
© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 188

Appendix A:

Improving Code Size With the
MPLAB C18 Compiler

Appendix A:Appendix A:

Improving Code Size With theImproving Code Size With the
MPLAB C18 CompilerMPLAB C18 Compiler

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 189

Our Goal: To understand how to reduce C
application code size on PIC18 MCUs
through intelligent use of MPLAB C18 and
careful structuring of C code.

Our Goal: To understand how to reduce C
application code size on PIC18 MCUs
through intelligent use of MPLAB C18 and
careful structuring of C code.

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 190

Suggestion #1Suggestion #1Suggestion #1

Use the latest version of MPLAB C18Use the latest version of MPLAB C18

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 191

Code Size Comparison
Default Options

Code Size ComparisonCode Size Comparison
Default OptionsDefault Options

0
20000
40000
60000
80000

100000
120000
140000

1.0 1.10 2.0 2.10

MPLAB C18 Version

C
od

e
si

ze
 (b

yt
es

)

-23% -26%*
(CQ1’02) -38%*

(CQ3’02)

* Projected

Baseline

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 192

Suggestion #2Suggestion #2Suggestion #2

Carefully select command-line optionsCarefully select command-line options

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 193

Code Size Comparison
Choosing Command-Line Options
Code Size ComparisonCode Size Comparison
Choosing Command-Line OptionsChoosing Command-Line Options

0

20000

40000

60000

80000

100000

120000

140000

1.0 1.10 2.0 2.10

MPLAB C18 version

C
od

e
Si

ze
 (b

yt
es

)

Default
Best

-23%
-26%*

-38%*

Baseline

-45% -48%*
(CQ1’02) -56%*

(CQ3’02)

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 194

Command-Line Options
LFSR Use

Command-Line OptionsCommand-Line Options
LFSR UseLFSR Use

l MPLAB-C18’s -lfsr switch enables use of
the LFSR instruction

l Currently, MPLAB-C18 assumes that LFSR
shouldn’t be used without the -lfsr switch
given

l The switch should always be used when it is
known that the LFSR errata doesn’t exist on
the targeted part

l MPLAB-C18’s -lfsr switch enables use of
the LFSR instruction

l Currently, MPLAB-C18 assumes that LFSR
shouldn’t be used without the -lfsr switch
given

l The switch should always be used when it is
known that the LFSR errata doesn’t exist on
the targeted part

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 195

Command-Line Options
Optimizations

Command-Line OptionsCommand-Line Options
OptimizationsOptimizations

l All of MPLAB-C18’s optimizations currently
target code size

l Optimizations should be enabled for smallest
code size

l NOTE: Optimizations may interfere with
MPLAB debugging

l All of MPLAB-C18’s optimizations currently
target code size

l Optimizations should be enabled for smallest
code size

l NOTE: Optimizations may interfere with
MPLAB debugging

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 196

Command-Line Options
Memory Model

Command-Line OptionsCommand-Line Options
Memory ModelMemory Model

l MPLAB-C18 has two memory models:

-ms: small memory model (pointers to program
memory are 16-bits wide)

-ml: large memory model (pointers to program
memory are 24-bits wide)

l Use -ms whenever possible

l MPLAB-C18 has two memory models:

-ms: small memory model (pointers to program
memory are 16-bits wide)

-ml: large memory model (pointers to program
memory are 24-bits wide)

l Use -ms whenever possible

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 197

Suggestion #3Suggestion #3Suggestion #3

Select appropriate storage class for dataSelect appropriate storage class for data

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 198

Command-Line Options
Data Storage Class

Command-Line OptionsCommand-Line Options
Data Storage ClassData Storage Class

l Default storage class for parameters and
local variables is auto

â Parameters are passed on the software stack

â Locals are located on the software stack

l Default storage class for parameters and
local variables is auto

â Parameters are passed on the software stack

â Locals are located on the software stack

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 199

Using auto VariablesUsing Using autoauto Variables Variables

Example - calculate the expression (a + b):

6 program words
(not counting prolog/epilog)

Example - calculate the expression (a + b):

6 program words
(not counting prolog/epilog)

movlw offset(a)
movff PLUSW2, tmp
movlw offset(b)
movf PLUSW2
addwf tmp

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 200

Command-Line Options
Data Storage Class

Command-Line OptionsCommand-Line Options
Data Storage ClassData Storage Class

l C also provides for static local variables
l MPLAB-C18 extends C with static parameters

(available in v1.10 and later)
l For example:

char add(static char a, static char b)
{

static char result;
result = a + b;
return result;

}

l C also provides for static local variables
l MPLAB-C18 extends C with static parameters

(available in v1.10 and later)
l For example:

char add(static char a, static char b)
{

static char result;
result = a + b;
return result;

}

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 201

Using static VariablesUsing Using staticstatic Variables Variables

Example - calculate the expression (a + b):

3 program words
(no prolog/epilog required)

Example - calculate the expression (a + b):

3 program words
(no prolog/epilog required)

movlb b*
movf b
addwf a

*likely target for optimization

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 202

static Gotchasstaticstatic GotchasGotchas

l Gotcha #1 - Reentrant code
Variables may overwrite themselves

l Recursion (function calls itself)

l Function called (directly or indirectly) from
main() and an ISR.

l Gotcha #1 - Reentrant code
Variables may overwrite themselves

l Recursion (function calls itself)

l Function called (directly or indirectly) from
main() and an ISR.

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 203

static Gotchasstaticstatic GotchasGotchas

l Gotcha #2 - Function pointers
Address of parameters not known at compile time

l Function pointers may not be used with
functions containing static parameters

l Gotcha #2 - Function pointers
Address of parameters not known at compile time

l Function pointers may not be used with
functions containing static parameters

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 204

static Gotchasstaticstatic GotchasGotchas

l Gotcha #3 - Matching declarations
All declarations must use explicit storage class if not all files
are compiled with the same default

l Example:
char add(char a, char b);

Will only work if the default storage class is
identical in both the declaring and defining
files.

l Gotcha #3 - Matching declarations
All declarations must use explicit storage class if not all files
are compiled with the same default

l Example:
char add(char a, char b);

Will only work if the default storage class is
identical in both the declaring and defining
files.

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 205

l What if one of the “static Gotchas” applies to
your code?

ã Best case: use -ol on all files and explicit auto
storage class as needed.

ã Intermediate case: Use -ol on as many files as
possible and explicit storage classes as needed.

ã Worst case: Don’t use -ol, but use explicit
static storage class as much as possible.

l What if one of the “static Gotchas” applies to
your code?

ã Best case: use -ol on all files and explicit auto
storage class as needed.

ã Intermediate case: Use -ol on as many files as
possible and explicit storage classes as needed.

ã Worst case: Don’t use -ol, but use explicit
static storage class as much as possible.

static Gotchasstaticstatic Gotchas Gotchas

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 206

Command-Line Options
Data Storage Class

Command-Line OptionsCommand-Line Options
Data Storage ClassData Storage Class

l MPLAB-C18 v2.0 and later extends C with
the overlay storage class for local
variables
l Behaves identically to the static storage

class, except:

l RAM locations are overlaid by the linker when
possible based on a call tree analysis

l Default storage class can be set to overlay
using the -sco option

l MPLAB-C18 v2.0 and later extends C with
the overlay storage class for local
variables
l Behaves identically to the static storage

class, except:

l RAM locations are overlaid by the linker when
possible based on a call tree analysis

l Default storage class can be set to overlay
using the -sco option

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 207

Suggestion #4Suggestion #4Suggestion #4

Choose smallest data type possibleChoose smallest data type possible

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 208

MPLAB-C18 Data TypesMPLAB-C18 Data TypesMPLAB-C18 Data Types

Type Min Value Max Value
unsigned char 0 255
signed char -128 127
unsigned int 0 65,535
signed int -32,768 32,767
unsigned short long 0 16,777,215
signed short long -8,388,608 8,388,607
unsigned long 0 4,294,967,295
signed long -2,147,483,648 2,147,483,647

Type Min Value Max Value
unsigned char 0 255
signed char -128 127
unsigned int 0 65,535
signed int -32,768 32,767
unsigned short long 0 16,777,215
signed short long -8,388,608 8,388,607
unsigned long 0 4,294,967,295
signed long -2,147,483,648 2,147,483,647

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 209

Using Appropriate Data TypesUsing Appropriate Data TypesUsing Appropriate Data Types

c = a + bc = a + b
char:
 MOVLB b
 MOVF b,0,1
 ADDWF a,0,1
 MOVWF c,1

(4 words)

int:
 MOVLB a
 MOVF b,0,1
 ADDWF a,0,1
 MOVWF c,1
 MOVF high(b),0,1
 ADDWFC high(a),0,1
 MOVWF high(c),1

(7 words)

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 210

Suggestion #5Suggestion #5Suggestion #5

Use access RAM for your variablesUse access RAM for your variables

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 211

Variable Allocation
Using Access RAM

Variable AllocationVariable Allocation
Using Access RAMUsing Access RAM

l MPLAB-C18 allows for efficient use of
unbanked RAM with the near type specifier

l RAM variables will default to near by using
the -oa option

l Compiler won’t emit movlb instructions for
accessing these variables

l MPLAB-C18 allows for efficient use of
unbanked RAM with the near type specifier

l RAM variables will default to near by using
the -oa option

l Compiler won’t emit movlb instructions for
accessing these variables

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 212

Variable Allocation
Using Access RAM

Variable AllocationVariable Allocation
Using Access RAMUsing Access RAM

l Use the near specifier for the most
frequently accessed variables

l Gotcha: as with static and overlay,
prototypes must match definitions

l Use the near specifier for the most
frequently accessed variables

l Gotcha: as with static and overlay,
prototypes must match definitions

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 213

Suggestion #6Suggestion #6Suggestion #6

Keep definitions in same file with referencesKeep definitions in same file with references

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 214

Variable Allocation
Defining Variables

Variable AllocationVariable Allocation
Defining VariablesDefining Variables

l MPLAB-C18 can be more aggressive
optimizing variables in the files where they
are defined.

l MPLAB-C18 can be more aggressive
optimizing variables in the files where they
are defined.

 char a, b, c;

 void foo(void)

 {

 c = a + b;

 }

Source code:

 MOVLB b
 MOVF b,0,1
 ADDWF a,0,1
 MOVWF c,1

(4 words)

Machine code:

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 215

Variable Allocation
Defining Variables

Variable AllocationVariable Allocation
Defining VariablesDefining Variables

l MPLAB-C18 must be more conservative with
externally-defined variables

l MPLAB-C18 must be more conservative with
externally-defined variables

 extern char a, b, c;

 void foo(void)

 {

 c = a + b;

 }

Source code:
 MOVLB b
 MOVF b,0,1
 MOVLB a
 ADDWF a,0,1
 MOVLB c
 MOVWF c,1

(6 words)

Machine code:

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 216

Suggestion #7Suggestion #7Suggestion #7

Use #pragma varlocateUse #pragma varlocate

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 217

Using #pragma varlocateUsing Using ##pragma varlocatepragma varlocate

l Use #pragma varlocate to tell the compiler
what bank a variable is located in

l Use #pragma varlocate to tell the compiler
what bank a variable is located in

 extern char a, b, c;

 void foo(void)

 {

 c = a + b;

 }

Source code:
 MOVLB b
 MOVF b,0,1
 MOVLB a
 ADDWF a,0,1
 MOVLB c
 MOVWF c,1

(6 words)

Machine code:

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 218

Using #pragma varlocateUsing Using ##pragma varlocatepragma varlocate

l Improves MPLAB-C18 banking optimizerl Improves MPLAB-C18 banking optimizer

 #pragma varlocate 3 a, b, c

 extern char a, b, c;

 void foo(void)

 {

 c = a + b;

 }

Source code:

 MOVLB b
 MOVF b,0,1
 ADDWF a,0,1
 MOVWF c,1

(4 words)

Machine code:

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 219

Using #pragma varlocateUsing Using ##pragma varlocatepragma varlocate

Gotcha: has no impact on how variables are
actually allocated

Gotcha: has no impact on how variables are
actually allocated

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 220

Suggestion #8Suggestion #8Suggestion #8

Replace Common Expressions With VariablesReplace Common Expressions With Variables

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 221

Common Sub-Expression
Elimination

Common Sub-ExpressionCommon Sub-Expression
EliminationElimination

l Applies to all types of expressionsl Applies to all types of expressions

 MY_STRUCT s[10];

 for(i=0; i<10; i++)

 {

s[i].a = i;

s[i].b = 34;

 }

Code size:

 10 words to calculate s[i]
 2 words to assign i
 10 words to calculate s[i]
 3 words to assign 34

= 25 words total

Source code:

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 222

Common Sub-Expression
Elimination (Contd.)

Common Sub-ExpressionCommon Sub-Expression
Elimination (Elimination (ContdContd.).)

 MY_STRUCT s[10];
 MY_STRUCT *p = &(s[0]);

 for(i=0; i<10; i++)
 {
 p->a = i;
 p->b = 34;
 p++;
 }

Code size:Source code:

 0 words to calculate s[i]
 6 words to assign i
 7 words to assign 34
 4 words to increment p

= 17 words total

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 223

Suggestion #9Suggestion #9Suggestion #9

Don’t Use a Variable When a Constant Will DoDon’t Use a Variable When a Constant Will Do

© 2002 Microchip Technology Incorporated. All Rights Reserved. 618 ICD PIC18FXXX DFT Hands On Workshop 224

Constant EvaluationsConstant EvaluationsConstant Evaluations

l Pre-calculate all values that can be
determined at compile-time.

l Pre-calculate all values that can be
determined at compile-time.

 a = 2;

 b = 17 + 52 * a;

 c = b;

 c = 121;

Original source: Transformed source:

