Tsic[™] Temperature Sensors IC Application Notes ZACwire[™] Digital Output TEMPERATURE

NEXT_BYTE:	INCF FSR,1	;; INCREMENT THE INDF POINTER
	MOVLW LAST_LOC	
	SUBWF FSR,0	;; COMPARE FSR TO LAST_LOC
	BTFSS STATUS,Z	;; IF EQUAL THEN DONE
	GOTO WAIT_TLOW	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	;; IF HERE YOU ARE	DONE READING THE ZAC WIRE AND HAVE THE DATA ;;
	;; IN TEMP_HIGH &	TEMP_LOW ;;
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
WAIT_TLOW:	CLRF TIME_OUT	
WAIT_TLF:	BTFSS PORTB,0	; WAIT FOR FALL OF PORTB, 0 INDICATING
	GOTO GET_TLOW	; START OF TEMP LOW BYTE
	INCFSZ TIME_OUT	
	GOTO WAIT TLF	
	GOIO WAII_ILF	
	GOTO RTI	; EDGE TIMEOUT OCCURRED
	—	; EDGE TIMEOUT OCCURRED
RTI:	GOTO RTI	; EDGE TIMEOUT OCCURRED

;; RESTORE ANY S	TATE SAVED OFF AT BEGINNING OF ISR ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
BCF INTCON, IN	IF ;; CLEAR INTERRUPT FLAG
BSF INTCON, IN	IE ;; ENSURE INTERRUPT RE-ENABLED
RETFIE	;; RETURN FROM INTERRUPT

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. Typing errors and mistakes reserved. Product specifications are subject to change without notice

V2.6/12-2008

