
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #042RS-485

GLENN RICHMOGD
Efficient Handling of RS-485 Timing Issues

Anyone that has had to deal with the timing issues involved in RS-485 communication
knows that it can often be a time-consuming task. Although RS-485 communications
have the advantage of being able to support multiple devices all running of the same line
and require only two wires for a connection, the communications are only half-duplex.
This means that there can be some interesting timing issues to overcome when it comes
to switching between receive and transmit modes. If the processor switches from TX to
RX mode too quickly, the entire packet will not be transmitted and will be invalid, and if it
switches too slowly, the other unit may respond before it enters RX mode and the reply
packet will be missed.

A common approach to overcoming this problem is to add significant delays in both the
Master and the Slave units. This approach is shaky at best as it not only introduces
unnecessary delays in the communications, but it can introduce uncertainty as to
whether the packets will always make it through, especially when the length of the pack-
ets varies significantly. The way to get around this and have the fastest possible
communications with the most reliability is to use the TX Complete interrupt in the AVR.
To give an idea of the hardware being used, consider the circuit shown in Figure 1.

Figure 1. Cicuit Diagram of RS-485 Driver Configuration

The “Tx En” line switches the driver chip between transmit and receive mode
(On = Transmit). The key is to switch this back to RX mode as soon as the final charac-
ter is transmitted. To do this, we first populate a buffer with a packet, then begin the
transmit sequence, and count the number of characters that have been completely
transmitted. Since we know the size of the buffer to be transmitted, we can detect when
the final character has been sent and therefore the earliest possible time that we can

RO
RE

DE
DI

VCC

B
A

GND

Rx

Tx En

Tx

1

2

3

4

8

7

6

5

R21

2k2

VCC1
1www.AVRfreaks.net Design Note #042 – Date: 02/03

switch the line from transmit to receive mode. The source code for the putchar(), start-
transmit(), initpacket() and uart_tx_isr() routines are shown below.

void initpacket()

{

tx_wr_index = 0;

}

// UART Transmitter interrupt service routine

#pragma savereg-

interrupt [UART_TXC] void uart_tx_isr(void)

{

#asm

 push r26

 push r27

 push r30

 push r31

 in r26,sreg

 push r26

#endasm

 if (tx_rd_index < tx_wr_index)

 {

 UDR=tx_buffer[tx_rd_index++];

 }else

 {

 switch_mode(RX_MODE);

 }

#asm

 pop r26

 out sreg,r26

 pop r31

 pop r30

 pop r27

 pop r26

#endasm

}

#pragma savereg+

// Write a character to the UART Transmitter buffer

#define _ALTERNATE_PUTCHAR_

#pragma used+

void putchar(char c)

{

 tx_buffer[tx_wr_index++]=c;

}

#pragma used-

void starttransmit()
www.AVRfreaks.net2 Design Note #042 – Date: 02/03

{

tx_rd_index = 0;

UDR = tx_buffer[tx_rd_index++];

}

The switch_mode() function seen in the code simply toggles the TX_EN line between on
and off, depending on the required state. The function is shown below.

void switch_mode(char mode)

{

if (mode == RX_MODE)

{

PORTD.2 = 0;

}else

{

PORTD.2 = 1;

}

}

Now, to send a packet, the sequence is as shown below:

void sendpacket()

{

// switch mode…

switch_mode(TX_MODE);

// initialise packet…

initpacket();

// populate packet…

putchar(0x01);

putchar(0x02);

putchar(0x03);

// send the packet

starttransmit();

}

The above function will now send the packet and switch back into receive mode and the
earliest possible time. Note that the above code was written for the CodeVision
compiler.
www.AVRfreaks.net 3Design Note #042 – Date: 02/03

