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Introduction 
 
Tensilica’s Diamond Standard Series processor family consists of 10 ready-to-use 
synthesizable cores that range from area-efficient, low-power controllers to the industry’s 
highest performance licensable DSP and most popular audio processor and an exciting 
video processor family. The Diamond Standard family covers the broadest range of 
performance of any embedded computing architecture. The Diamond Standard processor 
family is based on Tensilica’s highly efficient Xtensa® configurable and extensible 
processor architecture, proven in hundreds of SOC (system-on-chip) designs. Therefore, 
it’s easy for designers to bridge to Tensilica’s Xtensa processor product line if additional 
customization is required. 
 
The base Xtensa Instruction Set Architecture (ISA) 24-bit instructions are targeted to a 
wide range of embedded applications. Most common instructions have a 16-bit narrow 
encoding as well, and the Diamond Series architecture allows modeless switching 
between 16/24-bit instructions. Consequentially, the Diamond Series processors achieve 
some of the highest code densities among all 32-bit RISC processors. 
 
Some of the Diamond Standard processors, including the 545CK DSP, the 570T high-
performance CPU, the 330HiFi audio processor, and the 38xVDO video family utilize 
Tensilica’s innovative FLIX™ (Flexible Length Instruction eXtensions) technology for 
selective additional VLIW-style 64-bit instructions. The FLIX technology allows the 
issue of multiple operations per instruction, modelessly mixed with the native 16/24-bit 
instructions to increase the processor’s parallel-execution abilities and further boosts 
application performance. 
 
This white paper explores the design of the Xtensa base instruction set architecture (ISA) 
and illustrates the impact of architecture on performance. It traces the evolution of 
modern instruction-set design and compares key features of Tensilica’s architecture with 
previous instruction set architectures. It provides a detailed rationale for the major 
architectural innovations in the Xtensa ISA.  
 
The first section of this white paper gives a quick overview of the Diamond Standard 
family. The second section outlines the goals, philosophy and innovations inherent in the 
Xtensa instruction set. The third section gives a more detailed description, with a block 
diagram, of each Diamond Standard processor. Finally, the last section gives more 
information on strength of the Xtensa-based Diamond architecture, taking a look at 
benchmarks. 
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Diamond Standard Family Overview 
 

Introduction 
 
Tensilica’s Diamond Standard processor core family consists of two general-purpose 
controllers, a Linux-compatible CPU, a high-end 2/3-issue CPU, a high-performance 
audio processor, a family of video processors, and a high-end DSP. All are ideal for SOC 
designers who require the absolute fastest time to market. 
 

108Mini Ultra-low power, cacheless controller with rich interrupt 
architecture, minimal gate count for lowest silicon cost 

Controllers 

212GP Flexible mid-range controller with instruction and data caches 
and user-defined local memory sizes 

232L Flexible mid-range CPU with a Memory-Management Unit 
(MMU) for Linux OS support 

CPUs 

570T Extremely high-performance, 2- or 3-issue static superscalar 
processor 

Audio 330HiFi Dual-issue static superscalar audio engine optimized for multi-
format digital audio codecs (MP3, AC3, AAC, WMA, etc.) 

Video 38xVDO Four low-power video decoders (two with encoders) for H.264, 
MPEG-4, VC-1 and MPEG-2. 

DSP 545CK 3-issue VLIW, 8-way SIMD DSP 
 
The controllers and CPUs are optimized control-plane processors that are industry leaders 
in area, power consumption, code density and application performance. The Diamond 
108Mini enables SOC architects to quickly integrate an efficient CPU into their designs. 
It is one of the smallest, lowest power 32-bit RISC controllers on the market, while 
achieving performance levels of much larger, complex CPUs. 
 
The Diamond 212GP CPU is an area-wise and power-wise high-performance controller 
core with rich interrupt options and a single-cycle 16-bit x 16-bit MAC, which reduces 
the need to include a separate DSP in the system design. The Diamond 232L adds a 
MMU for Linux operating system support. 
 
The Diamond 570T is a high-performance processor capable of issuing a 64-bit Very 
Long Instruction Word (VLIW) bundle consisting of two or three instruction slots. 64-bit 
multiple instruction bundles are created by the compiler if instructions can be issued 
simultaneously (the compiler may choose to create a bundle with a single instruction for 
performance reasons), otherwise a single 16/24-bit instruction is issued. The results is 
extremely minimal code expansion, due to ‘no-op padding,” as is the case with older 
fixed-length VLIW ISAs. Consequentially, the Diamond 570T code density remains 
high, at least 20% better than competing RISC architectures on industry standard 
benchmarks. The 64-bit bundles are freely intermixed by the compiler with 16/24-bit 
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instructions, and the processor modelessly switches between 16-, 24- or 64-bit 
instructions.  
 
The Diamond 545CK is a general-purpose DSP core. Like the 570T, the 545CK is 
capable of issuing 64-bit bundles with three instruction slots and modelessly switching 
between 16-, 24- and 64-bit instructions. Utilizing dual 128-bit load/store units, the 
545CK DSP is capable of performing eight 16-bit MACs in a single cycle. This core is 
ideal for communications, audio, and imaging applications, employing a highly efficient 
and easy-to-program vector architecture utilizing Tensilica’s C/C++ compiler (XCC). 
The 545CK provides higher data throughput, lower power dissipation, and better DSP 
performance per watt and per area than any other DSP core. The 545CK offers, for the 
first time, a single core architecture that can be rapidly implemented to satisfy the 
specific requirements of any embedded application including control, protocol, signal, 
and image processing. 
 
The Diamond 330HiFi Audio Engine also uses 64-bit bundles consisting of two 
instruction slots in addition to 16/24-bit instructions that are modelessly intermixed. The 
330HiFi consists of a base Xtensa core with additional dedicated audio data registers and 
dual MACs that can operate on 24x24-bit or 32x16-bit data to achieve full 24-bit audio 
precision. Tensilica-defined instructions for audio codecs include load/store to auxiliary 
audio registers, bit-stream control, and specialized Huffman coding operations. Optional 
audio codec software for encoding and decoding most popular audio formats such as 
MP3, AC3, AAC, and WMA can be purchased separately from Tensilica. All audio 
codec software is pre-verified to execute efficiently on the Diamond 330HiFi processor. 
 
The Diamond 38xVDO Video Engine family includes four video processors. Targeted at 
mobile handsets and personal media players (PMPs), Tensilica's Diamond Standard 
Video Engines are fully programmable to support all popular VGA and standard 
definition (SD, also known as D1) video codecs with resolutions up to 720x480 (NTSC) 
and 720x576 (PAL) including H.264 Main Profile, VC-1 Main Profile, MPEG-4 
Advanced Simple Profile (ASP), and MPEG-2 Main Profile, each of which is available 
from Tensilica. Lower resolutions such as QCIF, QVGA, CIF and VGA are also 
supported. 
 
 

Software Support 
 
Software tools are provided with the Diamond Standard processors to ease system 
development. These tools consist of: 

• A software tool suite to match the processor architecture. This tool suite includes 
XCC, a macro assembler, linker, debugger, and a basic software library. While 
XCC’s operation is similar to the GNU C and C++ compiler (GCC), XCC is an 
advanced optimizing compiler that provides superior execution performance. 
XCC also generates executable code with smaller code size relative to other 
compilers. XCC provides vectorizing DSP compiler support for the Diamond 
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545CK and bundles multiple operations into VLIW instructions for the multi-
issue Diamond processors, the 570T, 330HiFi, and the 545CK. 

• Xtensa Xplorer – Diamond Edition (DE), an integrated development environment 
based on the Eclipse platform. Xplorer DS serves as a cockpit for single- and 
multiple-processor SOC hardware and software design. Xplorer DS integrates 
software development and system analysis tools into one common visual design 
environment that provides powerful graphical visualization abilities and makes 
creating processor-based SOC hardware and software much easier. 

• An instruction-set simulator (ISS) that is a cycle-accurate simulator for each of 
the Diamond processors. This pipeline-accurate ISS can be used for code 
benchmarking and enables faster code development, accurate performance 
modeling, and system-level architectural tradeoffs. 

• Audio and video decoders and encoders for the Diamond Standard 330HiFi and 
38xVDO family. 

 

Feature Summary 
 
All Diamond Standard processors share a common base of 16/24-bit instructions. Some 
Diamond processors add VLIW-style 64-bit instructions. Tensilica’s VLIW capability 
allows the issue of multiple operations per instructions, boosting the processor’s parallel 
execution abilities and application performance. Features include: 

• Specialized functional units (not on all cores) 
o Multipliers, 16-bit MAC, SIMD, VLIW 

• Region-based memory protection, full MMU on Diamond 232L 
• Miscellaneous processor attributes 

o Big or little-Endian byte ordering (except 545CK, which is little-Endian 
only) 

o 5-stage pipeline 
o Exceptions: non-maskable interrupt (NMI), nine external interrupts, six 

interrupt priority levels, three 32-bit timer interrupts 
o 32 entry (64 entry on 545CK) windowed register file 
o Write buffer: 4/8/16 entries (depending on processor) 

• Interfaces 
o 32/64/128-bit Processor Interface (PIF) width to main system memory or 

to an on-chip system bus. Tensilica provides a complete Vera-based tool 
kit for PIF bridge implementation and verification. 

o Inbound-PIF (e.g., DMA) requests allow external access to the processor’s 
local memory buses 

o Ooptional AMBA AHB-Lite interface 
o Direct I/O pins for the Diamond 108Mini, 212GP, and 570T processors 
o Streaming data queues for the Diamond 570T, 330HiFi, and 545CK 

processors 
• On-chip memory architecture (varies by processor, see figure 1) 

o Programmable write-through or write-back cache-write policy 
o Cache locking per line for set-associative cache 
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Memory 
Type 

108Mini 212GP 232L 570T 330HiFi 545CK 

Local 
instruction 
RAM* 

1-
128KByte 

0-
128KByte 

N/A 0-
128KByte 

0-128Kbyte 1-128Kbyte 

Local Data 
RAM0 

0-128Kbyte 0-
128KByte 

N/A 0-128Kbyte 0-128Kbyte 0-
128KByte 

Local Data 
Ram1 

0-128Kbyte N/A N/A N/A 0-128Kbyte 0-128Kbyte 

Instruction 
Cache (set 
associativity) 

N/A 8KByte  
(2-way) 

16KByte 
(2-way) 

16KByte 
(2-way) 

8KByte  
(2-way) 

N/A 

Data Cache 
(set 
associativity) 

N/A 8KByte 
(2-way) 

16KByte 
(2-way) 

16KByte 
(2-way) 

8KByte  
(2-way) 

N/A 

Cache Line 
Size (I and 
D cache) 

N/A 32 bytes 32 bytes 32 bytes 64 bytes N/A 

* Processors with no instruction cache require at least 1KByte local instruction memory since 
vectors are mapped to local instruction memory due to performance reasons. 
 
Figure 1 – Memory Architectures for Diamond Standard Processors. 
 

• Processor development and debug capabilities 
o C/C++ callable ISS 
o On-Chip Debug (OCD) capability: Trace and instruction/data breakpoint 

support (two hardware-assisted instruction breakpoints and two hardware-
assisted data breakpoints) 

o GDB debugger support 
o ISS and Co-Simulation Model (CSM) support for Mentor Graphics® 

Seamless™ Co-Verification Environment 
• Robust EDA environment support 

o Physical synthesis design flow 
• Operating system support for Mentor Graphic’s Nucleus Plus, Express Logic’s 

ThreadX, Micrium Technologies’ µC/OS-II, MontaVista Software’s Linux 
Professional Edition, and Sophia Systems’ µITRON. 

 

Code Density 
 
The Xtensa ISA delivers highly efficient code that is as much as 50% smaller than 
today’s popular RISC and CISC architectures. The use of 24- and 16-bit instructions in 
the Diamond Series processors greatly reduces the size of application code compared to 
conventional 32-bit RISC code. Small code size helps to reduce on-chip memory 
requirements. The Xtensa ISA optimizes the size of the program instructions by 
minimizing both the static number of instructions (the instructions that constitute the 
application program) and the average number of bits per instruction. The use of 24- and 
16-bit instruction words, the use of compound instructions, the richness of the 
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comparison and bit-testing instructions, zero-overhead-loop instructions, register 
windowing, and the use of encoded immediate values all contribute to the Diamond 
Standard processors’ small code size.  
 

 
 
Figure 2. The Xtensa ISA Delivers Smaller Code and Better Performance. 
 
The Diamond Standard processors also have several compound instructions that reduce 
the instruction count required to encode and execute a program. Compare-and-branch 
instructions, for example, constitute the most important class of compound instructions, 
reducing code size by at least 5%. Other compound instructions include shirt, 
add/subtract, and shift-and-mask. 
 
The Diamond Standard processors (except the Diamond 108Mini) employ a feature 
common to DSPs but not on general-purpose architectures: zero-overhead loops – the 
ability to iterate a series of instructions without a branch at the end to loop back. With 
this feature, the Diamond processors can execute loops without stalls causes by branch 
mis-predictions or the need for extra instructions to decrement and test the loop counter. 
Reducing loop overhead improves performance and reduces code size. 
 
The Diamond Standard processors employ register windows to reduce the number of 
instruction bits needed to specify a register. Because most instructions specify three 
registers (two source and one destination), register windowing results in substantial 
savings in code size. Register windows support a variable window increment size to 
allow call levels to completely fit into the Diamond processor’s 32-entry general-purpose 
AR register file, thus minimizing the number of stack operations required to save and 
restore registers around call sites. The Diamond processors delay window overflow until 
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absolutely necessary, creating fewer register-spill traps and smaller code size compared 
to other register-window architectures. It also means lower memory traffic and smaller 
code size than other non-register window architectures. 
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Principles of Instruction Set Design 
 
The design of processor instruction sets is a well-established art. Most instruction set 
features are not new in themselves, but features can be combined in new and unique ways 
that advance the state of the art. In particular, when instruction set design is optimized for 
a different use than prior instruction sets, significant improvements result.  
 
Instruction set architecture (ISA) design needs to balance many competing goals, 
including:  

• The size of the machine code required to encode various algorithms  
• The extensibility and adaptability of the ISA for new algorithms and applications  
• The performance of processors that employ this ISA on such algorithms  
• The power consumption of processors that employ this ISA on such algorithms  
• The cost of processors that employ the ISA  
• The ISA’s suitability for multiple future processor implementations  
• The design complexity of processors that employ the ISA  
• The ISA’s suitability as a target for compilation from high-level programming 

languages  
 
The instruction set architecture has one direct and two indirect influences on processor 
performance. The ISA directly determines the number of instructions required to 
implement a given algorithm. Other components of processor performance include the 
minimum possible clock period and the average number of clocks per instruction. These 
are primarily attributes of the implementation of the instruction set, but instruction set 
features may affect the ability of the implementer to simultaneously meet time per clock 
and clocks per instruction goals. For example, a certain encoding choice might mandate 
additional logic in series with the rest of instruction execution, which an implementer 
would address either by increasing the time per clock, or by adding an additional pipeline 
stage, which will increase the number of clocks per instruction (instruction latency).  
 
The RISC (Reduced Instruction Set Computing) processor design philosophy emerged in 
the 1980s. RISC ISAs allow implementers to reduce a processor’s cycles per instruction 
and clock period significantly without seriously increasing the number of instructions 
required to execute a program. RISC ISAs improve the performance of processors, lower 
design complexity, allow lower cost processor implementations at a given performance 
level, and are well suited to compilation from high-level programming languages.  
 
Curiously, there is no single, completely comprehensive or satisfactory definition of the 
term RISC, but RISC processors typically include:  

• Fixed-size instruction words  
• 3-operand instruction orientation (two sources, one result) 
• Large uniform register files for computation operations  
• Simple and fixed instruction-field encoding  
• Memory access via loads and stores of registers  
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• A small number (often 1, usually less than 4) of memory addressing modes  
• Avoidance of features that would make pipelined execution of instructions 

difficult (variable latency and microcoded instructions). 
 
On the other hand, most RISC ISAs – designed for high performance desktop computing 
environments where a large hard disk storage capacity is a given – are not optimized for 
producing compact machine code. In particular, RISC instruction sets usually require 
more program bits to encode an application than pre-RISC ISAs. In many embedded 
applications today, the cost of code storage (on-chip RAM / ROM) is often greater than 
the cost of the processor (gate count), so the use of RISC processors is sometimes limited 
in the most cost-sensitive applications.  
 
An ISA that combines the advantages of RISC with reduced code size would be useful in 
many embedded applications. This combination is one of the underlying themes behind 
Tensilica’s development of the Xtensa ISA. 
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What Makes Xtensa Processors Unique?  
 
The baseline Xtensa architecture builds on many of the principles of RISC, but introduces 
new techniques to improve both the number of instructions required to encode a program 
and the average number of bits per instruction. These techniques hold the promise to both 
improve performance and reduce cost relative to previous architectures. The Xtensa ISA 
starts with the premise that it must provide good code density in a fixed-length, high-
performance encoding based on RISC principles, including a general register file and a 
load/store architecture. To achieve exemplary code density, Xtensa processors add a 
simple variable-length encoding scheme that doesn’t compromise performance. The 
Xtensa architecture further optimizes the cost of processor implementation by balancing 
such features as register files, control-flow operations, arithmetic and logic instructions 
and load/store capabilities in favor of operations that are frequent in modern embedded 
software and small and fast in modern deep-submicron implementation.  
 

Registers  
 
To maintain performance, a RISC instruction set must support at least two source register 
fields and one distinct destination register field. General register instruction sets that 
optimize only for code density are sometimes designed around two register fields – one 
used for source only and one used for both source and destination. This design approach 
sometimes reduces code size, but there is no way to compensate for the increase in the 
number of instructions required to execute a program. Instruction sets that specify fewer 
registers use narrower register fields and save bits per instruction. However, these 
instruction sets increase the number of instructions in the program by forcing more 
variable and temporary values to live in memory and they require extra load and store 
instructions.  
 
Consequently, this design approach increases both the number of cycles for program 
execution and the power dissipated. As the number of the registers increases, the 
marginal benefits of a 2-operand instruction format decline. In particular, at least 16 
general registers are required for good RISC performance. Three 4-bit register fields 
require at least 12 bits to encode. Bits for opcode and constant fields are also required. So 
16-bit encoding, as used by some processors, is not sufficient for good performance.  
 
The Diamond Standard processor cores employ a general purpose (AR) register file that 
contains 32 entries (64 in the Diamond 545CK). Instructions access this physical register 
file through a sliding 16-register window. Register windowing allows the Diamond 
processor to have a relatively large number of physical registers while restricting the 
number of bits needed to encode a source or destination operand address to four bits each. 
Thus the 3-operand instructions need only 12 bits to specify the registers holding the 
instruction’s three operands. This creates a compact, efficient instruction-encoding 
scheme while maintaining the good execution performance that results from having a 
large available register file. 



Diamond Standard Processor Architecture White Paper 
Page 12 

 

Register Windows  
 
Register windows reduce code size and improve performance. Register windows are 
found on a few other processors, such as Sun’s SPARC ISA. The name “register 
window” describes the typical implementation where the register field in the instruction 
specifies a register in the current window into a larger register file. Register windows 
avoid the need to save and restore registers at procedure entry and exit. Instead of saving 
and restoring registers on a stack, a processor with register windows merely changes a 
register-offset pointer, which hides some registers from view and exposes new ones. The 
exposed registers usually do not contain valid data, and can be used directly. Register 
windows that overlap in their views of the physical register file between the caller and 
callee also avoid argument shuffling that can occur when arguments to procedures are 
passed in registers. Finally, register windows alter the breakeven point for allocating a 
variable or temporary to a register, and thus encourage register use, which is faster and 
smaller than using a memory location.  
 
Unlike SPARC’s fixed-window overlap increment, the Xtensa ISA employs a variable 
increment for register windowing. This feature keeps implementation cost low by 
allowing a much smaller physical register file to be used. For example, many Sun 
SPARC ISA implementations use a physical register file of 136 entries, whereas Xtensa 
ISA implementations require a register file of only 64 entries to achieve similar 
performance. The Xtensa ISA specifies new methods to detect window overflow and 
underflow, and to organize the stack frame. 
 

Instruction Width  
 
Prior RISC architectures failed to achieve an appropriate balance between code size and 
performance because RISC ISA designers felt constrained to certain instruction sizes 
such as 16 and 32 bits. There are indeed advantages to using instruction sizes that are 
simple ratios to the data word width of the processor. However, relaxing the restriction 
somewhat has significant advantages that others have not explored. Xtensa processors use 
a 24-bit fixed-length encoding as a starting point; 24 bits are sufficient for achieving high 
performance while providing extensibility and room for powerful instructions that will 
decrease the number of instructions required to execute a program.  
 
The Xtensa ISA’s 24-bit encoding represents a 25% reduction in instruction size relative 
to the more common RISC 32-bit instruction word, which reduces code size requirements 
relative to most 32-bit RISC instruction sets. Most importantly, 24 bits is simple to 
accommodate in a processor with 32-bit data-path widths.  
 
The Xtensa architecture uses 4-bit register fields (see Figure 3), the minimum required 
for acceptable performance and the maximum that fits well within a 24-bit instruction 
word. Many RISC instruction sets use 32 registers (5-bit register fields). The difference 
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in performance between 16 and 32 general registers (about 5%) is not as large as the 
difference between 8 and 16 general registers, and is small enough that other features can 
be introduced to make up the lost performance (e.g. compound instructions and register 
windows—see below). The resulting increase in the number of instructions needed to 
encode a program (also about 5%) is more than offset by the difference between 24-bit 
and 32-bit encoding (a reduction of 25%).  
 

 
 
Figure 3: Xtensa Instruction Encoding Formats. 
 
Note that many instruction sets with 5-bit register fields do not provide 32 general 
registers for compilation. Most dedicate a register to hold zero, even though the addition 
of a few extra instruction opcodes can easily eliminate the need for a zero register (e.g., 
the Xtensa NEG instruction). Also, other registers are often given specific uses that can 
be avoided by including other features in the instruction set. For example, the MIPS 
architecture dedicates two of its 31 general registers for exception handling and one more 
register for a global area pointer. So, in effect, the MIPS architecture provides the 
program with only 28 general registers for variables and temporary storage. That’s only 
12 more registers than an instruction set that uses 4-bit register fields. The division of 
general registers into caller and callee saved registers by software convention is common 
and further restricts the utility of larger register files. The Xtensa ISA includes features 
that avoid this, which brings the effectiveness of the 16 registers almost to the level of 
other processors’ 32 registers. The Xtensa ISA shows that a 24-bit encoding of a full-
featured RISC instruction set is possible. The Xtensa ISA is a significant step forward for 
processor design.  
 

FLIX 64-bit Instructions 
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The Diamond Standard 570T, 330HiFi, 38xVDO, and 545CK take advantage of 
Tensilica’s unique FLIX technology to schedule multiple operations in one 64-bit 
instruction. These wide-word instruction bundles allow more complex, compound 
machine instructions to improve code and application performance.  
 
Unlike older fixed-length VLIW (Very Long Instruction Word) ISAs, the 64-bit-wide 
FLIX instructions are employed by the compiler when needed if instructions can be 
issued simultaneously (the compiler may choose to create a bundle with a single 
instruction for performance reasons), otherwise a single 16/24-bit instruction is issued. 
The results is extremely minimal code expansion, due to ‘no-op padding,” as is the case 
with older fixed-length VLSI ISAs. Consequentially, the code density remains high. The 
64-bit bundles are freely intermixed by the compiler with 16/24-bit instructions, and the 
processor modelessly switches between 16-, 24- or 64-bit instructions.  
 

 
 
Figure 4. The Diamond 330HiFi uses Dual-Issue FLIX Instructions to Boost 
Performance. 
 

Compound Instructions  
 
To improve performance and code size, the Xtensa ISA also provides instructions that 
combine the functions of multiple instructions typically found in RISC and other 
processor instruction sets into a single instruction.  
 
The first example of a compound instruction is a simple “left shift and add/subtract.” The 
high-end HP PA-RISC and DEC Alpha architectures are examples of instruction sets that 
provide these operations. Address arithmetic and multiplication by small constants often 
use these combinations, and providing these operations reduces the instruction count but 
potentially increases the processor clock period because of the additional series logic 



Diamond Standard Processor Architecture White Paper 
Page 15 

added to the computation pipeline stage. However, various implementations have shown 
that when the shift range is limited to 0 to 3, the extra logic is not the most critical 
constraint on the clock frequency. The ARM instruction set provides arbitrary shift and 
add and, consequently, many ARM ISA implementations have degraded maximum clock 
frequencies.  
 
Right shifts are often used to extract a field from a larger word. For an unsigned field 
extract, two instructions (either left shift followed by right shift, or right shift followed by 
an AND with a constant) are typically used. Xtensa provides a single compound 
instruction, EXTUI (extract unsigned immediate), to perform this function. The EXTUI 
instruction is implemented as a shift followed by an AND with a specified mask that is 
encoded in the instruction word using just 4 bits. The logical AND portion of the EXTUI 
instruction is so trivial that its inclusion in the ISA is not likely to increase the clock 
period of Xtensa processor implementations. The same would not be true of an 
instruction to extract signed fields so there’s no corresponding EXTSI instruction 
included in the Xtensa ISA.  
 

Branches  
 
Most processor instruction sets, both RISC and otherwise (e.g. ARM, DEC PDP11, DEC 
VAX, Intel x86, Motorola 68000, Sun SPARC, Motorola 88000) use a compare 
instruction that sets condition code(s), followed by a conditional branch instruction that 
tests the condition code(s) for program flow control. Conditional branches constitute 10-
20% of the instructions in most RISC instruction sets, and each is usually paired with a 
compare instruction. This style of instruction set is wasteful. Some instruction sets (e.g. 
CDC 6600, Cray-1, MIPS, DEC Alpha, HP PA-RISC, Sun SPARC V9) provide a 
compound compare and branch facility of varying flexibility.  
 
The Xtensa ISA provides the most useful compound compare-and-branch instructions. 
Choosing the exact set requires balancing the utility of each compare and branch with the 
opcode space that it consumes, especially when 24-bit (as opposed to 32-bit) instruction 
encoding is the target. Other instruction sets fail this test. Compound compare-and-
branch instructions reduce instruction count, when compared with instruction sets that 
have separate compare-and-branch instructions, and even when compared with the partial 
compare-and-branch instructions in the MIPS and DEC Alpha ISAs. Some Xtensa 
processor implementations may require an increase in clocks per instruction to implement 
some compound compare-and-branch instructions, but the overall performance effect of 
these compound instructions is still positive.  
 
The Xtensa ISA’s compare-and-branch instructions also support comparisons to 
immediate values and use clever encoding of constants to increase their utilization. The 
BEQI, BNEI, BLTI, BGEI instructions also use a 4-bit field that encodes various 
common constants. The BLTUI and BGEUI instructions use a different encoding, as 
unsigned comparisons have a different set of useful values  
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The Xtensa processor’s compound compare-and-branch instruction sets pack all of these 
immediate values into a single instruction word, resulting in smaller fields. These 
instructions combine the comparison opcode, two source-register fields, and an 8-bit PC-
relative offset target specifier into a 24-bit instruction word. The 8-bit relative target 
specifier will be too small in some infrequent cases so the compiler or assembler 
compensates by using a conditional branch of the opposite nature around an 
unconditional branch with a longer range. The Xtensa ISA also provides a series of 
compound compare-and-branch instructions that test against zero, the most common case. 
These compound compare-and-branch instructions have a 12-bit PC-relative offset, 
which provides much greater range.  
 
The Xtensa architecture adds another important and unique goal to instruction set design: 
complete support for extensibility that allows for the addition of new data types, 
implemented in new instructions and closely coupled coprocessors. The Xtensa ISA uses 
an additional method for allowing coprocessor conditional branches. The Xtensa ISA 
offers an option that adds 16 1-bit Boolean registers. The Xtensa ISA’s BF (branch if 
false) and BT (branch if true) instructions test these Boolean registers and branch 
accordingly.  
 
Xtensa ISA instructions can set the Boolean registers based on comparisons of their 
supported data types. All Xtensa processors share the baseline ISA’s Boolean register set 
and the BF and BT instructions. This approach makes efficient use of the Xtensa ISA’s 
short, 24-bit instruction word. This scheme is a new variant of compare-and-branch 
condition codes found in many earlier processor ISAs. The use of single-bit (Xtensa, 
MIPS) instead of multi-bit comparison-result registers (most other ISAs) increases the 
number of comparison opcodes required but decreases the number of branch opcodes 
required. This ISA design approach also makes the introduction of a broad range of 
application-specific branches and conditional operations simple and efficient for users to 
implement—a very important feature for an ISA designed expressly for extensibility.  
 
The Xtensa ISA also provides a general-purpose, zero-overhead loop feature similar to 
that found in some DSPs (digital signal processors). Most RISC processors use their 
existing conditional branch instructions to implement software loops. However, this 
opcode economy increases program cycle count and consequently reduces execution 
speed. For many RISC ISAs, loop overhead consists of three instructions: add, compare, 
and conditional branch. The performance impact of the loop overhead is higher when the 
loop body is small. For small software loops, many compilers use an optimization called 
loop-unrolling to spread the loop overhead over two or more loop iterations, but this 
approach duplicates the loop body and significantly increases code size.  
 
By contrast, many DSPs and some general-purpose processors provide other ways to 
perform certain kinds of loops. The first method is to provide an instruction that repeats 
the succeeding instruction a fixed number of times (e.g. TI TMS320C2x, Intel x86). For 
1-instruction loops, a repeat prefix instruction eliminates loop overhead and saves power 
by eliminating the need to repeatedly fetch the same instruction within the loop. Some 
ISAs with repeat instructions require that the processor not take an interrupt during the 
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loop. This limitation can impose unacceptable interrupt latency because loop execution 
may require many machine cycles to complete. An improvement on simple repeat prefix 
instructions is the ability to iterate a block of instructions multiple times with reduced or 
zero loop overhead (e.g. TI TMS320C5x).  
 
The Xtensa ISA provides this zero-overhead loop capability via its LOOP, LOOPGTZ, 
and LOOPNEZ instructions in all Diamond Standard processors except the Diamond 
108Mini. The Xtensa ISA’s LOOP instructions eliminate instruction execution cycles 
required for incrementing the loop index, for comparison and branch operations, and it 
avoids the taken-branch penalty that is typically associated with a compilation of loops 
based on conditional-branch instructions. The Xtensa ISA demonstrates how a reduced 
overhead looping capability can be integrated into a general-purpose processor ISA (as 
opposed to a DSP) to improve both execution performance and code size.  
 
Overall, the Xtensa architecture makes six important contributions to general branch 
instructions:  

1. A choice of compare-and-branch instructions in a RISC ISA with the most useful 
comparisons  

2. Compare-and-branch with encoded immediate values, including branch-on-bit 
instructions  

3. Instruction formats with longer target specifiers for common cases (test against 
zero)  

4. The encoding of all branch instructions in a 24-bit instruction word  
5. Support for branches on coprocessor Boolean registers (condition codes) with 

logical operations on Booleans  
6. Zero-overhead loops that eliminate branch execution delay and reduce code size.  

 

Limited Instruction Constant Width  
 
No Xtensa baseline instruction is longer than 24 bits, so constant fields in the instruction 
word are constrained. The Xtensa architecture addresses this issue in several ways. The 
Xtensa ISA provides small constant fields to capture the most common constants. Xtensa 
instructions encode the constant value rather than specifying it directly. The encoded 
values are chosen from a wide array of program statistics as the N (e.g. 16) most frequent 
constants for each instruction type. The Xtensa architecture uses this technique in the 
ADDI4 instruction, where the 16 values are chosen to be -1 and 1 to 15, rather than 0 to 
15. Adding 0 is of no utility (there is a separate MOVE instruction), and adding –1 is 
common. The constants used in bitwise-logical operations (e.g. AND, OR, XOR, etc.) 
represent bit masks of various sorts, and often do not fit in small constant fields. Bit 
patterns consisting of a sequence of 0s followed by a sequence of 1s, and a sequence of 
1s followed by a sequence of 0s are quite common. For this reason, the Xtensa 
architecture has instructions that avoid the need for putting a mask directly into the 
instruction word. The EXTUI instruction (described above) performs a shift followed by 
a mask consisting of a series of 0s followed by a series of 1s, where the number of 1s is a 
constant field in the instruction.  
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Xtensa load and store instructions use an instruction format with an 8-bit constant offset 
that is added to a base address from a register. The Xtensa ISA both makes the most of 
these 8 bits and provides a simple extension method when 8 bits is insufficient. Xtensa 
load/store offsets are zero-extended rather than sign-extended because the values 128 to 
255 are more commonly used by load and store instructions than the values -128 to -1. 
Also, the offset is shifted left appropriately for the reference size because most references 
are to aligned addresses from an aligned base register. The offset for 32-bit loads and 
stores is shifted by 2 bits; the offset for 16-bit loads and stores is shifted by 1 bit; and the 
offset for 8-bit loads and stores is not shifted. Most loads and stores are 32-bit, and so this 
technique provides 2 additional bits of range. When the 8-bit constant offset specified in 
a load/store instruction (or an ADDI instruction) is insufficient, the Xtensa ISA provides 
the ADDMI instruction, which adds its 8-bit constant shifted left by 8 bits. Thus a two-
instruction sequence has 16 bits of range, 8 bits from the ADDMI, and 8 bits from the 
load/store or ADDI instruction.  
 

Short Instruction Format  
 
The Xtensa ISA consists of a core set of instructions that must be present in all 
implementations of the instruction set, and a set of optional instruction packages that may 
or may not be present in a given implementation. One of the most popular packages is the 
short instruction format package. It provides even further code size reductions by 
reducing the average number of bits per instruction. When these short-format instructions 
are present, the Xtensa ISA changes from a fixed-length (24-bit) instruction set to one 
with two instruction sizes (24-bit and 16-bit). Note that the Xtensa architecture does not 
employ modes to add the 16-bit instructions to the ISA the way some other RISC 
processors do. The Xtensa ISA’s 24- and 16-bit instruction formats are operative 
simultaneously so there is zero overhead incurred in switching from one instruction 
format to another.  
 
Because the Xtensa short instruction forms are optional, these forms are used solely for 
improving code size; no new capabilities are added by the Xtensa ISA’s 16-bit 
instructions. The set of instructions that can be encoded in 16 bits consists of the most 
statically frequent instructions that will fit. The most frequently used instructions in most 
instruction sets are loads, stores, branches, adds, and moves; these are exactly the 
instructions present in the Xtensa ISA’s 16-bit instruction set.  
 
Only the most frequent instructions need short encodings, so three register fields are still 
available (because the opcode field is small) and narrow, encoded constant fields can 
capture a significant fraction of the uses. Approximately half of the Xtensa instructions 
needed to represent an application can be encoded in just six of the sixteen opcodes 
available in a 16-bit instruction encoding after three 4-bit fields are reserved for register-
specifiers or constants.  
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External Processor Interface (PIF) 
 
The PIF connects the core to any proprietary or standard system bus. The PIF width 
depends on the specific Diamond core (32 bits on the Diamond 108Mini, 212GP, and 
232L; 64 bits on the 570T and 330HiFi and 128 bits on the 545CK). The PIF consists of 
two separate, unidirectional input and output channels. The external interface unit 
manages data transfers between the PIF and the processor’s local instruction memory 
ports or the data memory ports. In particular, this unit manages data and instruction 
cache-line requests and provides inbound PIF (external PIF master) capabilities to the 
processor’s local instruction and data RAMS. 
 

Xtensa Local Memory Interface (XLMI) Port 
 
The Diamond Standard 212GP and 570T cores include one 128 Kbyte XLMI port. On the 
Diamond 212GP this is 32 bits wide and on the Diamond 570T it is 64 bits wide. Unlike 
the other local memory ports, the XLMI port is designed to connect to blocks and devices 
other than memory. The XLMI port has signals to indicate when a load has been retired 
to help ensure that speculative-read effects do not cause improper operation of decides 
attached to the XLMI port. Therefore, devices with read-side effects can be attached to 
the XMLI bus as long as they adhere to the “load retired” and “load flushed” signaling 
protocols.  
 

Ports and Queues for High-Speed I/O 
 
Tensilica’s Diamond Standard processors are unique in that they offer extremely high-
speed input/output, bypassing the system bus to transfer data between processors and/or 
RTL blocks. Ports are 32-bits wide and are general-purpose input/output wires that can be 
connected to any part of the system. Data on these ports can be read/written directly into 
the general purpose registers. Ports are available on the Diamond 108Mini, 212GP, and 
570T.  
 
Queues take this idea further, allowing FIFO flow-controller I/Os completely accessible 
simultaneously from the base CPU and external logic blocks. Queues are 32-bits wide 
and include flow-control logic, allowing high-speed FIFO interfaces to other system 
blocks, bypassing the main system bus.  This eliminates main system bus data contention, 
one of the most common problems in complex system-level silicon design today. Queues 
are available on the Diamond 570T, 330HiFi, and 545CK. 
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Figure 5. Example of Use of Queues to Speed Data Transfer. 
 

Dual Load/Store Units for High-Speed DSP 
 
The Diamond Standard 545CK includes two load/store units that can be used 
simultaneously, allowing the processor to perform XY memory operations, permitting 
very high performance execution of many DSP algorithms.  

Interrupts and Timers 
 
Unlike many other 32-bit processor cores, the Diamond Standard processors feature rich 
interrupt and timer capabilities. Nine external interrupts, three timer interrupts, and two 
software interrupts are provided. 
 

Architectural Building Blocks 
 
The following blocks are included in all Diamond Standard processors: 

• On-chip Debug (OCD) – used to access the internal, software-visible processor 
state through a JTAG port. OCD support includes: debug-mode entry through 
exception generation, access to all program-visible registers and memory 
locations, execution of any instruction that the processor can execute, 
modification of the program counter to jump to a desired code location, real-time 
debug, and a utility for returning to normal operating mode. 

• RAM – the RAMS provide internal memory ports with address ranges within the 
processor’s address space and accessed with the same timing as cache. There are 
two optional RAMS: instruction RAM and one or two data RAMS. 

• Timer interrupts – there are three timer interrupts, with one 32-bit read/write 
register that increments every clock cycle and thee 32-bit comparison registers 
that can generate level-1 interrupts or high-priority interrupts. 
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The following blocks are included in some Diamond Standard processors: 
• 16-bit multiply and multiple-accumulate (MAC16) (in Diamond 323GP, 232L, 

570T, 330HiFi, and 545CK) – adds a 16x16-bit multiplier and a 40-bit 
accumulator, eight 16-bit operand registers (separate from the main register file), 
special load instructions for operand registers, and a set of compound operations. 
The MAC16 operand registers can be loaded with pairs of 16-bit values from 
memory in parallel with MAC16 operations and the MAC16 can sustain 
algorithms  with two loads per multiply/accumulate. 

• 32-bit Multiply (in Diamond 570T) – provides instructions that perform 32x32-bit 
multiplication, producing a 32-bit result. 

 

Low Power – Built In 
 
Clock gating is a very effective power reduction technique that reduces power by 
stopping unnecessary clocking activity to parts of the logic that are not in use on a 
particular clock cycle. Tensilica has designed fine-grained clock gating for every 
functional element of these processors. The Diamond Standard Series processor 
architecture dramatically lowers power consumption since it is designed to use power 
very efficiently. 
 

Summary  
 
The Xtensa architecture makes a number of fundamental contributions to embedded 
processor architecture, including:  

• A full 16-visible windowed register file, three-operand programming model in 
less than 32-bit instruction encoding for performance, generality, and code size  

• Rich selection of commonly occurring instruction combinations as compound 
instructions  

• Encoding of common immediate values for performance and code-size  
• An unusually rich and powerful branch architecture, including compare and 

branch, bit-test branches, coprocessor condition codes and branches, and zero-
overhead loops, for performance and code size  

• An available 16-bit instruction subset that can be freely intermixed with 24-bit 
base instructions for further code density improvement 
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The Diamond Standard Processors 
 

The Diamond Standard 108Mini RISC Controller Core 
 

 
 
The Diamond Standard 108Mini is an efficient, ultra-low power, fully synthesizable 32-
bit RISC CPU controller core.  
 
Features include: 

• Cacheless design with memory protection unit 
• Single-cycle instruction and dual-data SRAM interfaces 
• Non-maskable interrupt 
• 15 external interrupts at 6 priority levels 
• 3 timers 
• On-chip debug hardware 
• 32-bit input and 32-bit output GPIO pins for direct communication  
• FPGA system prototyping support reduces design risk 
• Single-cycle local instruction and/or dual data SRAM interfaces 
• Optional AMBA AHB-lite interface 
• Hardware based simulation on Avnet LX60 boards 
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Representative Performance/Area/Power for Diamond 108Mini 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 0.43 0.39 0.23 0.206 
Area (mm2) post layout 0.54 0.49 0.27 0.24 
Frequency (MHz) post layout 233 50 350 50 
Power (mW/MHz) post layout 0.10 0.076 0.046 0.04 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools 

Diamond 108Mini Offers ARM9 Performance at Lower Area and Power 
than ARM7  
 
 ARM 7TDMI-S** Diamond 108Mini ARM 968E-S 
Max frequency (0.13u G) worst case, 
optimized for speed, Sage-HS library 

184 MHz 275 MHz 270 MHz 

Dhrystone MIPS 131 324 297 
Power – mW per MHz (0.13G)* 0.10 0.08 0.11 
Area – (0.13u G) for base core 
(Sage-X library, area optimized) 

0.24mm2** 0.20 mm2 0.40 mm2

Area for core + bus interface + 
interrupt controller + timers 

0.43 mm2 
(extrapolated 

from 0.24mm2) 

0.39 mm2 0.55 mm2 
(extrapolated 

from 0.40 
mm2) 

Code Density Mode bit to 
switch between 
32- and 16-bit 
instructions 

Modelessly switch 
between 24- and 

16-bit instructions 

Mode bit to 
switch 

between 32- 
and 16-bit 

instructions 
Low-power modes None Two One 
Memory architecture Unified I & D bus Single I-RAM 

TCM; Dual D-RAM 
TCMs 

Single I-RAM 
TCM; Dual D-
RAM TCMs 

Number of interrupts 3 15 3 
Number of integrated timers 0 3 0 
Direct interface ports/wires (GPIOs) No 32-bit input ports, 

32-bit output 
ports 

No 

*Power depends on operating conditions, standard cell libraries, performance targets, and 
processor load. 
**Assumes no bus interface, interrupt controller, trace interface, memory protection unit, GPIO. 
Data on ARM products taken from ARM public website and product information flyers, February 
2007 for TSMC 0.13G process. All speed, power and area metrics are subject to variation based on 
user's design and fab choices. 
 
 



Diamond Standard Processor Architecture White Paper 
Page 24 

 
Diamond 108Mini Comparison with ARM7 
 

 ARM7TDMI-S Diamond 108Mini 
3-stage pipeline: 100-180 MHz 5-stage pipeline; 200-250 MHz 

Performance Single bus for instruction and data 
access; poor and unpredictable 
behavior 

Separate instruction and data 
buses. Single instruction TCM 
and dual data TCMs 

Code Density 
32/16-bit ISA with mode bit leads to 
10-25% higher code size 

24/16-bit ISA without mode bit 
leads to extremely compact 
code without performance hit 

Power No low power states Two low power modes (SunStall, 
waiti) 

0.24 mm2 for 3-stage pipeline, without 
system interface, write buffer, timers, 
interrupt controller 

0.20 mm2 for equivalent core 
with 5-stage pipeline 

Area 0.43 mm2 (estimated) with system 
interface, write buffer, timers, interrupt 
controller 

0.39 mm2 with all of that plus 
GPIO pins and dual-data TCM 
interface 
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The Diamond Standard 212GP Controller Core 
 

 
 
The Diamond Standard 212GP is a high-performance, versatile 32-bit RISC SOC 
controller core, providing high performance with minimal die area and power. 
 
Features include: 

• Single-cycle 16x16-bit MAC 
• DSP instructions eliminate need for extra DSP 
• DSP instructions include 16x16 MAC/MUL, Min/Max, Clamps, Sign Extend, 

NSA 
• 16K, 2-way Instruction and Data caches 
• Local single-cycle instruction and data SRAM interfaces 
• On-chip debug hardware 
• Non-maskable interrupt 
• 15 external interrupts with 6 priority levels 
• 3 timers 
• 32-bit input and 32-bit output GPIO pins 
• Optional AMBA AHB-lite interface 
• Hardware-based simulation on Avnet LX60 boards 
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Representative Performance/Area/Power for Diamond 212GP 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 0.65 0.58 0.34 0.3 
Area (mm2) post layout 0.88 0.79 0.41 0.37 
Frequency (MHz) post layout 233 50 350 50 
Power (mW/MHz) post layout 0.21 0.186 0.076 0.067 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools 
 
Diamond 212GP Provides Better Performance than ARM9  
with Lower Power and Smaller Area 
 
 ARM 946E-S Diamond 212GP 
Max frequency (0.13u G) worst case 
conditions(Sage-HS library, 
optimized for speed) 

230 MHz 260 MHz 

Dhrystone MIPS 253 350 
Power – mW per MHz (0.13G) 
(Sage-X library, optimized for area)* 

0.31 0.19 

Area (Sage-X library, optimized for 
area) 

0.97 mm2 0.58 mm2

Code Density Mode bit to switch 
between 32- and 16-

bit instructions 

Modelessly switch 
between 24- and 16-bit 

instructions 
Number of interrupts 3 15 with 6 priority levels 

(with integrated 
interrupt controller) 

Number of Integrated Timers 0 3 
Direct interface ports/wires No 32-bit input ports, 32-bit 

output ports 
*Power depends on operating conditions, standard cell libraries, performance targets, 
and processor load.  
Data on ARM products taken from ARM public website and product information flyers, 
February 2007 for TSMC 0.13G process. All speed, power and area metrics are subject to 
variation based on user's design and fab choices. 
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The Diamond Standard 232L RISC Controller Core 
 

 
 
The Diamond Standard 232L is similar to the Diamond 212GP, but it adds a full-featured 
Memory Management Unit (MMU) for the Linux operating system, making it the 
smallest, lowest-power Linux-ready CPU in its class. 
 
Features include: 

• Linux-compatible, full-featured MMU 
• 5-stage pipeline 
• DSP instructions: 16x16 MAC/MUL, Min/Max, Clamps, Sign Extend, NSA 
• 16Kbyte, 4-way set associative instruction and data caches, programmable write-

through or write-back 
• Single-cycle 16x16-bit MAC 
• On-chip debug hardware 
• 15 interrupts with 6 priority levels 
• 3 timers 
• Hardware-based simulation on Avnet LX60 boards 
• Optional AMBA AHB-lite interface 
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Representative Performance/Area/Power for Diamond 232L 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 0.81 0.71 0.42 0.37 
Area (mm2) post layout 1.08 0.96 0.53 0.47 
Frequency (MHz) post layout 233 50 350 50 
Power (mW/MHz) post layout 0.28 0.25 0.10 0.09 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools. 

Diamond 232L Offers More Linux-Ready Features at Half the Power 
and Area 
 
 ARM 946EJ-S Diamond 232L 
Max frequency (0.13u G) worst case,  
Sage-X library,optimized for speed 

276 MHz 250 MHz 

Dhrystone MIPS 300 300 
Power – mW per MHz (0.13G) 
(Sage-X library, optimized for area)* 

0.36 0.26 

Power – mW at same MHz 0.36 0.26 
Area (Sage-X library, optimized for 
area) 

1.45 mm2 0.72 mm2

Code Density Mode bit to switch 
between 32- and 16-

bit instructions 

Modelessly switch 
between 24- and 16-bit 

instructions 
Zero-overhead looping No Yes 
Number of interrupts 3 15 with 6 priority levels 

(with integrated 
interrupt controller) 

Number of timers 0 3 
*Power depends on operating conditions, standard cell libraries, performance targets, 
and processor load.  
Data on ARM products taken from ARM public website and product information flyers for 
TSMC 0.13G process. All speed, power and area metrics are subject to variation based on 
user's design and fab choices. 
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The Diamond Standard 570T Static-Superscalar Controller Core 
 

 
 
The Diamond Standard 570T is among the highest performance, highest throughput 
licensable embedded CPUs available today. 
 
Features include: 

• Three-issue, static superscalar VLIW (very long instruction word) CPU 
• Modeless switching between 16-, 24-, and 64-bit 3-issue instructions 
• 64-bit local memory interfaces to cache and single-cycle local SRAM 
• Dual 32x32 MULs with vector/SIMD capability 
• DSP instructions 
• 16 Kbyte, 2-way set associative instruction and data caches, programmable write-

through or write-back 
• Single cycle instruction and data SRAM interface, high-speed peripheral port 

(XLMI) 
• 32-bit input and 32-bit output GPIO pins 
• Memory protection unit, 64-bit PIF interface with AHB-lite bridge 
• Hardware-based simulation on Avnet LX60 boards 
• Compact size (approximately 1/3 gate count of competition) 
• FIFO Queues allow direct connection between processors and hardware, reducing 

main system bus contention and speeding I/O 
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Representative Performance/Area/Power for Diamond 570T 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 1.03 0.91 0.55 0.48 
Area (mm2) post layout 1.43 1.26 0.7 0.61 
Frequency (MHz) post layout 233 50 350 50 
Power (mW/MHz) post layout 0.29 0.256 0.115 0.10 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools 

Diamond 570T Uses Less than Half the Die Area and 1/3 the Power of 
ARM 1136/1156 
 
 ARM 1156T2-S Diamond 570T ARM 1136J-S 
Instruction Issue (per cycle) 1 3 1 
Maximum Frequency (90G) (Sage-
HS library, optimized for frequency) 

620 MHz 892 (EEMBC 
equivalent freq.) 

(Actual = 388 MHz 

620 MHz 

Dhrystone MIPS/MHz 1.20 (est) 1.52 1.20 
Power – mW per MHz (0.13G) 
(Metro library, optimized for area) 

0.24 0.10 0.20 

Power – mW for the same 
performance 

149 mW @ 620 
MHz 

38 mW @ 388 MHz 112 mW @ 
620 Mhz 

Area (90G, pre-layout) (Sage-X 
library, optimized for area) 

0.85m2 0.55m2 0.90 mm2

Instruction width 16/32 bit 16/24/64 bit 3-
issue 

16/32 bit 

High throughput data Queues No Yes (input and 
output) 

No 

Direct interface ports/wires (GPIOs) No 32-bit input ports, 
32-bit output 

ports 

No 

*Power depends on operating conditions, standard cell libraries, performance targets, and 
processor load. 
Data on ARM products taken from ARM public website, October 2006, for TSMC 90nmG process. All 
speed, power and area metrics are subject to variation based on user's design and fab choices. 
 

 
 

 

Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC 
Benchmarks 
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 ARM 1136JF-S* ARM 1026EJ-S 
(certified as core) 

Diamond 
570T 

NetMARK 1.0 1.29 2.55 
ConsumerMARK 1.0 1.47 2.91 
OfficeMARK 1.0 1.19 1.64 
TeleMARK 1.0 1.06 2.28 
Geometric Mean 1.0 1.24 2.30 

Results normalized on a per-MHz basis 
* Results extrapolated from Freescale IMX31 device. No certified ARM1136JF-S EEMBC results 
have been published. 
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The Diamond Standard 330HiFi Audio Engine 
 

 
 
The Diamond 330HiFi core is optimized for digital audio processing. All popular audio 
codecs have been pre-ported to the Diamond 330HiFi core, making it a “drop-in” block 
for any SOC application requiring high-quality 24-bit audio. 
 
Features include: 

• Based on standard 32-bit RISC architecture with integrated 24-bit audio 
processing instructions including Variable Length Decode (VLD) 

• Dual-issue VLIW DSP with 24-bit data path and instructions customized for 
audio codecs 

• Industry-leading low-power consumption coupled with high-fidelity 24-bit audio 
• Popular digital audio software pre-ported (MP-3, AAC, WMA, AC-3, MIDI, 

more) 
• Modeliess switching between 16-, 24-, and 64-bit dual-issue instructions 
• Dual MACs can operate as 32x16-bit or 24x24-bit 
• 4 Kbyte Instruction and 8 Kbyte Data 2-way set associative caches, 

programmable write-through or write-back 
• 32-bit input/output FIFO interfaces 
• 64/32-bit system interface with AHB-lite bridge 
• Single audio engine supports multiple codecs 
• Performance headroom to perform other functions 
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Representative Performance/Area/Power for Diamond 330HiFi 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 1.37 1.2 0.68 0.59 
Area (mm2) post layout 1.74 1.5 0.84 0.74 
Frequency (MHz) post layout 233 50 350 50 
Power (mW/MHz) post layout 0.29 0.25 0.118 0.10 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools. Includes 
VLD (variable length decode). 
 
Please see our web site (www.tensilica.com) for an up-to-date list of audio decoders and 
encoders available for the Diamond 330HiFi. 

Diamond 330HiFi is Four Times as Energy Efficient as ARM968E-S 
 

 
 

http://www.tensilica.com/
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Diamond Standard 545CK 8-MAC, VLIW DSP 
 

 
 
The Diamond 545CK is the highest performance licensable DSP IP core. It is a single 
core that can be used for both system control and DSP. 
 
Features include: 

• Highest performance and efficiency of any licensable DSP core 
• Three-issue VLIW DSP with 8-way SIMD units  
• Very high code density – no VLIW-style code bloat 
• DSP instructions native to single core, modeless switching between 16-, 24-, and 

64-bit instructions 
• Fully synthesizable, targeting any process technology 
• Eight 16-bit multipliers that operate in SIMD mode. 16-entry, 160-wbit-wide 

vector register file. 
• Two 128-bit load/store units 
• 32-bit input/output FIFO interfaces 
• Viterbi convolutional coder accelerator 
• Performance headroom allows operation at a lower frequency to reduce power 

consumption 
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Representative Performance/Area/Power for Diamond 545CK 
 
 

Process Tech 130G 90G 
Optimized for Speed  Area  Speed  Area 
Area (mm2) post synthesis 2.9 2.3 1.45 1.16 
Area (mm2) post layout 4.38 3.5 1.9 1.55 
Frequency (MHz) post layout 233 50 325 50 
Power (mW/MHz) post layout 0.54 0.43 0.16 0.13 

 
All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All 
area, power, and frequency numbers are representative only, and subject to variation 
based on each user’s chosen process technology, cell library, and design tools. Area 
assumes 50% utilization 
 

Diamond 545CK is the Fastest Licensable DSP Core 

 

BDTI BenchmarksTM Notes: 
All scores use worst-case clock speeds for the TSMC CL013G process and ARM Artisan SAGE-X library. 
The BDTIsimMark2000TM is a summary measure of DSP speed. See www.BDTI.com for info. Scores © 
2006 BDTI.  
Diamond 545CK configuration tested by BDTI: 220 MHz final layout timing under worst case conditions. 
3.7 mm2 actual layout area. Leakage power 0.7mW + dynamic power 0.2 mW/MHz. 

http://www.bdti.com/
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Diamond Standard 38xVDO Video Engine Family 
 

 
 

Targeted at mobile handsets and personal media players (PMPs), Tensilica's Diamond 
Standard Video Engines are fully programmable to support all popular VGA and standard 
definition (SD, also known as D1) video codecs with resolutions up to 720x480 (NTSC) 
and 720x576 (PAL) including H.264 Main Profile, VC-1 Main Profile, MPEG-4 
Advanced Simple Profile (ASP), and MPEG-2 Main Profile, each of which is available 
from Tensilica. Lower resolutions such as QCIF, QVGA, CIF and VGA are also 
supported. 

The Diamond Standard VDO Engines host all the key video processing functions in 
software on the cores – including the network abstraction layer, picture layer, slice layer, 
bit-stream parsing and entropy decoding and encoding. This includes the computationally 
demanding CABAC (Context Adaptive Binary Arithmetic Coding) decoding in the 
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H.264 Main profile decoder that most other solutions omit, implement in a separate and 
complex non-programmable hardware block or necessitate more than 700 MHz of 
general CPU workload which significantly increases power consumption. By 
implementing CABAC in instruction set extensions, Tensilica was able to create a low 
MHz and power efficient version of CABAC in less than half the area of a typical 
CABAC hardware block.  

The Diamond VDO family offers both Baseline and Main profile solutions – Main profile 
offers superior data compression and video quality and is the preferred coding scheme at 
resolutions of D1 and higher for advanced handset and PMP applications. Most other 
video solutions for SOC design only implement Baseline profile video. 

Tensilica Engine Decoders Encoder 
Baseline Profiles – D1 

Diamond 381VDO 

H.264 Baseline Profile 
MPEG-4 Simple Profile 
VC-1/WMV9 Simple Profile 
MPEG-2 Main Profile 

None 

Diamond 383VDO 

H.264 Baseline Profile 
MPEG-4 Simple Profile 
VC-1/WMV9 Simple Profile 
MPEG-2 Main Profile 

MPEG-4 Simple Profile 

Main/Advanced Profiles – D1 

Diamond 385VDO 

H.264 Main Profile 
MPEG-4 Advanced Simple Profile
VC-1/WMV9 Main Profile 
MPEG-2 Main Profile 

None 

Diamond 388VDO 

H.264 Main Profile 
MPEG-4 Advanced Simple Profile
VC-1/WMV9 Main Profile 
MPEG-2 Main Profile 

MPEG-4 Advanced Simple 
Profile 

 

Features include: 
• Multi-standard video decoder and encoder engine  
• Fully programmable to support most video decoder algorithms  
• Very low power, low area  
• Full matching software tool chain  
• C-level system model available for evaluation with video test streams and for 

software development  
• FPGA prototype available for demonstration and evaluation   
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Benchmarks – The Diamond Standard Processor Family 
Xtensa-Based Architecture Tops Industry Leaders 
 
In benchmark after benchmark, the Diamond Standard processor family comes out on 
top. Tensilica used its Diamond 570T high-performance CPU in the popular industry 
EEMBC benchmarks, and here are the results. 
 

EEMBC (Embedded Processor Benchmark Consortium) Benchmarks  
 
No single benchmark can accurately capture the full range diversity of embedded 
applications. In an effort to create an embedded benchmark that would be more 
informative than the Dhrystone, EDN Magazine sponsored the creation of a 
comprehensive suite of representative embedded applications. More than 40 leading 
processor and software companies have joined EEMBC and together developed both a set 
of benchmarks and a fair process for running, measuring, certifying, and publishing test 
results. These benchmarks cover a wide range of embedded tasks, but the bulk of the 
certified results are available for four suites: networking, consumer, telecommunications, 
and office automation.  
 
The data in this section is taken directly from the certified results on the EEMBC website 
at www.eembc.com, as of October 2006. In each case we compare the Diamond Standard 
570T processor core to the ARM cores 
 
The ARM architecture is represented in the EEMBC benchmarks by the ARM1026EJ-S, 
the only core that has been benchmarked by ARM. We also compare it to the 
ARM1136JF-S, which was benchmarked in a Freescale IMX31 device. No certified 
ARM11 EEMBC results have been published as of October 2006. 
 
Each EEMBC test suite consists of a number of different programs, written in C. The 
EEMBC Netbench 1.1 benchmark suite approximates the performance of processors in 
low-end routers. It consists of three benchmark kernels. One implements the Dijkstra 
shortest-path-first algorithm, which is widely used in routers and other networking 
equipment to find the shortest or least-cost path from a specific router to all other routers. 
The packet flow benchmark indicates the potential performance in an IP router with four 
network interfaces. In the route look-up benchmark, performance is measured on the 
fundamental operation of IP datagram routers, including receiving and forwarding IP 
datagrams and implementing an IP lookup mechanism based on a Patricia Tree. 
 
 
 
The EEMBC Consumer benchmark suite is a compilation of five separate benchmark 
kernels that are representative of consumer digital imaging applications. The high-pass 

http://www.eembc.com/
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grey-scale filter benchmark demonstrates performance in front-end processing of digital 
still cameras, showcasing 2-D data array and multiply/accumulate capabilities. The JPEG 
compression and decompression benchmarks take still images from full source data 
captured from a sensor, compress to a JPEG file format for data storage, and reconvert 
back to full image representation, a common set of tasks in consumer products such as 
digital still cameras and digital video camcorders. The RGB to CYMK conversion 
benchmark demonstrates a common conversion used in color printing. The RGB to VIQ 
conversion benchmark demonstrates a conversion used in NTSC encoders for digital 
video processing. 
 
The EEMBC Office Automation benchmark is a suite of benchmarks that approximate 
the performance of processors in printers, plotters and other office automation systems 
that handle text and image processing text. It includes a dithering benchmark that 
evaluates how the processor handles indirect references (used for managing internal 
buffers), how it manipulates large data sets, how it manipulates packed-byte quantities 
(used to hold gray-scale pixel data), and how it performs four byte-wide multiply 
accumulate operations per pixel. An image rotation benchmark uses a bitmap rotation 
algorithm that rotates a complete binary image 90 degrees clockwise, testing bit 
manipulation, comparison and indirect reference capabilities. A text processing 
benchmark exercises the processor’s byte manipulation, pointer comparison, indirect 
reference handling, and stack manipulation capabilities. 
 
The EEMBC Telecom benchmark suite approximates the processor’s performance in 
modem, xDSL, and related fixed-telecom applications. It includes five kernels that 
represent traditional DSP algorithms. The autocorrelation benchmark is based on a 
mathematical tool used frequently in signal processing for analyzing functions or series 
of values, such as time domain signals. The convolutional encoder benchmark, useful for 
cellular and modem applications, adds redundancy for error checking and explores the 
ability to perform bit-wise exclusive ors and table lookups. The bit allocation benchmark 
test the ability to stream data over a series of buffers, which it then modulates and 
transmits on a telephone line in ADSL applications. The Inverse Fast Fourier Transform 
benchmark tests the ability to convert frequency domain data into time domain data. The 
Fast Fourier Transform benchmark tests the ability to convert time domain data into 
frequency domain data. And the Viterbi decoder benchmark tests the processor’s ability 
to recover an output data packet from an encoded input data packet in embedded IS_136 
channel coding applications. 
 
The following chart shows that the Diamond Standard 570T performs much better than 
any ARM processor tested. 
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Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC 
Benchmarks 
 
 ARM 1136JF-S* ARM 1026EJ-S 

(certified as a 
core) 

Diamond 
570T 

NetMARK 1.0 1.29 2.55 
ConsumerMARK 1.0 1.47 2.91 
OfficeMARK 1.0 1.19 1.64 
TeleMARK 1.0 1.06 2.28 
Geometric Mean 1.0 1.24 2.30 
*Results extrapolated from Freescale IMX31 device. No certified ARM1136JF-S EEMBC results 
have been published as of October 2006. 
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