
Tensilica White Paper

Diamond Standar
Family Ar

July, 2007

d Processor Core
chitecture

Diamond Standard Processor Architecture White Paper
Page 2

Introduction

Tensilica’s Diamond Standard Series processor family consists of 10 ready-to-use
synthesizable cores that range from area-efficient, low-power controllers to the industry’s
highest performance licensable DSP and most popular audio processor and an exciting
video processor family. The Diamond Standard family covers the broadest range of
performance of any embedded computing architecture. The Diamond Standard processor
family is based on Tensilica’s highly efficient Xtensa® configurable and extensible
processor architecture, proven in hundreds of SOC (system-on-chip) designs. Therefore,
it’s easy for designers to bridge to Tensilica’s Xtensa processor product line if additional
customization is required.

The base Xtensa Instruction Set Architecture (ISA) 24-bit instructions are targeted to a
wide range of embedded applications. Most common instructions have a 16-bit narrow
encoding as well, and the Diamond Series architecture allows modeless switching
between 16/24-bit instructions. Consequentially, the Diamond Series processors achieve
some of the highest code densities among all 32-bit RISC processors.

Some of the Diamond Standard processors, including the 545CK DSP, the 570T high-
performance CPU, the 330HiFi audio processor, and the 38xVDO video family utilize
Tensilica’s innovative FLIX™ (Flexible Length Instruction eXtensions) technology for
selective additional VLIW-style 64-bit instructions. The FLIX technology allows the
issue of multiple operations per instruction, modelessly mixed with the native 16/24-bit
instructions to increase the processor’s parallel-execution abilities and further boosts
application performance.

This white paper explores the design of the Xtensa base instruction set architecture (ISA)
and illustrates the impact of architecture on performance. It traces the evolution of
modern instruction-set design and compares key features of Tensilica’s architecture with
previous instruction set architectures. It provides a detailed rationale for the major
architectural innovations in the Xtensa ISA.

The first section of this white paper gives a quick overview of the Diamond Standard
family. The second section outlines the goals, philosophy and innovations inherent in the
Xtensa instruction set. The third section gives a more detailed description, with a block
diagram, of each Diamond Standard processor. Finally, the last section gives more
information on strength of the Xtensa-based Diamond architecture, taking a look at
benchmarks.

Diamond Standard Processor Architecture White Paper
Page 3

Diamond Standard Family Overview

Introduction

Tensilica’s Diamond Standard processor core family consists of two general-purpose
controllers, a Linux-compatible CPU, a high-end 2/3-issue CPU, a high-performance
audio processor, a family of video processors, and a high-end DSP. All are ideal for SOC
designers who require the absolute fastest time to market.

108Mini Ultra-low power, cacheless controller with rich interrupt
architecture, minimal gate count for lowest silicon cost

Controllers

212GP Flexible mid-range controller with instruction and data caches
and user-defined local memory sizes

232L Flexible mid-range CPU with a Memory-Management Unit
(MMU) for Linux OS support

CPUs

570T Extremely high-performance, 2- or 3-issue static superscalar
processor

Audio 330HiFi Dual-issue static superscalar audio engine optimized for multi-
format digital audio codecs (MP3, AC3, AAC, WMA, etc.)

Video 38xVDO Four low-power video decoders (two with encoders) for H.264,
MPEG-4, VC-1 and MPEG-2.

DSP 545CK 3-issue VLIW, 8-way SIMD DSP

The controllers and CPUs are optimized control-plane processors that are industry leaders
in area, power consumption, code density and application performance. The Diamond
108Mini enables SOC architects to quickly integrate an efficient CPU into their designs.
It is one of the smallest, lowest power 32-bit RISC controllers on the market, while
achieving performance levels of much larger, complex CPUs.

The Diamond 212GP CPU is an area-wise and power-wise high-performance controller
core with rich interrupt options and a single-cycle 16-bit x 16-bit MAC, which reduces
the need to include a separate DSP in the system design. The Diamond 232L adds a
MMU for Linux operating system support.

The Diamond 570T is a high-performance processor capable of issuing a 64-bit Very
Long Instruction Word (VLIW) bundle consisting of two or three instruction slots. 64-bit
multiple instruction bundles are created by the compiler if instructions can be issued
simultaneously (the compiler may choose to create a bundle with a single instruction for
performance reasons), otherwise a single 16/24-bit instruction is issued. The results is
extremely minimal code expansion, due to ‘no-op padding,” as is the case with older
fixed-length VLIW ISAs. Consequentially, the Diamond 570T code density remains
high, at least 20% better than competing RISC architectures on industry standard
benchmarks. The 64-bit bundles are freely intermixed by the compiler with 16/24-bit

Diamond Standard Processor Architecture White Paper
Page 4

instructions, and the processor modelessly switches between 16-, 24- or 64-bit
instructions.

The Diamond 545CK is a general-purpose DSP core. Like the 570T, the 545CK is
capable of issuing 64-bit bundles with three instruction slots and modelessly switching
between 16-, 24- and 64-bit instructions. Utilizing dual 128-bit load/store units, the
545CK DSP is capable of performing eight 16-bit MACs in a single cycle. This core is
ideal for communications, audio, and imaging applications, employing a highly efficient
and easy-to-program vector architecture utilizing Tensilica’s C/C++ compiler (XCC).
The 545CK provides higher data throughput, lower power dissipation, and better DSP
performance per watt and per area than any other DSP core. The 545CK offers, for the
first time, a single core architecture that can be rapidly implemented to satisfy the
specific requirements of any embedded application including control, protocol, signal,
and image processing.

The Diamond 330HiFi Audio Engine also uses 64-bit bundles consisting of two
instruction slots in addition to 16/24-bit instructions that are modelessly intermixed. The
330HiFi consists of a base Xtensa core with additional dedicated audio data registers and
dual MACs that can operate on 24x24-bit or 32x16-bit data to achieve full 24-bit audio
precision. Tensilica-defined instructions for audio codecs include load/store to auxiliary
audio registers, bit-stream control, and specialized Huffman coding operations. Optional
audio codec software for encoding and decoding most popular audio formats such as
MP3, AC3, AAC, and WMA can be purchased separately from Tensilica. All audio
codec software is pre-verified to execute efficiently on the Diamond 330HiFi processor.

The Diamond 38xVDO Video Engine family includes four video processors. Targeted at
mobile handsets and personal media players (PMPs), Tensilica's Diamond Standard
Video Engines are fully programmable to support all popular VGA and standard
definition (SD, also known as D1) video codecs with resolutions up to 720x480 (NTSC)
and 720x576 (PAL) including H.264 Main Profile, VC-1 Main Profile, MPEG-4
Advanced Simple Profile (ASP), and MPEG-2 Main Profile, each of which is available
from Tensilica. Lower resolutions such as QCIF, QVGA, CIF and VGA are also
supported.

Software Support

Software tools are provided with the Diamond Standard processors to ease system
development. These tools consist of:

• A software tool suite to match the processor architecture. This tool suite includes
XCC, a macro assembler, linker, debugger, and a basic software library. While
XCC’s operation is similar to the GNU C and C++ compiler (GCC), XCC is an
advanced optimizing compiler that provides superior execution performance.
XCC also generates executable code with smaller code size relative to other
compilers. XCC provides vectorizing DSP compiler support for the Diamond

Diamond Standard Processor Architecture White Paper
Page 5

545CK and bundles multiple operations into VLIW instructions for the multi-
issue Diamond processors, the 570T, 330HiFi, and the 545CK.

• Xtensa Xplorer – Diamond Edition (DE), an integrated development environment
based on the Eclipse platform. Xplorer DS serves as a cockpit for single- and
multiple-processor SOC hardware and software design. Xplorer DS integrates
software development and system analysis tools into one common visual design
environment that provides powerful graphical visualization abilities and makes
creating processor-based SOC hardware and software much easier.

• An instruction-set simulator (ISS) that is a cycle-accurate simulator for each of
the Diamond processors. This pipeline-accurate ISS can be used for code
benchmarking and enables faster code development, accurate performance
modeling, and system-level architectural tradeoffs.

• Audio and video decoders and encoders for the Diamond Standard 330HiFi and
38xVDO family.

Feature Summary

All Diamond Standard processors share a common base of 16/24-bit instructions. Some
Diamond processors add VLIW-style 64-bit instructions. Tensilica’s VLIW capability
allows the issue of multiple operations per instructions, boosting the processor’s parallel
execution abilities and application performance. Features include:

• Specialized functional units (not on all cores)
o Multipliers, 16-bit MAC, SIMD, VLIW

• Region-based memory protection, full MMU on Diamond 232L
• Miscellaneous processor attributes

o Big or little-Endian byte ordering (except 545CK, which is little-Endian
only)

o 5-stage pipeline
o Exceptions: non-maskable interrupt (NMI), nine external interrupts, six

interrupt priority levels, three 32-bit timer interrupts
o 32 entry (64 entry on 545CK) windowed register file
o Write buffer: 4/8/16 entries (depending on processor)

• Interfaces
o 32/64/128-bit Processor Interface (PIF) width to main system memory or

to an on-chip system bus. Tensilica provides a complete Vera-based tool
kit for PIF bridge implementation and verification.

o Inbound-PIF (e.g., DMA) requests allow external access to the processor’s
local memory buses

o Ooptional AMBA AHB-Lite interface
o Direct I/O pins for the Diamond 108Mini, 212GP, and 570T processors
o Streaming data queues for the Diamond 570T, 330HiFi, and 545CK

processors
• On-chip memory architecture (varies by processor, see figure 1)

o Programmable write-through or write-back cache-write policy
o Cache locking per line for set-associative cache

Diamond Standard Processor Architecture White Paper
Page 6

Memory
Type

108Mini 212GP 232L 570T 330HiFi 545CK

Local
instruction
RAM*

1-
128KByte

0-
128KByte

N/A 0-
128KByte

0-128Kbyte 1-128Kbyte

Local Data
RAM0

0-128Kbyte 0-
128KByte

N/A 0-128Kbyte 0-128Kbyte 0-
128KByte

Local Data
Ram1

0-128Kbyte N/A N/A N/A 0-128Kbyte 0-128Kbyte

Instruction
Cache (set
associativity)

N/A 8KByte
(2-way)

16KByte
(2-way)

16KByte
(2-way)

8KByte
(2-way)

N/A

Data Cache
(set
associativity)

N/A 8KByte
(2-way)

16KByte
(2-way)

16KByte
(2-way)

8KByte
(2-way)

N/A

Cache Line
Size (I and
D cache)

N/A 32 bytes 32 bytes 32 bytes 64 bytes N/A

* Processors with no instruction cache require at least 1KByte local instruction memory since
vectors are mapped to local instruction memory due to performance reasons.

Figure 1 – Memory Architectures for Diamond Standard Processors.

• Processor development and debug capabilities
o C/C++ callable ISS
o On-Chip Debug (OCD) capability: Trace and instruction/data breakpoint

support (two hardware-assisted instruction breakpoints and two hardware-
assisted data breakpoints)

o GDB debugger support
o ISS and Co-Simulation Model (CSM) support for Mentor Graphics®

Seamless™ Co-Verification Environment
• Robust EDA environment support

o Physical synthesis design flow
• Operating system support for Mentor Graphic’s Nucleus Plus, Express Logic’s

ThreadX, Micrium Technologies’ µC/OS-II, MontaVista Software’s Linux
Professional Edition, and Sophia Systems’ µITRON.

Code Density

The Xtensa ISA delivers highly efficient code that is as much as 50% smaller than
today’s popular RISC and CISC architectures. The use of 24- and 16-bit instructions in
the Diamond Series processors greatly reduces the size of application code compared to
conventional 32-bit RISC code. Small code size helps to reduce on-chip memory
requirements. The Xtensa ISA optimizes the size of the program instructions by
minimizing both the static number of instructions (the instructions that constitute the
application program) and the average number of bits per instruction. The use of 24- and
16-bit instruction words, the use of compound instructions, the richness of the

Diamond Standard Processor Architecture White Paper
Page 7

comparison and bit-testing instructions, zero-overhead-loop instructions, register
windowing, and the use of encoded immediate values all contribute to the Diamond
Standard processors’ small code size.

Figure 2. The Xtensa ISA Delivers Smaller Code and Better Performance.

The Diamond Standard processors also have several compound instructions that reduce
the instruction count required to encode and execute a program. Compare-and-branch
instructions, for example, constitute the most important class of compound instructions,
reducing code size by at least 5%. Other compound instructions include shirt,
add/subtract, and shift-and-mask.

The Diamond Standard processors (except the Diamond 108Mini) employ a feature
common to DSPs but not on general-purpose architectures: zero-overhead loops – the
ability to iterate a series of instructions without a branch at the end to loop back. With
this feature, the Diamond processors can execute loops without stalls causes by branch
mis-predictions or the need for extra instructions to decrement and test the loop counter.
Reducing loop overhead improves performance and reduces code size.

The Diamond Standard processors employ register windows to reduce the number of
instruction bits needed to specify a register. Because most instructions specify three
registers (two source and one destination), register windowing results in substantial
savings in code size. Register windows support a variable window increment size to
allow call levels to completely fit into the Diamond processor’s 32-entry general-purpose
AR register file, thus minimizing the number of stack operations required to save and
restore registers around call sites. The Diamond processors delay window overflow until

Diamond Standard Processor Architecture White Paper
Page 8

absolutely necessary, creating fewer register-spill traps and smaller code size compared
to other register-window architectures. It also means lower memory traffic and smaller
code size than other non-register window architectures.

Diamond Standard Processor Architecture White Paper
Page 9

Principles of Instruction Set Design

The design of processor instruction sets is a well-established art. Most instruction set
features are not new in themselves, but features can be combined in new and unique ways
that advance the state of the art. In particular, when instruction set design is optimized for
a different use than prior instruction sets, significant improvements result.

Instruction set architecture (ISA) design needs to balance many competing goals,
including:

• The size of the machine code required to encode various algorithms
• The extensibility and adaptability of the ISA for new algorithms and applications
• The performance of processors that employ this ISA on such algorithms
• The power consumption of processors that employ this ISA on such algorithms
• The cost of processors that employ the ISA
• The ISA’s suitability for multiple future processor implementations
• The design complexity of processors that employ the ISA
• The ISA’s suitability as a target for compilation from high-level programming

languages

The instruction set architecture has one direct and two indirect influences on processor
performance. The ISA directly determines the number of instructions required to
implement a given algorithm. Other components of processor performance include the
minimum possible clock period and the average number of clocks per instruction. These
are primarily attributes of the implementation of the instruction set, but instruction set
features may affect the ability of the implementer to simultaneously meet time per clock
and clocks per instruction goals. For example, a certain encoding choice might mandate
additional logic in series with the rest of instruction execution, which an implementer
would address either by increasing the time per clock, or by adding an additional pipeline
stage, which will increase the number of clocks per instruction (instruction latency).

The RISC (Reduced Instruction Set Computing) processor design philosophy emerged in
the 1980s. RISC ISAs allow implementers to reduce a processor’s cycles per instruction
and clock period significantly without seriously increasing the number of instructions
required to execute a program. RISC ISAs improve the performance of processors, lower
design complexity, allow lower cost processor implementations at a given performance
level, and are well suited to compilation from high-level programming languages.

Curiously, there is no single, completely comprehensive or satisfactory definition of the
term RISC, but RISC processors typically include:

• Fixed-size instruction words
• 3-operand instruction orientation (two sources, one result)
• Large uniform register files for computation operations
• Simple and fixed instruction-field encoding
• Memory access via loads and stores of registers

Diamond Standard Processor Architecture White Paper
Page 10

• A small number (often 1, usually less than 4) of memory addressing modes
• Avoidance of features that would make pipelined execution of instructions

difficult (variable latency and microcoded instructions).

On the other hand, most RISC ISAs – designed for high performance desktop computing
environments where a large hard disk storage capacity is a given – are not optimized for
producing compact machine code. In particular, RISC instruction sets usually require
more program bits to encode an application than pre-RISC ISAs. In many embedded
applications today, the cost of code storage (on-chip RAM / ROM) is often greater than
the cost of the processor (gate count), so the use of RISC processors is sometimes limited
in the most cost-sensitive applications.

An ISA that combines the advantages of RISC with reduced code size would be useful in
many embedded applications. This combination is one of the underlying themes behind
Tensilica’s development of the Xtensa ISA.

Diamond Standard Processor Architecture White Paper
Page 11

What Makes Xtensa Processors Unique?

The baseline Xtensa architecture builds on many of the principles of RISC, but introduces
new techniques to improve both the number of instructions required to encode a program
and the average number of bits per instruction. These techniques hold the promise to both
improve performance and reduce cost relative to previous architectures. The Xtensa ISA
starts with the premise that it must provide good code density in a fixed-length, high-
performance encoding based on RISC principles, including a general register file and a
load/store architecture. To achieve exemplary code density, Xtensa processors add a
simple variable-length encoding scheme that doesn’t compromise performance. The
Xtensa architecture further optimizes the cost of processor implementation by balancing
such features as register files, control-flow operations, arithmetic and logic instructions
and load/store capabilities in favor of operations that are frequent in modern embedded
software and small and fast in modern deep-submicron implementation.

Registers

To maintain performance, a RISC instruction set must support at least two source register
fields and one distinct destination register field. General register instruction sets that
optimize only for code density are sometimes designed around two register fields – one
used for source only and one used for both source and destination. This design approach
sometimes reduces code size, but there is no way to compensate for the increase in the
number of instructions required to execute a program. Instruction sets that specify fewer
registers use narrower register fields and save bits per instruction. However, these
instruction sets increase the number of instructions in the program by forcing more
variable and temporary values to live in memory and they require extra load and store
instructions.

Consequently, this design approach increases both the number of cycles for program
execution and the power dissipated. As the number of the registers increases, the
marginal benefits of a 2-operand instruction format decline. In particular, at least 16
general registers are required for good RISC performance. Three 4-bit register fields
require at least 12 bits to encode. Bits for opcode and constant fields are also required. So
16-bit encoding, as used by some processors, is not sufficient for good performance.

The Diamond Standard processor cores employ a general purpose (AR) register file that
contains 32 entries (64 in the Diamond 545CK). Instructions access this physical register
file through a sliding 16-register window. Register windowing allows the Diamond
processor to have a relatively large number of physical registers while restricting the
number of bits needed to encode a source or destination operand address to four bits each.
Thus the 3-operand instructions need only 12 bits to specify the registers holding the
instruction’s three operands. This creates a compact, efficient instruction-encoding
scheme while maintaining the good execution performance that results from having a
large available register file.

Diamond Standard Processor Architecture White Paper
Page 12

Register Windows

Register windows reduce code size and improve performance. Register windows are
found on a few other processors, such as Sun’s SPARC ISA. The name “register
window” describes the typical implementation where the register field in the instruction
specifies a register in the current window into a larger register file. Register windows
avoid the need to save and restore registers at procedure entry and exit. Instead of saving
and restoring registers on a stack, a processor with register windows merely changes a
register-offset pointer, which hides some registers from view and exposes new ones. The
exposed registers usually do not contain valid data, and can be used directly. Register
windows that overlap in their views of the physical register file between the caller and
callee also avoid argument shuffling that can occur when arguments to procedures are
passed in registers. Finally, register windows alter the breakeven point for allocating a
variable or temporary to a register, and thus encourage register use, which is faster and
smaller than using a memory location.

Unlike SPARC’s fixed-window overlap increment, the Xtensa ISA employs a variable
increment for register windowing. This feature keeps implementation cost low by
allowing a much smaller physical register file to be used. For example, many Sun
SPARC ISA implementations use a physical register file of 136 entries, whereas Xtensa
ISA implementations require a register file of only 64 entries to achieve similar
performance. The Xtensa ISA specifies new methods to detect window overflow and
underflow, and to organize the stack frame.

Instruction Width

Prior RISC architectures failed to achieve an appropriate balance between code size and
performance because RISC ISA designers felt constrained to certain instruction sizes
such as 16 and 32 bits. There are indeed advantages to using instruction sizes that are
simple ratios to the data word width of the processor. However, relaxing the restriction
somewhat has significant advantages that others have not explored. Xtensa processors use
a 24-bit fixed-length encoding as a starting point; 24 bits are sufficient for achieving high
performance while providing extensibility and room for powerful instructions that will
decrease the number of instructions required to execute a program.

The Xtensa ISA’s 24-bit encoding represents a 25% reduction in instruction size relative
to the more common RISC 32-bit instruction word, which reduces code size requirements
relative to most 32-bit RISC instruction sets. Most importantly, 24 bits is simple to
accommodate in a processor with 32-bit data-path widths.

The Xtensa architecture uses 4-bit register fields (see Figure 3), the minimum required
for acceptable performance and the maximum that fits well within a 24-bit instruction
word. Many RISC instruction sets use 32 registers (5-bit register fields). The difference

Diamond Standard Processor Architecture White Paper
Page 13

in performance between 16 and 32 general registers (about 5%) is not as large as the
difference between 8 and 16 general registers, and is small enough that other features can
be introduced to make up the lost performance (e.g. compound instructions and register
windows—see below). The resulting increase in the number of instructions needed to
encode a program (also about 5%) is more than offset by the difference between 24-bit
and 32-bit encoding (a reduction of 25%).

Figure 3: Xtensa Instruction Encoding Formats.

Note that many instruction sets with 5-bit register fields do not provide 32 general
registers for compilation. Most dedicate a register to hold zero, even though the addition
of a few extra instruction opcodes can easily eliminate the need for a zero register (e.g.,
the Xtensa NEG instruction). Also, other registers are often given specific uses that can
be avoided by including other features in the instruction set. For example, the MIPS
architecture dedicates two of its 31 general registers for exception handling and one more
register for a global area pointer. So, in effect, the MIPS architecture provides the
program with only 28 general registers for variables and temporary storage. That’s only
12 more registers than an instruction set that uses 4-bit register fields. The division of
general registers into caller and callee saved registers by software convention is common
and further restricts the utility of larger register files. The Xtensa ISA includes features
that avoid this, which brings the effectiveness of the 16 registers almost to the level of
other processors’ 32 registers. The Xtensa ISA shows that a 24-bit encoding of a full-
featured RISC instruction set is possible. The Xtensa ISA is a significant step forward for
processor design.

FLIX 64-bit Instructions

Diamond Standard Processor Architecture White Paper
Page 14

The Diamond Standard 570T, 330HiFi, 38xVDO, and 545CK take advantage of
Tensilica’s unique FLIX technology to schedule multiple operations in one 64-bit
instruction. These wide-word instruction bundles allow more complex, compound
machine instructions to improve code and application performance.

Unlike older fixed-length VLIW (Very Long Instruction Word) ISAs, the 64-bit-wide
FLIX instructions are employed by the compiler when needed if instructions can be
issued simultaneously (the compiler may choose to create a bundle with a single
instruction for performance reasons), otherwise a single 16/24-bit instruction is issued.
The results is extremely minimal code expansion, due to ‘no-op padding,” as is the case
with older fixed-length VLSI ISAs. Consequentially, the code density remains high. The
64-bit bundles are freely intermixed by the compiler with 16/24-bit instructions, and the
processor modelessly switches between 16-, 24- or 64-bit instructions.

Figure 4. The Diamond 330HiFi uses Dual-Issue FLIX Instructions to Boost
Performance.

Compound Instructions

To improve performance and code size, the Xtensa ISA also provides instructions that
combine the functions of multiple instructions typically found in RISC and other
processor instruction sets into a single instruction.

The first example of a compound instruction is a simple “left shift and add/subtract.” The
high-end HP PA-RISC and DEC Alpha architectures are examples of instruction sets that
provide these operations. Address arithmetic and multiplication by small constants often
use these combinations, and providing these operations reduces the instruction count but
potentially increases the processor clock period because of the additional series logic

Diamond Standard Processor Architecture White Paper
Page 15

added to the computation pipeline stage. However, various implementations have shown
that when the shift range is limited to 0 to 3, the extra logic is not the most critical
constraint on the clock frequency. The ARM instruction set provides arbitrary shift and
add and, consequently, many ARM ISA implementations have degraded maximum clock
frequencies.

Right shifts are often used to extract a field from a larger word. For an unsigned field
extract, two instructions (either left shift followed by right shift, or right shift followed by
an AND with a constant) are typically used. Xtensa provides a single compound
instruction, EXTUI (extract unsigned immediate), to perform this function. The EXTUI
instruction is implemented as a shift followed by an AND with a specified mask that is
encoded in the instruction word using just 4 bits. The logical AND portion of the EXTUI
instruction is so trivial that its inclusion in the ISA is not likely to increase the clock
period of Xtensa processor implementations. The same would not be true of an
instruction to extract signed fields so there’s no corresponding EXTSI instruction
included in the Xtensa ISA.

Branches

Most processor instruction sets, both RISC and otherwise (e.g. ARM, DEC PDP11, DEC
VAX, Intel x86, Motorola 68000, Sun SPARC, Motorola 88000) use a compare
instruction that sets condition code(s), followed by a conditional branch instruction that
tests the condition code(s) for program flow control. Conditional branches constitute 10-
20% of the instructions in most RISC instruction sets, and each is usually paired with a
compare instruction. This style of instruction set is wasteful. Some instruction sets (e.g.
CDC 6600, Cray-1, MIPS, DEC Alpha, HP PA-RISC, Sun SPARC V9) provide a
compound compare and branch facility of varying flexibility.

The Xtensa ISA provides the most useful compound compare-and-branch instructions.
Choosing the exact set requires balancing the utility of each compare and branch with the
opcode space that it consumes, especially when 24-bit (as opposed to 32-bit) instruction
encoding is the target. Other instruction sets fail this test. Compound compare-and-
branch instructions reduce instruction count, when compared with instruction sets that
have separate compare-and-branch instructions, and even when compared with the partial
compare-and-branch instructions in the MIPS and DEC Alpha ISAs. Some Xtensa
processor implementations may require an increase in clocks per instruction to implement
some compound compare-and-branch instructions, but the overall performance effect of
these compound instructions is still positive.

The Xtensa ISA’s compare-and-branch instructions also support comparisons to
immediate values and use clever encoding of constants to increase their utilization. The
BEQI, BNEI, BLTI, BGEI instructions also use a 4-bit field that encodes various
common constants. The BLTUI and BGEUI instructions use a different encoding, as
unsigned comparisons have a different set of useful values

Diamond Standard Processor Architecture White Paper
Page 16

The Xtensa processor’s compound compare-and-branch instruction sets pack all of these
immediate values into a single instruction word, resulting in smaller fields. These
instructions combine the comparison opcode, two source-register fields, and an 8-bit PC-
relative offset target specifier into a 24-bit instruction word. The 8-bit relative target
specifier will be too small in some infrequent cases so the compiler or assembler
compensates by using a conditional branch of the opposite nature around an
unconditional branch with a longer range. The Xtensa ISA also provides a series of
compound compare-and-branch instructions that test against zero, the most common case.
These compound compare-and-branch instructions have a 12-bit PC-relative offset,
which provides much greater range.

The Xtensa architecture adds another important and unique goal to instruction set design:
complete support for extensibility that allows for the addition of new data types,
implemented in new instructions and closely coupled coprocessors. The Xtensa ISA uses
an additional method for allowing coprocessor conditional branches. The Xtensa ISA
offers an option that adds 16 1-bit Boolean registers. The Xtensa ISA’s BF (branch if
false) and BT (branch if true) instructions test these Boolean registers and branch
accordingly.

Xtensa ISA instructions can set the Boolean registers based on comparisons of their
supported data types. All Xtensa processors share the baseline ISA’s Boolean register set
and the BF and BT instructions. This approach makes efficient use of the Xtensa ISA’s
short, 24-bit instruction word. This scheme is a new variant of compare-and-branch
condition codes found in many earlier processor ISAs. The use of single-bit (Xtensa,
MIPS) instead of multi-bit comparison-result registers (most other ISAs) increases the
number of comparison opcodes required but decreases the number of branch opcodes
required. This ISA design approach also makes the introduction of a broad range of
application-specific branches and conditional operations simple and efficient for users to
implement—a very important feature for an ISA designed expressly for extensibility.

The Xtensa ISA also provides a general-purpose, zero-overhead loop feature similar to
that found in some DSPs (digital signal processors). Most RISC processors use their
existing conditional branch instructions to implement software loops. However, this
opcode economy increases program cycle count and consequently reduces execution
speed. For many RISC ISAs, loop overhead consists of three instructions: add, compare,
and conditional branch. The performance impact of the loop overhead is higher when the
loop body is small. For small software loops, many compilers use an optimization called
loop-unrolling to spread the loop overhead over two or more loop iterations, but this
approach duplicates the loop body and significantly increases code size.

By contrast, many DSPs and some general-purpose processors provide other ways to
perform certain kinds of loops. The first method is to provide an instruction that repeats
the succeeding instruction a fixed number of times (e.g. TI TMS320C2x, Intel x86). For
1-instruction loops, a repeat prefix instruction eliminates loop overhead and saves power
by eliminating the need to repeatedly fetch the same instruction within the loop. Some
ISAs with repeat instructions require that the processor not take an interrupt during the

Diamond Standard Processor Architecture White Paper
Page 17

loop. This limitation can impose unacceptable interrupt latency because loop execution
may require many machine cycles to complete. An improvement on simple repeat prefix
instructions is the ability to iterate a block of instructions multiple times with reduced or
zero loop overhead (e.g. TI TMS320C5x).

The Xtensa ISA provides this zero-overhead loop capability via its LOOP, LOOPGTZ,
and LOOPNEZ instructions in all Diamond Standard processors except the Diamond
108Mini. The Xtensa ISA’s LOOP instructions eliminate instruction execution cycles
required for incrementing the loop index, for comparison and branch operations, and it
avoids the taken-branch penalty that is typically associated with a compilation of loops
based on conditional-branch instructions. The Xtensa ISA demonstrates how a reduced
overhead looping capability can be integrated into a general-purpose processor ISA (as
opposed to a DSP) to improve both execution performance and code size.

Overall, the Xtensa architecture makes six important contributions to general branch
instructions:

1. A choice of compare-and-branch instructions in a RISC ISA with the most useful
comparisons

2. Compare-and-branch with encoded immediate values, including branch-on-bit
instructions

3. Instruction formats with longer target specifiers for common cases (test against
zero)

4. The encoding of all branch instructions in a 24-bit instruction word
5. Support for branches on coprocessor Boolean registers (condition codes) with

logical operations on Booleans
6. Zero-overhead loops that eliminate branch execution delay and reduce code size.

Limited Instruction Constant Width

No Xtensa baseline instruction is longer than 24 bits, so constant fields in the instruction
word are constrained. The Xtensa architecture addresses this issue in several ways. The
Xtensa ISA provides small constant fields to capture the most common constants. Xtensa
instructions encode the constant value rather than specifying it directly. The encoded
values are chosen from a wide array of program statistics as the N (e.g. 16) most frequent
constants for each instruction type. The Xtensa architecture uses this technique in the
ADDI4 instruction, where the 16 values are chosen to be -1 and 1 to 15, rather than 0 to
15. Adding 0 is of no utility (there is a separate MOVE instruction), and adding –1 is
common. The constants used in bitwise-logical operations (e.g. AND, OR, XOR, etc.)
represent bit masks of various sorts, and often do not fit in small constant fields. Bit
patterns consisting of a sequence of 0s followed by a sequence of 1s, and a sequence of
1s followed by a sequence of 0s are quite common. For this reason, the Xtensa
architecture has instructions that avoid the need for putting a mask directly into the
instruction word. The EXTUI instruction (described above) performs a shift followed by
a mask consisting of a series of 0s followed by a series of 1s, where the number of 1s is a
constant field in the instruction.

Diamond Standard Processor Architecture White Paper
Page 18

Xtensa load and store instructions use an instruction format with an 8-bit constant offset
that is added to a base address from a register. The Xtensa ISA both makes the most of
these 8 bits and provides a simple extension method when 8 bits is insufficient. Xtensa
load/store offsets are zero-extended rather than sign-extended because the values 128 to
255 are more commonly used by load and store instructions than the values -128 to -1.
Also, the offset is shifted left appropriately for the reference size because most references
are to aligned addresses from an aligned base register. The offset for 32-bit loads and
stores is shifted by 2 bits; the offset for 16-bit loads and stores is shifted by 1 bit; and the
offset for 8-bit loads and stores is not shifted. Most loads and stores are 32-bit, and so this
technique provides 2 additional bits of range. When the 8-bit constant offset specified in
a load/store instruction (or an ADDI instruction) is insufficient, the Xtensa ISA provides
the ADDMI instruction, which adds its 8-bit constant shifted left by 8 bits. Thus a two-
instruction sequence has 16 bits of range, 8 bits from the ADDMI, and 8 bits from the
load/store or ADDI instruction.

Short Instruction Format

The Xtensa ISA consists of a core set of instructions that must be present in all
implementations of the instruction set, and a set of optional instruction packages that may
or may not be present in a given implementation. One of the most popular packages is the
short instruction format package. It provides even further code size reductions by
reducing the average number of bits per instruction. When these short-format instructions
are present, the Xtensa ISA changes from a fixed-length (24-bit) instruction set to one
with two instruction sizes (24-bit and 16-bit). Note that the Xtensa architecture does not
employ modes to add the 16-bit instructions to the ISA the way some other RISC
processors do. The Xtensa ISA’s 24- and 16-bit instruction formats are operative
simultaneously so there is zero overhead incurred in switching from one instruction
format to another.

Because the Xtensa short instruction forms are optional, these forms are used solely for
improving code size; no new capabilities are added by the Xtensa ISA’s 16-bit
instructions. The set of instructions that can be encoded in 16 bits consists of the most
statically frequent instructions that will fit. The most frequently used instructions in most
instruction sets are loads, stores, branches, adds, and moves; these are exactly the
instructions present in the Xtensa ISA’s 16-bit instruction set.

Only the most frequent instructions need short encodings, so three register fields are still
available (because the opcode field is small) and narrow, encoded constant fields can
capture a significant fraction of the uses. Approximately half of the Xtensa instructions
needed to represent an application can be encoded in just six of the sixteen opcodes
available in a 16-bit instruction encoding after three 4-bit fields are reserved for register-
specifiers or constants.

Diamond Standard Processor Architecture White Paper
Page 19

External Processor Interface (PIF)

The PIF connects the core to any proprietary or standard system bus. The PIF width
depends on the specific Diamond core (32 bits on the Diamond 108Mini, 212GP, and
232L; 64 bits on the 570T and 330HiFi and 128 bits on the 545CK). The PIF consists of
two separate, unidirectional input and output channels. The external interface unit
manages data transfers between the PIF and the processor’s local instruction memory
ports or the data memory ports. In particular, this unit manages data and instruction
cache-line requests and provides inbound PIF (external PIF master) capabilities to the
processor’s local instruction and data RAMS.

Xtensa Local Memory Interface (XLMI) Port

The Diamond Standard 212GP and 570T cores include one 128 Kbyte XLMI port. On the
Diamond 212GP this is 32 bits wide and on the Diamond 570T it is 64 bits wide. Unlike
the other local memory ports, the XLMI port is designed to connect to blocks and devices
other than memory. The XLMI port has signals to indicate when a load has been retired
to help ensure that speculative-read effects do not cause improper operation of decides
attached to the XLMI port. Therefore, devices with read-side effects can be attached to
the XMLI bus as long as they adhere to the “load retired” and “load flushed” signaling
protocols.

Ports and Queues for High-Speed I/O

Tensilica’s Diamond Standard processors are unique in that they offer extremely high-
speed input/output, bypassing the system bus to transfer data between processors and/or
RTL blocks. Ports are 32-bits wide and are general-purpose input/output wires that can be
connected to any part of the system. Data on these ports can be read/written directly into
the general purpose registers. Ports are available on the Diamond 108Mini, 212GP, and
570T.

Queues take this idea further, allowing FIFO flow-controller I/Os completely accessible
simultaneously from the base CPU and external logic blocks. Queues are 32-bits wide
and include flow-control logic, allowing high-speed FIFO interfaces to other system
blocks, bypassing the main system bus. This eliminates main system bus data contention,
one of the most common problems in complex system-level silicon design today. Queues
are available on the Diamond 570T, 330HiFi, and 545CK.

Diamond Standard Processor Architecture White Paper
Page 20

Figure 5. Example of Use of Queues to Speed Data Transfer.

Dual Load/Store Units for High-Speed DSP

The Diamond Standard 545CK includes two load/store units that can be used
simultaneously, allowing the processor to perform XY memory operations, permitting
very high performance execution of many DSP algorithms.

Interrupts and Timers

Unlike many other 32-bit processor cores, the Diamond Standard processors feature rich
interrupt and timer capabilities. Nine external interrupts, three timer interrupts, and two
software interrupts are provided.

Architectural Building Blocks

The following blocks are included in all Diamond Standard processors:

• On-chip Debug (OCD) – used to access the internal, software-visible processor
state through a JTAG port. OCD support includes: debug-mode entry through
exception generation, access to all program-visible registers and memory
locations, execution of any instruction that the processor can execute,
modification of the program counter to jump to a desired code location, real-time
debug, and a utility for returning to normal operating mode.

• RAM – the RAMS provide internal memory ports with address ranges within the
processor’s address space and accessed with the same timing as cache. There are
two optional RAMS: instruction RAM and one or two data RAMS.

• Timer interrupts – there are three timer interrupts, with one 32-bit read/write
register that increments every clock cycle and thee 32-bit comparison registers
that can generate level-1 interrupts or high-priority interrupts.

Diamond Standard Processor Architecture White Paper
Page 21

The following blocks are included in some Diamond Standard processors:
• 16-bit multiply and multiple-accumulate (MAC16) (in Diamond 323GP, 232L,

570T, 330HiFi, and 545CK) – adds a 16x16-bit multiplier and a 40-bit
accumulator, eight 16-bit operand registers (separate from the main register file),
special load instructions for operand registers, and a set of compound operations.
The MAC16 operand registers can be loaded with pairs of 16-bit values from
memory in parallel with MAC16 operations and the MAC16 can sustain
algorithms with two loads per multiply/accumulate.

• 32-bit Multiply (in Diamond 570T) – provides instructions that perform 32x32-bit
multiplication, producing a 32-bit result.

Low Power – Built In

Clock gating is a very effective power reduction technique that reduces power by
stopping unnecessary clocking activity to parts of the logic that are not in use on a
particular clock cycle. Tensilica has designed fine-grained clock gating for every
functional element of these processors. The Diamond Standard Series processor
architecture dramatically lowers power consumption since it is designed to use power
very efficiently.

Summary

The Xtensa architecture makes a number of fundamental contributions to embedded
processor architecture, including:

• A full 16-visible windowed register file, three-operand programming model in
less than 32-bit instruction encoding for performance, generality, and code size

• Rich selection of commonly occurring instruction combinations as compound
instructions

• Encoding of common immediate values for performance and code-size
• An unusually rich and powerful branch architecture, including compare and

branch, bit-test branches, coprocessor condition codes and branches, and zero-
overhead loops, for performance and code size

• An available 16-bit instruction subset that can be freely intermixed with 24-bit
base instructions for further code density improvement

Diamond Standard Processor Architecture White Paper
Page 22

The Diamond Standard Processors

The Diamond Standard 108Mini RISC Controller Core

The Diamond Standard 108Mini is an efficient, ultra-low power, fully synthesizable 32-
bit RISC CPU controller core.

Features include:

• Cacheless design with memory protection unit
• Single-cycle instruction and dual-data SRAM interfaces
• Non-maskable interrupt
• 15 external interrupts at 6 priority levels
• 3 timers
• On-chip debug hardware
• 32-bit input and 32-bit output GPIO pins for direct communication
• FPGA system prototyping support reduces design risk
• Single-cycle local instruction and/or dual data SRAM interfaces
• Optional AMBA AHB-lite interface
• Hardware based simulation on Avnet LX60 boards

Diamond Standard Processor Architecture White Paper
Page 23

Representative Performance/Area/Power for Diamond 108Mini

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 0.43 0.39 0.23 0.206
Area (mm2) post layout 0.54 0.49 0.27 0.24
Frequency (MHz) post layout 233 50 350 50
Power (mW/MHz) post layout 0.10 0.076 0.046 0.04

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools

Diamond 108Mini Offers ARM9 Performance at Lower Area and Power
than ARM7

 ARM 7TDMI-S** Diamond 108Mini ARM 968E-S
Max frequency (0.13u G) worst case,
optimized for speed, Sage-HS library

184 MHz 275 MHz 270 MHz

Dhrystone MIPS 131 324 297
Power – mW per MHz (0.13G)* 0.10 0.08 0.11
Area – (0.13u G) for base core
(Sage-X library, area optimized)

0.24mm2** 0.20 mm2 0.40 mm2

Area for core + bus interface +
interrupt controller + timers

0.43 mm2
(extrapolated

from 0.24mm2)

0.39 mm2 0.55 mm2
(extrapolated

from 0.40
mm2)

Code Density Mode bit to
switch between
32- and 16-bit
instructions

Modelessly switch
between 24- and

16-bit instructions

Mode bit to
switch

between 32-
and 16-bit

instructions
Low-power modes None Two One
Memory architecture Unified I & D bus Single I-RAM

TCM; Dual D-RAM
TCMs

Single I-RAM
TCM; Dual D-
RAM TCMs

Number of interrupts 3 15 3
Number of integrated timers 0 3 0
Direct interface ports/wires (GPIOs) No 32-bit input ports,

32-bit output
ports

No

*Power depends on operating conditions, standard cell libraries, performance targets, and
processor load.
**Assumes no bus interface, interrupt controller, trace interface, memory protection unit, GPIO.
Data on ARM products taken from ARM public website and product information flyers, February
2007 for TSMC 0.13G process. All speed, power and area metrics are subject to variation based on
user's design and fab choices.

Diamond Standard Processor Architecture White Paper
Page 24

Diamond 108Mini Comparison with ARM7

 ARM7TDMI-S Diamond 108Mini
3-stage pipeline: 100-180 MHz 5-stage pipeline; 200-250 MHz

Performance Single bus for instruction and data
access; poor and unpredictable
behavior

Separate instruction and data
buses. Single instruction TCM
and dual data TCMs

Code Density
32/16-bit ISA with mode bit leads to
10-25% higher code size

24/16-bit ISA without mode bit
leads to extremely compact
code without performance hit

Power No low power states Two low power modes (SunStall,
waiti)

0.24 mm2 for 3-stage pipeline, without
system interface, write buffer, timers,
interrupt controller

0.20 mm2 for equivalent core
with 5-stage pipeline

Area 0.43 mm2 (estimated) with system
interface, write buffer, timers, interrupt
controller

0.39 mm2 with all of that plus
GPIO pins and dual-data TCM
interface

Diamond Standard Processor Architecture White Paper
Page 25

The Diamond Standard 212GP Controller Core

The Diamond Standard 212GP is a high-performance, versatile 32-bit RISC SOC
controller core, providing high performance with minimal die area and power.

Features include:

• Single-cycle 16x16-bit MAC
• DSP instructions eliminate need for extra DSP
• DSP instructions include 16x16 MAC/MUL, Min/Max, Clamps, Sign Extend,

NSA
• 16K, 2-way Instruction and Data caches
• Local single-cycle instruction and data SRAM interfaces
• On-chip debug hardware
• Non-maskable interrupt
• 15 external interrupts with 6 priority levels
• 3 timers
• 32-bit input and 32-bit output GPIO pins
• Optional AMBA AHB-lite interface
• Hardware-based simulation on Avnet LX60 boards

Diamond Standard Processor Architecture White Paper
Page 26

Representative Performance/Area/Power for Diamond 212GP

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 0.65 0.58 0.34 0.3
Area (mm2) post layout 0.88 0.79 0.41 0.37
Frequency (MHz) post layout 233 50 350 50
Power (mW/MHz) post layout 0.21 0.186 0.076 0.067

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools

Diamond 212GP Provides Better Performance than ARM9
with Lower Power and Smaller Area

 ARM 946E-S Diamond 212GP
Max frequency (0.13u G) worst case
conditions(Sage-HS library,
optimized for speed)

230 MHz 260 MHz

Dhrystone MIPS 253 350
Power – mW per MHz (0.13G)
(Sage-X library, optimized for area)*

0.31 0.19

Area (Sage-X library, optimized for
area)

0.97 mm2 0.58 mm2

Code Density Mode bit to switch
between 32- and 16-

bit instructions

Modelessly switch
between 24- and 16-bit

instructions
Number of interrupts 3 15 with 6 priority levels

(with integrated
interrupt controller)

Number of Integrated Timers 0 3
Direct interface ports/wires No 32-bit input ports, 32-bit

output ports
*Power depends on operating conditions, standard cell libraries, performance targets,
and processor load.
Data on ARM products taken from ARM public website and product information flyers,
February 2007 for TSMC 0.13G process. All speed, power and area metrics are subject to
variation based on user's design and fab choices.

Diamond Standard Processor Architecture White Paper
Page 27

The Diamond Standard 232L RISC Controller Core

The Diamond Standard 232L is similar to the Diamond 212GP, but it adds a full-featured
Memory Management Unit (MMU) for the Linux operating system, making it the
smallest, lowest-power Linux-ready CPU in its class.

Features include:

• Linux-compatible, full-featured MMU
• 5-stage pipeline
• DSP instructions: 16x16 MAC/MUL, Min/Max, Clamps, Sign Extend, NSA
• 16Kbyte, 4-way set associative instruction and data caches, programmable write-

through or write-back
• Single-cycle 16x16-bit MAC
• On-chip debug hardware
• 15 interrupts with 6 priority levels
• 3 timers
• Hardware-based simulation on Avnet LX60 boards
• Optional AMBA AHB-lite interface

Diamond Standard Processor Architecture White Paper
Page 28

Representative Performance/Area/Power for Diamond 232L

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 0.81 0.71 0.42 0.37
Area (mm2) post layout 1.08 0.96 0.53 0.47
Frequency (MHz) post layout 233 50 350 50
Power (mW/MHz) post layout 0.28 0.25 0.10 0.09

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools.

Diamond 232L Offers More Linux-Ready Features at Half the Power
and Area

 ARM 946EJ-S Diamond 232L
Max frequency (0.13u G) worst case,
Sage-X library,optimized for speed

276 MHz 250 MHz

Dhrystone MIPS 300 300
Power – mW per MHz (0.13G)
(Sage-X library, optimized for area)*

0.36 0.26

Power – mW at same MHz 0.36 0.26
Area (Sage-X library, optimized for
area)

1.45 mm2 0.72 mm2

Code Density Mode bit to switch
between 32- and 16-

bit instructions

Modelessly switch
between 24- and 16-bit

instructions
Zero-overhead looping No Yes
Number of interrupts 3 15 with 6 priority levels

(with integrated
interrupt controller)

Number of timers 0 3
*Power depends on operating conditions, standard cell libraries, performance targets,
and processor load.
Data on ARM products taken from ARM public website and product information flyers for
TSMC 0.13G process. All speed, power and area metrics are subject to variation based on
user's design and fab choices.

Diamond Standard Processor Architecture White Paper
Page 29

The Diamond Standard 570T Static-Superscalar Controller Core

The Diamond Standard 570T is among the highest performance, highest throughput
licensable embedded CPUs available today.

Features include:

• Three-issue, static superscalar VLIW (very long instruction word) CPU
• Modeless switching between 16-, 24-, and 64-bit 3-issue instructions
• 64-bit local memory interfaces to cache and single-cycle local SRAM
• Dual 32x32 MULs with vector/SIMD capability
• DSP instructions
• 16 Kbyte, 2-way set associative instruction and data caches, programmable write-

through or write-back
• Single cycle instruction and data SRAM interface, high-speed peripheral port

(XLMI)
• 32-bit input and 32-bit output GPIO pins
• Memory protection unit, 64-bit PIF interface with AHB-lite bridge
• Hardware-based simulation on Avnet LX60 boards
• Compact size (approximately 1/3 gate count of competition)
• FIFO Queues allow direct connection between processors and hardware, reducing

main system bus contention and speeding I/O

Diamond Standard Processor Architecture White Paper
Page 30

Representative Performance/Area/Power for Diamond 570T

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 1.03 0.91 0.55 0.48
Area (mm2) post layout 1.43 1.26 0.7 0.61
Frequency (MHz) post layout 233 50 350 50
Power (mW/MHz) post layout 0.29 0.256 0.115 0.10

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools

Diamond 570T Uses Less than Half the Die Area and 1/3 the Power of
ARM 1136/1156

 ARM 1156T2-S Diamond 570T ARM 1136J-S
Instruction Issue (per cycle) 1 3 1
Maximum Frequency (90G) (Sage-
HS library, optimized for frequency)

620 MHz 892 (EEMBC
equivalent freq.)

(Actual = 388 MHz

620 MHz

Dhrystone MIPS/MHz 1.20 (est) 1.52 1.20
Power – mW per MHz (0.13G)
(Metro library, optimized for area)

0.24 0.10 0.20

Power – mW for the same
performance

149 mW @ 620
MHz

38 mW @ 388 MHz 112 mW @
620 Mhz

Area (90G, pre-layout) (Sage-X
library, optimized for area)

0.85m2 0.55m2 0.90 mm2

Instruction width 16/32 bit 16/24/64 bit 3-
issue

16/32 bit

High throughput data Queues No Yes (input and
output)

No

Direct interface ports/wires (GPIOs) No 32-bit input ports,
32-bit output

ports

No

*Power depends on operating conditions, standard cell libraries, performance targets, and
processor load.
Data on ARM products taken from ARM public website, October 2006, for TSMC 90nmG process. All
speed, power and area metrics are subject to variation based on user's design and fab choices.

Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC
Benchmarks

Diamond Standard Processor Architecture White Paper
Page 31

 ARM 1136JF-S* ARM 1026EJ-S
(certified as core)

Diamond
570T

NetMARK 1.0 1.29 2.55
ConsumerMARK 1.0 1.47 2.91
OfficeMARK 1.0 1.19 1.64
TeleMARK 1.0 1.06 2.28
Geometric Mean 1.0 1.24 2.30

Results normalized on a per-MHz basis
* Results extrapolated from Freescale IMX31 device. No certified ARM1136JF-S EEMBC results
have been published.

Diamond Standard Processor Architecture White Paper
Page 32

The Diamond Standard 330HiFi Audio Engine

The Diamond 330HiFi core is optimized for digital audio processing. All popular audio
codecs have been pre-ported to the Diamond 330HiFi core, making it a “drop-in” block
for any SOC application requiring high-quality 24-bit audio.

Features include:

• Based on standard 32-bit RISC architecture with integrated 24-bit audio
processing instructions including Variable Length Decode (VLD)

• Dual-issue VLIW DSP with 24-bit data path and instructions customized for
audio codecs

• Industry-leading low-power consumption coupled with high-fidelity 24-bit audio
• Popular digital audio software pre-ported (MP-3, AAC, WMA, AC-3, MIDI,

more)
• Modeliess switching between 16-, 24-, and 64-bit dual-issue instructions
• Dual MACs can operate as 32x16-bit or 24x24-bit
• 4 Kbyte Instruction and 8 Kbyte Data 2-way set associative caches,

programmable write-through or write-back
• 32-bit input/output FIFO interfaces
• 64/32-bit system interface with AHB-lite bridge
• Single audio engine supports multiple codecs
• Performance headroom to perform other functions

Diamond Standard Processor Architecture White Paper
Page 33

Representative Performance/Area/Power for Diamond 330HiFi

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 1.37 1.2 0.68 0.59
Area (mm2) post layout 1.74 1.5 0.84 0.74
Frequency (MHz) post layout 233 50 350 50
Power (mW/MHz) post layout 0.29 0.25 0.118 0.10

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools. Includes
VLD (variable length decode).

Please see our web site (www.tensilica.com) for an up-to-date list of audio decoders and
encoders available for the Diamond 330HiFi.

Diamond 330HiFi is Four Times as Energy Efficient as ARM968E-S

http://www.tensilica.com/

Diamond Standard Processor Architecture White Paper
Page 34

Diamond Standard 545CK 8-MAC, VLIW DSP

The Diamond 545CK is the highest performance licensable DSP IP core. It is a single
core that can be used for both system control and DSP.

Features include:

• Highest performance and efficiency of any licensable DSP core
• Three-issue VLIW DSP with 8-way SIMD units
• Very high code density – no VLIW-style code bloat
• DSP instructions native to single core, modeless switching between 16-, 24-, and

64-bit instructions
• Fully synthesizable, targeting any process technology
• Eight 16-bit multipliers that operate in SIMD mode. 16-entry, 160-wbit-wide

vector register file.
• Two 128-bit load/store units
• 32-bit input/output FIFO interfaces
• Viterbi convolutional coder accelerator
• Performance headroom allows operation at a lower frequency to reduce power

consumption

Diamond Standard Processor Architecture White Paper
Page 35

Representative Performance/Area/Power for Diamond 545CK

Process Tech 130G 90G
Optimized for Speed Area Speed Area
Area (mm2) post synthesis 2.9 2.3 1.45 1.16
Area (mm2) post layout 4.38 3.5 1.9 1.55
Frequency (MHz) post layout 233 50 325 50
Power (mW/MHz) post layout 0.54 0.43 0.16 0.13

All EDA numbers are for Sage-X libraries. Frequency and power are at worst corner. All
area, power, and frequency numbers are representative only, and subject to variation
based on each user’s chosen process technology, cell library, and design tools. Area
assumes 50% utilization

Diamond 545CK is the Fastest Licensable DSP Core

BDTI BenchmarksTM Notes:
All scores use worst-case clock speeds for the TSMC CL013G process and ARM Artisan SAGE-X library.
The BDTIsimMark2000TM is a summary measure of DSP speed. See www.BDTI.com for info. Scores ©
2006 BDTI.
Diamond 545CK configuration tested by BDTI: 220 MHz final layout timing under worst case conditions.
3.7 mm2 actual layout area. Leakage power 0.7mW + dynamic power 0.2 mW/MHz.

http://www.bdti.com/

Diamond Standard Processor Architecture White Paper
Page 36

Diamond Standard 38xVDO Video Engine Family

Targeted at mobile handsets and personal media players (PMPs), Tensilica's Diamond
Standard Video Engines are fully programmable to support all popular VGA and standard
definition (SD, also known as D1) video codecs with resolutions up to 720x480 (NTSC)
and 720x576 (PAL) including H.264 Main Profile, VC-1 Main Profile, MPEG-4
Advanced Simple Profile (ASP), and MPEG-2 Main Profile, each of which is available
from Tensilica. Lower resolutions such as QCIF, QVGA, CIF and VGA are also
supported.

The Diamond Standard VDO Engines host all the key video processing functions in
software on the cores – including the network abstraction layer, picture layer, slice layer,
bit-stream parsing and entropy decoding and encoding. This includes the computationally
demanding CABAC (Context Adaptive Binary Arithmetic Coding) decoding in the

Diamond Standard Processor Architecture White Paper
Page 37

H.264 Main profile decoder that most other solutions omit, implement in a separate and
complex non-programmable hardware block or necessitate more than 700 MHz of
general CPU workload which significantly increases power consumption. By
implementing CABAC in instruction set extensions, Tensilica was able to create a low
MHz and power efficient version of CABAC in less than half the area of a typical
CABAC hardware block.

The Diamond VDO family offers both Baseline and Main profile solutions – Main profile
offers superior data compression and video quality and is the preferred coding scheme at
resolutions of D1 and higher for advanced handset and PMP applications. Most other
video solutions for SOC design only implement Baseline profile video.

Tensilica Engine Decoders Encoder
Baseline Profiles – D1

Diamond 381VDO

H.264 Baseline Profile
MPEG-4 Simple Profile
VC-1/WMV9 Simple Profile
MPEG-2 Main Profile

None

Diamond 383VDO

H.264 Baseline Profile
MPEG-4 Simple Profile
VC-1/WMV9 Simple Profile
MPEG-2 Main Profile

MPEG-4 Simple Profile

Main/Advanced Profiles – D1

Diamond 385VDO

H.264 Main Profile
MPEG-4 Advanced Simple Profile
VC-1/WMV9 Main Profile
MPEG-2 Main Profile

None

Diamond 388VDO

H.264 Main Profile
MPEG-4 Advanced Simple Profile
VC-1/WMV9 Main Profile
MPEG-2 Main Profile

MPEG-4 Advanced Simple
Profile

Features include:
• Multi-standard video decoder and encoder engine
• Fully programmable to support most video decoder algorithms
• Very low power, low area
• Full matching software tool chain
• C-level system model available for evaluation with video test streams and for

software development
• FPGA prototype available for demonstration and evaluation

Diamond Standard Processor Architecture White Paper
Page 38

Benchmarks – The Diamond Standard Processor Family
Xtensa-Based Architecture Tops Industry Leaders

In benchmark after benchmark, the Diamond Standard processor family comes out on
top. Tensilica used its Diamond 570T high-performance CPU in the popular industry
EEMBC benchmarks, and here are the results.

EEMBC (Embedded Processor Benchmark Consortium) Benchmarks

No single benchmark can accurately capture the full range diversity of embedded
applications. In an effort to create an embedded benchmark that would be more
informative than the Dhrystone, EDN Magazine sponsored the creation of a
comprehensive suite of representative embedded applications. More than 40 leading
processor and software companies have joined EEMBC and together developed both a set
of benchmarks and a fair process for running, measuring, certifying, and publishing test
results. These benchmarks cover a wide range of embedded tasks, but the bulk of the
certified results are available for four suites: networking, consumer, telecommunications,
and office automation.

The data in this section is taken directly from the certified results on the EEMBC website
at www.eembc.com, as of October 2006. In each case we compare the Diamond Standard
570T processor core to the ARM cores

The ARM architecture is represented in the EEMBC benchmarks by the ARM1026EJ-S,
the only core that has been benchmarked by ARM. We also compare it to the
ARM1136JF-S, which was benchmarked in a Freescale IMX31 device. No certified
ARM11 EEMBC results have been published as of October 2006.

Each EEMBC test suite consists of a number of different programs, written in C. The
EEMBC Netbench 1.1 benchmark suite approximates the performance of processors in
low-end routers. It consists of three benchmark kernels. One implements the Dijkstra
shortest-path-first algorithm, which is widely used in routers and other networking
equipment to find the shortest or least-cost path from a specific router to all other routers.
The packet flow benchmark indicates the potential performance in an IP router with four
network interfaces. In the route look-up benchmark, performance is measured on the
fundamental operation of IP datagram routers, including receiving and forwarding IP
datagrams and implementing an IP lookup mechanism based on a Patricia Tree.

The EEMBC Consumer benchmark suite is a compilation of five separate benchmark
kernels that are representative of consumer digital imaging applications. The high-pass

http://www.eembc.com/

Diamond Standard Processor Architecture White Paper
Page 39

grey-scale filter benchmark demonstrates performance in front-end processing of digital
still cameras, showcasing 2-D data array and multiply/accumulate capabilities. The JPEG
compression and decompression benchmarks take still images from full source data
captured from a sensor, compress to a JPEG file format for data storage, and reconvert
back to full image representation, a common set of tasks in consumer products such as
digital still cameras and digital video camcorders. The RGB to CYMK conversion
benchmark demonstrates a common conversion used in color printing. The RGB to VIQ
conversion benchmark demonstrates a conversion used in NTSC encoders for digital
video processing.

The EEMBC Office Automation benchmark is a suite of benchmarks that approximate
the performance of processors in printers, plotters and other office automation systems
that handle text and image processing text. It includes a dithering benchmark that
evaluates how the processor handles indirect references (used for managing internal
buffers), how it manipulates large data sets, how it manipulates packed-byte quantities
(used to hold gray-scale pixel data), and how it performs four byte-wide multiply
accumulate operations per pixel. An image rotation benchmark uses a bitmap rotation
algorithm that rotates a complete binary image 90 degrees clockwise, testing bit
manipulation, comparison and indirect reference capabilities. A text processing
benchmark exercises the processor’s byte manipulation, pointer comparison, indirect
reference handling, and stack manipulation capabilities.

The EEMBC Telecom benchmark suite approximates the processor’s performance in
modem, xDSL, and related fixed-telecom applications. It includes five kernels that
represent traditional DSP algorithms. The autocorrelation benchmark is based on a
mathematical tool used frequently in signal processing for analyzing functions or series
of values, such as time domain signals. The convolutional encoder benchmark, useful for
cellular and modem applications, adds redundancy for error checking and explores the
ability to perform bit-wise exclusive ors and table lookups. The bit allocation benchmark
test the ability to stream data over a series of buffers, which it then modulates and
transmits on a telephone line in ADSL applications. The Inverse Fast Fourier Transform
benchmark tests the ability to convert frequency domain data into time domain data. The
Fast Fourier Transform benchmark tests the ability to convert time domain data into
frequency domain data. And the Viterbi decoder benchmark tests the processor’s ability
to recover an output data packet from an encoded input data packet in embedded IS_136
channel coding applications.

The following chart shows that the Diamond Standard 570T performs much better than
any ARM processor tested.

Diamond Standard Processor Architecture White Paper
Page 40

Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC
Benchmarks

 ARM 1136JF-S* ARM 1026EJ-S

(certified as a
core)

Diamond
570T

NetMARK 1.0 1.29 2.55
ConsumerMARK 1.0 1.47 2.91
OfficeMARK 1.0 1.19 1.64
TeleMARK 1.0 1.06 2.28
Geometric Mean 1.0 1.24 2.30
*Results extrapolated from Freescale IMX31 device. No certified ARM1136JF-S EEMBC results
have been published as of October 2006.

	Introduction
	Diamond Standard Family Overview
	Introduction
	Software Support
	Feature Summary
	Code Density

	Principles of Instruction Set Design
	What Makes Xtensa Processors Unique?
	Registers
	Register Windows
	Instruction Width
	FLIX 64-bit Instructions
	Compound Instructions
	Branches
	Limited Instruction Constant Width
	Short Instruction Format
	External Processor Interface (PIF)
	Xtensa Local Memory Interface (XLMI) Port
	Ports and Queues for High-Speed I/O
	Dual Load/Store Units for High-Speed DSP
	Interrupts and Timers
	Architectural Building Blocks
	Low Power – Built In
	Summary

	The Diamond Standard Processors
	The Diamond Standard 108Mini RISC Controller Core
	Representative Performance/Area/Power for Diamond 108Mini
	Diamond 108Mini Offers ARM9 Performance at Lower Area and Po
	The Diamond Standard 212GP Controller Core
	Representative Performance/Area/Power for Diamond 212GP
	The Diamond Standard 232L RISC Controller Core
	Representative Performance/Area/Power for Diamond 232L
	Diamond 232L Offers More Linux-Ready Features at Half the Po
	The Diamond Standard 570T Static-Superscalar Controller Core
	Representative Performance/Area/Power for Diamond 570T
	Diamond 570T Uses Less than Half the Die Area and 1/3 the Po
	Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC
	The Diamond Standard 330HiFi Audio Engine
	Representative Performance/Area/Power for Diamond 330HiFi
	Diamond 330HiFi is Four Times as Energy Efficient as ARM968E
	Diamond Standard 545CK 8-MAC, VLIW DSP
	Representative Performance/Area/Power for Diamond 545CK
	Diamond 545CK is the Fastest Licensable DSP Core
	Diamond Standard 38xVDO Video Engine Family

	Benchmarks – The Diamond Standard Processor Family Xtensa-Ba
	EEMBC (Embedded Processor Benchmark Consortium) Benchmarks
	Diamond 570T Performs 2.3X BETTER than ARM1136JF-S on EEMBC

