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Chapter 1

Introduction

This chapter gives the background to the problem which this master thesis aims to
present a solution to. The methods used in the work are presented and discussed
as well as the limitations.

1.1 Background
Active safety systems for automobiles in the form of camera systems have evolved
rapidly the last ten years. Autoliv Electronics manufactures a NightVision system
based on an infrared (IR) camera, but are currently also developing other safety
systems based on cameras for visible light.

1.1.1 NightVision
Autoliv Electronics released the first commercial NightVision system in 2005 and
since then it has been an option with the BMW 5-, 6- and 7-series automobiles.
During the fall of 2008 the second generation of the NightVision system was re-
leased and now includes pedestrian detection as an added feature.

The NightVision system has three major parts; the IR camera, the electronic
control unit (ECU) and the video display, see figure 1.1. The video from the
IR camera, which is placed in the front spoiler of the car, is transmitted to the
ECU over a low-voltage differential signaling (LVDS) link, a serial link. In the
implementation of the NightVision system the LVDS link uses a single differential
pair. For the ECU to communicate with the IR camera, for initialization and
exposure control, there is a private Controller Area Network (CAN) link, also
a serial link, between the two. Furthermore the ECU also receives data from
the CAN bus of the automobile. The CAN bus of an automobile is used by the
different systems of the automobile to exchange data. The information that the
ECU receives on the CAN bus is for example the outside temperature, speed and
the yaw rate of the car, that is the rate of which the car is currently rotating. The
ECU has one LVDS video input port and two CAN ports. The video received in
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2 Introduction

the ECU is processed to enhance the image quality, pedestrians are detected and
warnings are posted if necessary. The output port of the ECU is an analog video
signal that is connected to a display in the dashboard of the automobile, see figure
1.2.

Figure 1.1. An overview of the main parts of the NightVision system; the IR camera,
the ECU and the video display.

Figure 1.2. The interior of a car with a NightVision system, notice the display in the
center of the dashboard displaying the humans in bright white.
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1.1.2 Future camera systems

The future camera systems that are currently under development by Autoliv Elec-
tronics generally have the same parts as the NightVision system, see figure 1.1,
but they differ from the NightVision system in that they are based on cameras
for visible light. One of the projects is the StereoVision system, it is based on
two cameras which are processed together by an ECU. Furthermore these sys-
tems have higher video frame resolutions than the NightVision system as well as
a higher video frame rate. To handled this increased bandwidth from the camera
a different LVDS link is used between the cameras and the ECU. The control link
between the cameras and the ECU is different as well, instead of a CAN link the
systems use either the serial Inter-Integrated Circuit (I2C) link or the serial RS232
link.

1.1.3 Development and testing issues

In the development and testing process of the NightVision system and the other
future systems there is a need for the possibility to repeatedly test the system as if
it was used in an actual automobile. By pre-recording video and the corresponding
data on the CAN bus in an automobile, it is possible replay the video and the CAN
data in the development laboratory or the testing facility. For this to be possible
there has to be a mechanism for recording and playback of video and automobile
CAN data and currently there is a Break out Box (BoB) that makes this possible.
This BoB is a hardware box with an LVDS and CAN interface on one side and a
FireWire (IEEE1394) interface on the other side, see figure 1.3. With the BoB it
is possible to record a sequence in an automobile to a Personal Computer (PC),
see figure 1.4, and then play back the sequence to the ECU of the system as if the
sequence happened in real time, see figure 1.5.

The currently used BoB was designed to work with the original NightVision
system, therefore it can only handle the LVDS link used by the NightVision system.
That implies that the future camera systems need either to be based around the
same LVDS link, with its bandwidth limitation, or another BoB will be needed.
Furthermore there have been issues with the synchronization of the video from the
IR camera and CAN data from the automobile CAN bus. The ECU needs the data
streams to be synchronized as they are in a real system setup, but when using the
BoB to record and later to playback the data the synchronization is lost to such
a degree that the determinism of the NightVision system can not be guaranteed.
Lastly the usability of the BoB currently used has been an issue, the total lack of
diagnostics and status of the BoB reduces the user experience significantly. Trial
and error, and finally restarting the BoB ends up being the solution to erroneous
behavior.
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Figure 1.3. The current BoB, which also is know as the "Wicer box".

Figure 1.4. Block diagram of the NightVision recording scenario, which takes place in
an automobile.
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Figure 1.5. Block diagram of the NightVision playback scenario, which takes place in
the development lab or the test bench post production.

1.2 Problem statement
The issues mentioned lead to the aim of this thesis, to develop a new BoB that
addresses the bandwidth problem, the LVDS link problem, the synchronization
problem and the problem with the lack of usability. In chapter 2, Requirement
specification, the individual specifications for the bandwidth, the LVDS link, the
synchronization and the usability will be specified.

1.3 Method
The development of the new BoB has essentially been divided into three distinct
phases; identification of requirements, design of the BoB and implementation of
a prototype of the BoB on prototype hardware. During the whole development
process there has been a special emphasis on using modern and automated de-
velopment methods. As ENEA Services Linköping AB are consultants with the
emphasis on software development, inspiration in the development process of the
BoB has been drawn from the software domain, to be applied in the hardware
development.

1.3.1 Requirement specification methodology
In the requirement specification phase, two templates for documenting require-
ments, [1] and [2], where used. Every stakeholder of the BoB within Autoliv was
consulted and a formal requirement specification was determined. This require-
ment specification has been attached in chapter B of the appendix.
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1.3.2 Design methodology
In the design phase a top-down methodology was used together with a software
architecture methodology which was adapted to fit in the hardware domain. The
software architecture methodology is called "The ’4+1’ View Model of Software
Architecture" [3]. In this model Kruchten uses four different system views; the log-
ical view, the process view, the development view and the physical view, together
with the use scenarios, to describe the architecture of a software system. In the
hardware domain I have translated the four views into the functional view, the
process view, the implementation view and the physical view. The use scenarios
are the identified in the requirement specification.

Figure 1.6. 4+1 view model adapted to the hardware domain.

1.3.3 Implementation methodology
The BoB is modeled in VHDL, a hardware description language. Test benches for
model verification are written in VHDL. A test driven methodology, as described
in [4], has been used to develop the VHDL model of the BoB. Using this method-
ology a test bench for the model to be built is always built first and it is checked
until the model passes the test. This way testing is not neglected but performed
for every module of the final VHDL model and it implies that once the model is
finished it has already been tested.

Apart from using the test driven methodology a number of modern FPGA
development methods has been used in the implementation phase of the BoB.
ENEA Services Linköping AB has an interest in developing standards for FPGA
development. Part of the thesis work has therefore included evaluating a number
of methods and tools for FPGA development.

• The open source software TortoiseSVN has been used for version control.
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• The open source software DoxyGen has been used for automated documen-
tation of the VHDL code.

• To determine the coverage of a VHDL test bench ModelSim Code Coverage
has been used.

• To ensure a unified VHDL coding style automated checks has been run with
HDL Designer.

• The open source scripting language Make has been used for automated ver-
ification, synthesis and implementation of the VHDL model.

1.4 Limitations
The development of a new BoB for NightVision and future camera systems is a
task more time consuming than the time frame of a master thesis. Therefore the
master thesis has been focused on identifying and documenting all requirements
of the new BoB, designing a platform for the BoB which can be extended and
adapted when future needs may arise and finally to implement a prototype of the
BoB. The prototype is to be regarded as a proof of concept of the chosen design.
The development of the actual hardware for the BoB has not been part of the
thesis, neither has the adaption of the BoB to fit the future camera systems been
part of the thesis. Further more the master thesis has not included any work on
the software application to be used in the PC to record and playback video from
and to the BoB. The prototype has been built to work for recording of video for
the existing second generation NightVision system.

1.5 Disposition
The organization of the report follows the main phases of the master thesis. Chap-
ter 1 gives an introduction to the problem at hand. Chapter 2-4 correspond to the
three main phases; identifying the requirements of the BoB, designing the BoB
and finally implementing a prototype of the BoB. Chapter 5 concludes the report
and discusses the results of the master thesis.

In the appendix there is a list of all the abbreviations, appendix A. The original
requirement specification and the original design specification has been attached,
appendix B and C. This way the interested reader gets a detailed understanding
of the requirement specification and the design of the BoB.





Chapter 2

Requirement specification

In this chapter the requirement specification of the new BoB is established. For
the original requirement specification, see appendix B.

2.1 Stakeholders
In order to establish all the requirements of the new BoB every stakeholder of
the BoB was consulted. The BoB will mainly be used by three different project
groups; the NightVision group, the StereoVision group and one additional camera
system group working with cameras for visible light. Within these projects the
BoB will be used for a multitude of different development and testing purposes.

• The BoB will be used for testing during development of algorithms and
verification of the implementation of the same.

• The BoB will be used for system test and final verification of the current
NightVision system, assembled at the Autoliv Electronics production facility
in Motala, as well as the future camera systems.

• The BoB will be used in product validation, a process in which currently the
NightVision system is subjected to tough environments; heat, electromag-
netic radiation etc, and is tested over a prolonged time, up to thousands of
hours.

• The BoB will be available to the customers of the NightVision system and
the other future camera systems, for them to perform their own tests.

• Autoliv Electronics Vision, in Goleta, CA, USA, assembles the NightVision
cameras and they may want to use the BoB for camera development and
testing purposes.

• Lastly the BoB will also be used in the FNIR project (Fusing Far and Near
InfraRed imaging for pedestrian injury mitigation) in which Autoliv Elec-
tronics AB is a partner [5].

9



10 Requirement specification

2.2 Use cases

To ensure that every aspect of the requirements is covered, all possible use cases
for the BoB are identified. These use cases correspond to the scenarios in the "4+1
view model" used in the design phase.

2.2.1 Recording data

When gathering test video driving around in an automobile, the BoB will enable
video from the automotive camera and CAN data from the automobile CAN bus
to be recorded onto a PC, see figure 2.1.

Figure 2.1. Use case recording with the BoB.

2.2.2 Data playback

When in the test lab, the BoB will enable playback of recorded video and CAN
data from PC to an ECU, see figure 2.2.

Figure 2.2. Use case playback of video and CAN data from the PC with the BoB.
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2.2.3 Recording tapped data
When gathering test video driving around in an automobile, the BoB will enable
tapping and recording of data, video and CAN data, onto a PC, while the camera
system functions as normal, see figure 2.3.

Figure 2.3. Use case tapping data for recording with the BoB.

2.2.4 Recording processed data
When gathering test data in an automobile, the BoB will enable recording of
processed video from the ECU onto a PC, see figure 2.4.

Figure 2.4. Use case recording processed data with the BoB.

2.2.5 Recording of both unprocessed and processed data
Using two BoBs the unprocessed and the processed data can be compared and
recorded simultaneously to a PC, see figure 2.5.

2.2.6 Testing of system algorithms
For high testability of the camera systems, the BoB needs to support playback of
CAN data together with video over the LVDS link transparently from a PC to the
ECU. The setup is the same as for normal playback.
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Figure 2.5. Use case recording both unprocessed and processed data with two BoBs.

2.3 Bandwidth
The bandwidth requirement of the BoB is determined by the resolution, the frame
rate and the pixel depth of the video from the camera. For all the different
camera systems the video is uncompressed to allow for image enhancement and
object identification, e.g. pedestrian detection, therefore even modest resolutions
require high bandwidth. Serial links for CAN, I2C or RS232 data has a maximum
bandwidth of one Mbit/s, but usually far lower, and therefore can be neglected
in comparison to video. The specification for the NightVision system is listed in
table 2.1.

NightVision video specification
Horizontal video frame resolution 324 pixels
Vertical video frame resolution 256 pixels
Pixel depth 14 bits/pixel
Frame rate 30 frames/second
Effective bandwidth 4.35 MB/s

Table 2.1. NightVison system video specification.

It is the StereoVision system and the future system that require higher band-
widths. In a future generation of StereoVision the bandwidth requirement will be
almost eight times the bandwidth of the current NightVision system, neither does
the current LVDS link nor the FireWire 400 Mbit/s link used in the current BoB
support this system.

The bandwidth requirements of the different systems are listed in table 2.2. As
one can see the effective bandwidth of the NightVision system, table 2.1, differs
from the actual bandwidth of the system, table 2.2. This is because the full band-
width of the LVDS link between the IR camera and the ECU in the NightVision
system always carries data, it is video data, which requires 4.35 MB/s, control
data and empty data to fill up the bandwidth. To conclude, the BoB is required
to support a bandwidth of up to 618 Mbit/s.
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System Bandwidth (Mbit/s) Bandwidth (MB/s)
NightVision 80 Mbit/s 10 MB/s
StereoVision 256 Mbit/s 32 MB/s
Future system 270 Mbit/s 33.75 MB/s
Future StereoVision 618 Mbit/s 77.25 MB/s

Table 2.2. Bandwidth requirements of the different camera systems.

2.4 Modularity
The current BoB is a static system that only supports one LVDS link and no serial
links. The new BoB is required to have greater modularity, different LVDS links
are required to be supported, the future system currently being developed will use
a different LVDS link with a greater bandwidth than the LVDS link used in the
NightVision system. Not only different LVDS links are required to be supported
but also different serial links, CAN, I2C and RS232 in different combinations. The
BoB is required to be reconfigurable to function with all camera systems Autoliv
Electronics is developing. Requiring the BoB to have a CAN interface makes
the external USB connected CAN host, which currently is used (see figure 1.4
and figure 1.5), redundant and saves hardware as the new BoB will replace two
hardware boxes, the current BoB and the USB connected CAN host.

2.5 Synchronization
The biggest issue with the currently used BoB is the synchronization between
video and automobile CAN data. Video is recorded via the BoB and CAN data is
recorded with an USB connected CAN interface, with this solution synchronization
between the data streams is lost. Test engineers at Autoliv Electronics estimate
that the time shift between the data streams is on the order of a few video frames.
The underlying mechanism for the lost synchronization is memory buffers in the
PC and the fact that the operating system (OS) used on the PC is Windows XP,
which is not a real time operating system. The incoming memory buffer for the
video data on the FireWire link and incoming memory buffer for the CAN data on
the USB link are different depending on different device drivers. Furthermore the
buffers might not even be static over time but may depend on the current work
load of the PC. These assumptions have not been proved but seem to be the most
plausible, explaining the behavior using the current BoB.

The lost synchronization between video and CAN data makes the camera sys-
tem behave nondeterministically in certain test scenarios. Autoliv Electronics have
had its customers, who also do testing on the camera system, report supposed bugs
of the camera system, which the test engineers at Autoliv have been unable to re-
produce. The reason for this is assumed to be the fact that in the laboratory the
recorded situation will not be reproduced by the, in this case, NightVision system
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in the same way as it took place in the live situation in the automobile. To solve
the issue of synchronization one needs to establish what the required synchroniza-
tion between the video and the CAN data needs to be.

Examining the NightVision system one quickly realizes that its main loop is
based on one video frame, see figure 2.6. During every frame, which is 1/30 ≈ 33
ms long, the loop polls for CAN data twice hence every ∼17 ms. The CAN data on
the automobile CAN bus is transmitted with industry standard time intervals. The
most frequent parameter used by the camera system is updated every 20 ms. That
means that it at the most takes 33 ms between two different values of the most time
critical CAN data parameter. However perfect synchronization is needed between
the video and the CAN data because the main loop wraps around every 33 ms
and the CAN data is updated every 20 ms. Since the rate of the two processes is
different they will always be out of phase and therefore even the slightest time shift
between the video and the CAN data will cause an altered behavior of the ECU in
playback compared to recording of the data. However the finer the resolution of the
synchronization is, the fewer video frames are affected and the nondeterministic
behavior is decreased. The highest achievable synchronization resolution would be
to use a counter updated with the main clock of the BoB to time stamp the video
and the CAN data. However the nondeterministic behavior may also partially
be contributed to the architecture of the NightVision system, which has multiple
clock domains which are not synchronized at startup of the system.

Figure 2.6. Main loop of the NightVision system with CAN polling indicated.

2.6 Usability
The usability of the BoB refers to the ease of use of the BoB and the possibility to
automate its operation. The current BoB only has one LED indicating whether it
has power or not, there is no other possibility to diagnose the status of the BoB.
Furthermore the hardware of the current BoB, which is a small FPGA, needs to be
reprogrammed to switch its operation from recording to playback or vice versa. At
Autoliv Electronics this has meant that certain BoBs are only used for recording
and others are only used for playback since Autoliv engineers can not reconfigure
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the BoBs themselves. The new BoB is required to be setup in software and to
support both record and playback. It is also required to have additional status
information about which mode it is operating in and other information useful for
diagnostics.

Externally the new BoB is required to have both a power LED and a LED in-
dicating the status of the link between the BoB and the PC, the current FireWire
link lacks such LED. The physical connector of the link between the BoB and the
PC is also required to have some sort of mechanism hindering the connector to
unplug accidentally, something that has been fairly common with the FireWire
connector of the current BoB.

Lastly the usability also concerns the interface to the PC. The current BoB
only supports using Windows XP as the operating system because of OS specific
device drivers for the Firewire link of the current BoB. In addition to that a
FireWire extension card is needed in every PC with which the BoB is used, since
FireWire often is not a motherboard standard of most desktop PCs. The new BoB
is therefore required to use an off-the-shelf communication link between it and the
PC to support multiple OSes without special drivers and extension cards.





Chapter 3

System design

This chapter presents the design of the new BoB as well as the design development
process, together with design decisions.

3.1 Design proposal
Autoliv Electronics, with their knowledge of the issues with the current BoB,
proposed the new BoB to be an FPGA based design with a 1 Gbit/s Ethernet link
between the BoB and the PC. This proposal was thoroughly examined, using the
4+1 design view model [3], with the result presented below.

3.2 4+1 design views
The four different architectural views, presented by the "4+1 View Model" [3],
which I have modified into the functional view, the process view, the implementa-
tion view and the physical view, see figure 1.6, complement each other and make
up the hardware description of the new BoB, see figure 3.1. This hardware de-
scription can be implemented in any hardware description language, in our case
in VHDL.

The functional view identifies the main functions of the system and decom-
poses them into sub-functions which together make up a functional flow, pictured
as a functional graph. In the downward vertical direction an edge in the functional
graph asks the question "How?", referring to how the function in the node above is
going to be performed. In the upward vertical direction an edge in the functional
graph asks the question "Why?", referring to why the function in the node below
needs to be performed. The directed nodes, which mainly are horizontal, shows
the data flow of the whole function. The use cases or use scenarios of the system,
in our case identified in the requirement specification, is the starting point of the
functional view.

17
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Figure 3.1. The four complementing views of the architecture.

The process view describes the behavior of the system is terms of data flow,
memory allocation, configuration registers, timing analysis and bandwidth analy-
sis. The process view also addresses the real time performance of the system.

The implementation view describes how the hardware modules are orga-
nized in hardware abstraction layers, a concept borrowed from the software do-
main. The implementation view addresses the modularity of a system as well as
its maintainability, as long as the interface between modules is not changed it is
possible to exchange or modify a module. Furthermore the implementation view
also addresses portability of the system and its different modules across different
hardware components. The implementation view together with the process view is
the basis for the choice of hardware for the design; microcontroller, DSP or FGPA
etc. Finding a balance between the performance of the hardware and the cost of
the hardware is part of this process.

The physical view is a description of how the modules in the implementation
view are mapped to the actual hardware and interconnected with each other.
Whereas the implementation view is hardware platform independent the physical
view is not.

3.2.1 Functional view
The new BoB together with a PC is required to perform four main tasks or func-
tions. These are

• Record data, see figure 3.2

• Playback data, see figure 3.3

• Configure the BoB, see figure 3.4

• Get Diagnostics of the BoB, see figure 3.5
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Figure 3.2. Functional graph of the function "Record Data".

Figure 3.3. Functional graph of the function "Playback Data".

Figure 3.4. Functional graph of the function "Configure".

Figure 3.5. Functional graph of the function "Get diagnostics".
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3.2.2 Process view

The process view and the implementation view does not, as can be seen in figure
1.6, follow after each other but are concurrent steps in the design process, therefore
to fully understand the process view one has to understand the implementation
view, as they describe the same system from different viewpoints.

PC communication link One of the main issues with the current BoB is its
limited bandwidth, which is limited both by the LVDS link and by the FireWire
link of 400 Mbit/s. The new BoB is required to have a bandwidth of at least 618
Mbit/s. Candidate technologies for the communication link between the BoB and
the PC with high enough bandwidth are listed in table 3.1.

Technology Theoretical bandwidth
FireWire 800 (IEEE 1394b-2002) [6] 800 Mbit/s
Gigabit Ethernet [7] 1 Gbit/s
SATA [8] 1.5 Gbit/s
USB 3 [9] 5 Gbit/s

Table 3.1. Candidate technologies for the PC communication link.

Of the four candidate technologies, USB 3 can immediately be disregarded
because it is a draft standard at the moment and hardware components can be
bought earliest in 2010. Examining FireWire 800 one realizes that it has a strong
heritage from FireWire 400, but an increased bandwidth. Therefore the PC will
still need an extension card with device drivers and since the cabling is simular to
that of FireWire 400, it still may disconnect accidentally. With all the issues from
the current BoB in mind regarding FireWire, this technology was disregarded.
Gigabit Ethernet and SATA were developed with different goals in mind, Gigabit
Ethernet for networking and SATA mainly for connection with hard drives. A
possibility would be to equip the BoB with a hard drive connected over a SATA
link, this would alter the need of connecting the BoB to a PC at all times. How-
ever such a solution would not in an easy way support real time viewing of the
video being recorded, something that surfaced as a preferable property of the BoB.
Gigabit Ethernet on the other hand is de facto standard on motherboards, and
is supported by almost every OS there is. The concern was whether a sustained
bandwidth of 618 Mbit/s could be obtained using Gigabit Ethernet and an non
real time OS, such as Windows XP. In his article "Driven to Distraction" [10],
Wilson examines a number of different Gigabit Ethernet drivers and Internet Pro-
tocol (IP) stacks for Windows XP. The article concludes that a high sustained
bandwidth with Gigabit Ethernet and Windows XP on a modern PC of today,
2009, is not a problem. Using special drivers the CPU load was decreased with 10-
15%. Therefore Gigabit Ethernet was chosen for the communication link between
the BoB and the PC. There are a number of advantages with Gigabit Ethernet
over SATA; it supports IP, which will enable the BoB to host web services and
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have a web interface, its cabling has a mechanisms to prevent it from accidentally
disconnecting and it is a cheap technology due to its large volumes.

Time stamping The different data streams recorded by the BoB need to be time
stamped in order to be played back synchronously. The current BoB is merging,
hence time stamping, the video and the CAN data in the PC and therefore the
synchronization is lost due to issues previously discussed. The alternative is to time
stamp the data streams as soon as they are retrieved in the BoB. By letting the
BoB be responsible for the synchronization a communication protocol supporting
real time data is needed in the BoB. The choice of Gigabit Ethernet infers that IP
[11], will be used between the BoB and the PC. On top of IP there is a transport
layer and on top of that there is an application layer, in the TCP/IP stack. For
a transport protocol the choice is either User Datagram Protocol (UDP) [12], or
Transmission Control Protocol (TCP) [13]. Because of the complexity of TCP and
the simple needs of the BoB, UDP was chosen. For an application protocol Real-
time Transport Protocol (RTP) [14], was chosen, mainly because it is the only
reasonable choice for real-time applications and because it suits the needs of the
BoB perfectly. The RTP protocol supports a sequence number, a time stamp, a
unique identifier and a length indicator for every RTP packet, see figure 3.6. The
sequence number will help identify missing packets, the time stamp will enable
synchronization, the identifier will separate the different kinds of data; video,
CAN, etc and the length indicator will enable correct routing of data packets in
the BoB.

Figure 3.6. RTP protocol header; five 32 bit words long.

Real time performance For the BoB not to be dependent on a PC with real-
time performance, it needs to have a buffer for data itself. The on chip memory of
an FPGA is limited and it will be needed for the actual system design, therefore
an off chip memory solution is needed. There are multiple available memory
types, for the BoB a 32 bits wide 16 MB SDR SDRAM was chosen because of its
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cost effectiveness. Suppose half the memory is used as a video buffer, that would
correspond to 0.8 seconds of NightVision video, plenty for use as a buffer to ensure
real time performance.

Timing Internally the data in the BoB is designed to propagate with a width
of 32 bits. The reason therefore is the data width of the memory and the fact
that the clock frequency of the memory is the same as the main clock domain of
the BoB. To determine a minimum clock frequency of the BoB one has to take
into consideration the bandwidth of the different camera systems, as well as the
number of memory accesses for the data. The bandwidths were determined in
section 2.3 and all data will first be written to the buffer memory once and then
read from the same. The memory accesses will not be possible to perform back
to back, there will be overheads in terms of the operation of the memory access
protocol and the fact that the memory needs to be refreshed. In the minimum
clock frequency calculation the overhead is assume to be 75%, table 3.2 shows the
minimum clock frequency for the different systems. A clock frequency of 70 MHz
will be enough for all systems, if the over head assumption is correct.

System Bandwidth Bit width Overhead Clock freq.
NightVision 80 Mbit/s 32 bits 75% 8.75 MHz
StereoVision 256 Mbit/s 32 bits 75% 28.0 MHz
Future system 270 Mbit/s 32 bits 75% 29.5 MHz
Future StereoVision 618 Mbit/s 32 bits 75% 69.6 MHz

Table 3.2. Minimum clock frequency calculation for the BoB for the different camera
systems.

Data flow The data through the BoB flows either from the FPGA drivers to
the Ethernet controller for recording, or the opposite way for playback. Figure 3.7
shows the data flow.

3.2.3 Implementation view
The modules of the BoB can be classified into to three different classes, or layers.
There are the Routing layer, the Networking layer and the Packetizing layer.

Routing Layer The top layer of the hardware abstraction layers is the routing
layer which operates on data packetized in RTP packets. The routing layer routes
packets from one channel to another, without knowing the current operation of
the BoB; record or playback. The modules that make up the routing layer is the
channel router and the synchronizer.

Networking Layer The middle layer is the networking layer, its task is to
handle the IP and the UDP protocols as well as separating UDP from TCP packets.
Whether for example IP version 4 (IPv4) or IP version 6 (IPv6) [15] is usedx<
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Figure 3.7. Data flow in the BoB.
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as the IP protocol is known only by the networking layer and is transparent for
the other layers. The UDP IP De-/encapsulator and the TCP/UDP filter are the
modules that are part of the networking layer.

Packetizing layer The lowest layer is the packetizing layer, modules in this layer
handles data from off chip components and packetizes it in RTP packets, except for
the Ethernet Controller. As the figure shows the packetizing layer interacts both
with the Routing layer and the Networking layer, contrary to praxis where every
layer interface only to one other layer above itself. The modules in the Packetizing
layer have multiple clock domains which the data crosses. The modules in this
layer are the Ethernet Controller, the LVDS driver, the CAN driver, the I2C driver
and the RS232 driver.

Figure 3.8. Implementation view

Data and control plane The modules of the BoB can, apart from being clas-
sified into hardware abstraction layers, also be classified into either a data plane
or a control plane. Every module that is part of the hardware abstraction layers is
a module that is part of the data flow, therefore the hardware abstraction layers
make up the data plane. The remaining modules will be part of a control plane,
modules handling the control of the BoB. The modules in the control plane is
the Clock and reset controller, the FPGA Config Register and the Flow Control
Engine. These modules interact with modules of every layer in the data plane, as
shown in figure 3.8. The MicroBlaze is also part of the control plane.



3.2 4+1 design views 25

Hardware Once the data and the control plane of the implementation view of
the BoB have been established it is possible to consider the choice of hardware on
which to implement the BoB. Considering only the clock frequency calculations in
section 3.2.2 both an FPGA solution as well as a processor based software solution
seem possible, available processors operate at hundreds of MHz. However the mod-
ules in the packetizing layer in the data plane interface with technology specific
integrated circuits (ICs). These are ICs for LVDS serialization and deserialization
and for CAN, Ethernet and serial communication. As the ICs for LVDS signaling
have manufacturer specific communication protocols, glue logic would be needed
to connect the LVDS IC to a processor bus. For this reason, together with the
fact that a prototype would not easily be built for such a processor based system,
the BoB will be implemented on an FPGA. For a high usability, even though the
design is implemented on an FPGA, a soft processor core will be designed into the
BoB.

As the FPGA used will be from Xilinx, as it is the FPGA supplier of Autoliv
Electronics, the soft processor core will be their MicroBlaze processor [16]. The
Microblaze has support for the lightweight TCP/IP stack, lwIP, which is an open-
source implementation of the TCP/IP protocol stack originally by Adam Dunkels
[17]. The Microblaze will run a web interface for status and control of the BoB
and it will communicate with the PC over TCP/IP. In figure 3.8 the MicroBlaze
is part of the control plane.

3.2.4 Physical view
The physical view, pictured in figure 3.9, shows how the different modules of the
BoB are interconnected. All of the modules will be implemented on the FPGA,
anything that is off the FPGA has a block arrow connected to it. The grey solid
boxes shows the different clock domains in the FPGA. There is a main clock do-
main with the clock clk_main. Every IC connected to the FPGA, such as the
LVDS deserializer, the LVDS serializer, the CAN IC and the other serial ICs op-
erate with their own clock. Therefore there are multiple clock domains which the
data needs to cross.

The module MPMC is a Multi Port Memory Controller, which is an intellectual
property from Xilinx. This module provides an easy to use interface to the SDRAM
for the channel router and at the same time it allows the MicroBlaze to connect to
the SDRAM. The SDRAM access is time multiplexed between the channel router
and the MicroBlaze. In figure 3.9, the Microblaze is dotted, indicating that it is
not a necessity for the design to function. The MicroBlaze is connected to the
FPGA config register, which it can read and write for status and control purposes.
The FPGA config register can also be read and written through the channel router.

Operation The BoB operates in either record mode or in play back mode. In
record mode, the LVDS driver receives video data from the LVDS deserializer. The
data is time stamped and one full video line is buffered and packetized in an RTP
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Figure 3.9. Block diagram of the physical view of the BoB. The block arrows indicate
signals off the FPGA.



3.3 Module design 27

packet, before it is transmitted to the channel router. The channel router serves
the transmission requests from the channels in a round robin fashion. Once the
incoming data port of the channel router is available it receives the RTP packet
from the LVDS driver. The UDP IP De-/encapsulator is constantly requesting
packets from the channel router. Once the channel router has buffered one RTP
packet of video or CAN data for the UDP IP De-/encapsulator it starts transmit-
ting that packet to the same. The UDP IP De-/encapsulator adds an UDP and an
IP header with correct packet length indicators, checksums, ports and addresses.
Once that is done the data packet with the video line, which now is an IP packet,
is transmitted to the TCP/UDP filter. The TCP/UDP filter merges data from
the UDP IP De-/encapsulator and the MicroBlaze and adds an Ethernet header
to the IP packet before it transmits it to the Ethernet Controller. The Ethernet
Controller, which is an intellectual property from Xilinx, interfaces to the Ethernet
PHY off the FPGA. The video line is then received in the PC as an Ethernet frame.

For playback the operation is reversed as the Ethernet Controller indicates
that it receives Ethernet packets. The TCP/UDP filter filters the UDP packets
for the UDP IP De-/encapsulator and the TCP packets for the MicroBlaze. The
UDP IP De-/encapsulator checks the IP address and the UDP port of the packet
as well as the IP checksum, before the IP and UDP headers are stripped. If the
packet was correct the remaining RTP packet is requested to be transmitted to
the channel router. Once the channel router accepts the RTP packet it is placed
in the buffer memory of the channel for which the data of the RTP packet is
meant. In playback mode the LVDS driver is requesting data and once it receives
data it checks its time stamp and transmits the data to the LVDS serializer at
the correct time. The synchronizer is used both for time stamping of incoming
packets and for synchronization of outgoing packets. For the first outgoing packet
the channel router sets the synchronizer accordingly, for the synchronization to
function properly and such that the data buffer in the channel router has been
filled enough.

Flow control The Gigabit Ethernet link between the BoB and the PC is ca-
pable of transferring data at up to 1 Gbit/s. None of the camera systems have a
bandwidth that high and therefore the data flow need to be controlled when the
BoB is in playback, otherwise the buffer memory of the BoB would overflow. The
flow control engine requests data for the buffer memories and it uses buffer mem-
ory fill levels to determine when to request data and when stop requesting data.
The software on the PC serves the data requests of the BoB and data congestion
is avoided.

3.3 Module design
Every module of the design will not be discussed in this section, in appendix C the
original design specification is attached. It includes module descriptions of every
module of the BoB.
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3.3.1 Channel Router

The channel router is at the heart of the BoB and routes data 32 bits wide be-
tween sixteen channels. It assumes RTP packets and uses the length in the RTP
header and the SSRC identifier of the RTP header to route the packets to the
correct destination. RTP packets from channels 1-15 are automatically routed to
channel 0, the UDP IP De-/encapsulator, this is typical for operation in recording
mode. RTP packets from channel 0, hence the PC, are routed to the channel cor-
responding to the SSRC identifier of the RTP header, this is typical for operation
in playback mode.

The channel router has two data ports, one for incoming data and one for
outgoing data, see figure 3.10. Every module connected to the channel router
shares these data ports but have independent data request and acknowledgement
signals for transmission and reception, a total of four signals for every channel.
The channel router has two arbitration units, one for transmission of data to the
channel router and one for reception of data from the channel router. A module
can request both to transmit and to receive from the channel router at the same
time, but each arbitration unit will only queue one request per module. This way
no module will dominate the channel router. Internally the channel router has
two FIFOs, First In First Out buffer memories, that can hold at least two RTP
packets of maximum size. These allow the interface protocol between the channel
router and the module to transfer one whole RTP packet without pausing during
the transmission.

The protocol of the MPMC, which interfaces to the SDRAM, allows for burst
writes and burst reads to and from the SDRAM. The channel router always writes
and reads the SDRAM in burst mode to minimize the overhead of the SDRAM.
The processes which write to and read from the SDRAM look up the write and
read address of the current channel in the SDRAM address/fill control register
file.

Interface protocol Figure 3.11 shows the interface protocol of the channel
router. The channel router only answers to transmission or reception requests
and is therefore transparent to the mode of operation. As soon as there is a re-
quest for either data transmission or reception the arbitration unit of the channel
router queues that request and the module is not allowed to cancel its request.
Once the channel router acknowledges a certain module’s request that module
must be ready to either transmit or to receive data the next clock cycle. Once a
transmission to the channel router is finished the module sets its request signal
low and no more data is transferred. For a reception from the channel router,
the channel router sets the acknowledgement signal low for the currently receiving
channel once the data is finished, this is the scenario in figure 3.11. The interfaces
between all other modules in the design use the same interface protocol as the
channel router.



3.3 Module design 29

Figure 3.10. Block diagram of the channel router.

Figure 3.11. Timing diagram for the channel router interface.
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3.3.2 LVDS driver

The LVDS driver interfaces to both an LVDS deserializer, for video recording,
and an LVDS serializer, for video playback. Since the different camera systems
use different LVDS links, the LVDS driver module is different for every system.
The data protocol used over the LVDS link between the camera and the ECU of
a system is also different for every system. Figure 3.12 shows the design of the
LVDS driver for NightVision with its video protocol [18]. The design in the figure
is only for recording and relaying of video data.

For NightVision the deserialized data received in the LVDS driver is 24 bits
wide. The NightVision video protocol only specifies that the 20 least significant
bits (LSB) are used. The four most significant bits (MSB) of the 20 bits used are
control bits, where one bit is a parity bit of the other 19 bits, another is the video
line synchronization bit and the two other bits are reserved for future use. The
remaining 16 LSB are the image word, hence every pixel could have a pixel depth
of 16 bits. Currently only 14 of these 16 bits are used for every pixel, nevertheless
all 16 bits need to be transmitted. The LVDS driver has an asynchronous FIFO,
in which data is written every clock cycle of the LVDS deserializer. As soon as
there is a line in the FIFO it is read out in the main clock domain where the
parity bit is checked and the video is synchronized on video frame and video line
basis. Every new video line, whether it is a video, control or blank line, is time
stamped with the 32 bit counter from the module synchronizer. To every line an
RTP header is added and while waiting for a full video line to be transmitted to
the channel router the RTP packet is stored in a FIFO.

Figure 3.12. Block diagram of the LVDS driver for NightVision.



Chapter 4

Implementation

This chapter presents the implementation of the BoB as a VHDL model synthe-
sized and built for a prototype hardware.

4.1 Model and simulation
The design of the BoB has been modeled in VHDL. Every module of the design
except for the MPMC, which is a memory controller, and the Ethernet Controller,
which both are intellectual properties of Xilinx, has been custom made. The size
of the whole design is approximately 6000 lines and test benches for module tests
and system level tests are also approximately 6000 lines. Every module has passed
unit tests and the whole design has been tested in system tests, according to the
test driven development methodology [4].

4.1.1 Overhead simulation
Apart from testing the design for correctness the VHDL model of the BoB has
been simulated to estimate the overhead occurring when writing and reading to
and from the SDRAM with the MPMC from the channel router. The SDRAM is
the bottleneck in the design since all data needs to be both written and read from
the SDRAM, in comparison to all other modules, where the data flow is through
those module. To estimate the overhead three different situations were simulated.

Situation 1 In this situation a very short recording scenario is simulated, the
UDP IP De-/encapsulator, an LVDS driver and a CAN driver was connected to
the channel router. The two drivers sent two very short RTP packets each to the
UDP IP encapsulator, through the channel. As table 4.1 shows the overhead in
situation 1 is 169%, which is more than twice the estimated overhead in paragraph
Timing of subsection 3.2.2.

Situation 2 In this situation a short recording scenario is simulated, the UDP
IP De-/encapsulator and an LVDS driver was connected to the channel router.

31
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Situation 1
Packet 1 (Length in 32 bits words) 51
Packet 2 (Length in 32 bits words) 18
Packet 3 (Length in 32 bits words) 81
Packet 4 (Length in 32 bits words) 18
Total length (in 32 bits words) 168
Data in both directions (in 32 bits words) 336
Simulation clock 20 ns/clock cycle
Ideal time without overhead 6720 ns
Simulation time 18110 ns
Overhead 169%

Table 4.1. Overhead simulation of situation 1.

The LVDS driver sent ten RTP packets of almost maximum length, which is the
packet length close to that of the future camera system. As table 4.2 shows the
overhead in situation 2 is 55%, which is below the estimated overhead of 75% in
paragraph Timing of subsection 3.2.2.

Situation 2
Packets (Length in 32 bits words) 379
Number of packets 10
Total length (in 32 bits words) 3790
Data in both directions (in 32 bits words) 7580
Simulation clock 20 ns/clock cycle
Ideal time without overhead 151600 ns
Simulation time 234770 ns
Overhead 55%

Table 4.2. Overhead simulation of situation 2.

Situation 3 In this last situation a recording scenario of approximately one
video frame is simulated, the UDP IP De-/encapsulator and an LVDS driver was
connected to the channel router. The LVDS driver sent 500 RTP packets of almost
maximum length, which is the packet length close to that of the future camera
system. As table 4.3 shows the overhead in situation 3 is 49%, which is below the
estimated overhead of 75% in paragraph Timing of subsection 3.2.2.

Conclusion To conclude the overhead simulation, it is clear that the channel
router will perform at an overhead less than 75%, which was the assumption in
the minimum clock frequency calculation in paragraph Timing in subsection 3.2.2.
The fact that situation 1 gives an overhead of 169% is merely due to the design of
the channel router which essentially works as a pipeline which needs to be filled and
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Situation 3
Packets (Length in 32 bits words) 379
Number of packets 500
Total length (in 32 bits words) 189500
Data in both directions (in 32 bits words) 379000
Simulation clock 20 ns/clock cycle
Ideal time without overhead 7580000 ns
Simulation time 11321670 ns
Overhead 49%

Table 4.3. Overhead simulation of situation 3.

emptied. When more packets are sent through the channel router the time to fill
and to empty the pipeline becomes increasingly small compared to the total time.
The overhead seems to level out at approximately 50% as it only decreases from
55% to 49% increasing the number of packets from ten to 500. With a simulated
overhead of ∼50%, the design will perform at the required bandwidths as long as
it can be built to run at ∼70 MHz.

4.2 Implementation on prototype hardware
To prove the design of the BoB it was implemented in hardware. For the im-
plementation of the VHDL model of the BoB on the prototype hardware the
FPGA development software design suite from Xilinx has been used, it includes
ISE FoundationTM Software, Platform Studio and the EDK and ChipScopeTM.

4.2.1 Prototype hardware
The prototype hardware needed for the BoB had to include an FPGA, an SDRAM
memory, a Gigabit Ethernet interface and general purpose input/output pins to
connect an LVDS deserializer to the FPGA. The prototype hardware used is a
development board, the ExtremeDSP Spartan-3A DSP Development Board [19],
with a Xilinx FPGA. The FPGA is a Spartan-3A DSP 3400A, which is one of
the bigger FPGAs in the Xilinx Spartan low-cost FPGA line. The FPGA has
more than enough system gates needed by the design of the BoB, but approxi-
mately the number of user input/output pins that the BoB use. Therefore the
FPGA chosen in the actual BoB hardware is a Spartan-3A DSP 1800A FPGA,
which has less number of system gates but approximately the same number of pins.

Figure 4.1 shows the prototype hardware setup with an LVDS deserializer
connected to the FPGA of the development board via the general purpose in-
put/output (GPIO) list. The prototype supports recording of NightVision video,
where the IR camera is connected to the LVDS connector. Because of the limited
number of GPIO pins only a single LVDS deserializer can be connected to the de-
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velopment board, there are no pins to connect a CAN IC or other devices. As the
figure of the prototype hardware shows the development board is equipped with
DDR2 SDRAM memory, which is on the backside of the printed circuit board
(PCB). This memory is different from the Single Data Rate (SDR) SDRAM that
the actual BoB hardware will be equipped with. The memory controller, the
MPMC, was chosen partly because of this, since the back end of the MPMC eas-
ily can be changed to interface either to a DDR2 SDRAM memory or an SDR
SDRAM memory.

4.2.2 Implementation result
The VHDL model of the BoB used in the implementation of the prototype did
not include the soft processor, the MicroBlaze, for running a web interface for the
BoB. The MicroBlaze system was evaluated separately on the FPGA development
board, using a modified template from Xilinx [20]. In the scoop of the master thesis
the integration of the MicroBlaze into the VHDL model was too timeconsuming,
and was therefore left out.

Synthesis The synthesis of the VHDL model of the BoB, with Xilinx ISE
FoundationTM Software, yields the shorted summary presented in table 4.4. Im-
portant to notice is the maximum clock frequency, which is 80.97 MHz. This
means that the design meets the requirement of the minimum clock frequency cal-
culation in paragraph Timing of subsection 3.2.2. Using the simulated overhead of
50% and a clock frequency of 80 MHz the implementation of the BoB should the-
oretically be able to handle a bandwidth of ∼850 Mbit/s, well above the required
618 Mbit/s.

Build design summary report
Finite State Machines (FSMs) 25
Adders/Subtractors 129
Counters 5
Accumulators 21
Registers (Flip-flops) 3248
Comparators 66
Multiplexers 102
Maximum clock frequency 80.97 MHz

Table 4.4. Implementation synthesis design summary.

Build Building the synthesized design for the prototype hardware yields the
shorted summary presented in table 4.5. The logic utilization of the FPGA is low,
and the IOB utilization is modest. One has to remember that in the final design
there will be both an LVDS deserializer and an LVDS serializer, as well as multiple
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Figure 4.1. FPGA development board, with labels for the components used in the BoB
design.
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serial drivers together with a soft processor. Therefore the FPGA will be better
utilized using the final design.

Synthesis design summary report
Logic Utilization
Number of Slice Flip Flops 6,167 out of 47,744 12%
Number of 4 input LUTs 9,020 out of 47,744 18%
Logic Distribution
Number of occupied Slices 6966 out of 23872 29%
Input/Output Buffers (IOBs)
Number of External IOBs 126 out of 469 26%
Number of External Input IOBs 37
Number of External Output IOBs 53
Number of External Bidir IOBs 36
Other
Number of BUFGMUXs 5 out of 24 20%
Number of DCMs 2 out of 8 25%
Number of RAMB16BWERs 37 out of 126 29%
Total equivalent gate count for design 2575473

Table 4.5. Implementation build design summary.



Chapter 5

Result

This chapter presents the results of the master thesis, as well as future work that
need to be done for the BoB to be a finalized product.

5.1 BoB prototype
The prototype of the BoB, which was developed for the NightVision system, has
successfully been tested in a recording scenario. Figure 5.2 shows one video frame
of a sequence recorded using the prototype. The scene is typical for the NightVision
system, showing the rear end of a car, where white indicate warmth and black
indicate cold. As development of software for the BoB was not part of the master
thesis the NightVision video frame has been extracted with a Matlab script working
on IP packets from the BoB, stored on the PC with an IP packet sniffer. In the
final development and testing system, in which the BoB will be part, a commercial
software framework for recording and playback of data of all kinds will be used.
Since the software environment for the BoB has not been developed yet, playback
of video and data through the BoB is not possible and therefore the prototype of
the BoB only supports recording of data. However configuration and status of the
BoB, setting and reading the FPGA config register, has successfully been tested
and proves that playback will work once there is a software to play back video
from the PC.

5.2 Future work
To transform the prototype of the BoB into a fully functional product there are a
number of tasks to complete. The VHDL model needs slight modifications to fit
the actual hardware on which the BoB will be implemented. There is also work
to complete the VHDL model with drivers for the LVDS links and video protocols
of the other camera systems as well as drivers for the serial links; CAN, I2C and
RS232. The MicroBlaze, which will provide a web interface for the BoB needs
to be implemented, but most importantly the software environment which will
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interface with the BoB needs to be developed.

As a last remark the new BoB has proven to fulfill at least three of the four main
requirements; bandwidth, modularity and usability. The last, synchronization, has
not yet been tested due to the lack of a software environment and play back support
in the prototype of the BoB. Synchronization should not be a problem either as
the BoB has been designed to be a flexible platform to extend for future needs.

Figure 5.1. Extraction of a NightVision video frame recorded with the BoB implemented
on the FPGA development board.
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Appendix A

Abbreviations

BoB Break out Box
CAN Controller Area Network
DDR2 Double-Data Rate 2
ECU Electronic Control Unit
FIFO First In, First Out
FNIR Far and Near InfraRed
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GPIO General Purpose Input/Output
I2C Inter-Integrated Circuit
IC Integrated Circuit
IOB Input/Output Buffers
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
IR Infrared
LSB Least Significant Bit
LVDS Low Voltage Differential Signaling
MPMC Multi Port Memory Controller
MSB Most Significant Bit
OS Operating System
PC Personal Computer
PCB Printed Circuit Board
RAM Random Access Memory
RTP Real-time Transport Protocol
SATA Serial AT Attachment
SDR Single Data Rate
SDRAM Synchronous Dynamic RAM
TCP Transmission Control Protocol
UDP User Datagram Protocol
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit



Appendix B

Requirement Specification

Starting on the next page the original requirement specification document is at-
tached. The specification documents every requirement of the BoB and is therefore
more accurate than chapter 2, Requirement specification, which aims at presenting
an overview of the requirements focusing on the major points. In the original re-
quirement specification the new BoB is referred to as the Splitter and the old BoB
is referred to as the Wicer Box, by which name it is known at Autoliv Electronics.
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1 Scope 

1.1 Identification 

The system that this document describes is the second generation of the currently used 

“Wicer box”, which is a development box within the NightVision and the StereoVision 

project groups at Autoliv Electronics AB, Linköping. 

1.2 System overview 

The system is a hardware box, which will be known as “the splitter”, and a software API 

and application run on a desktop computer. The purpose of this system is multifold; it can 

be used in a variety of cases, depending on the need. 

1.2.1 System use cases 

1.2.1.1 Case I: Recording data 

When gathering test video driving around in a car, the splitter will enable video 

from the automotive camera to be recorded onto a desktop/laptop computer. 

 

 

 

 

 

 

 

1.2.1.2 Case II: Data playback 

When in the test lab, the splitter will enable playback of recorded video from the 

desktop computer to an ECU, the processing unit of e.g. the NightVision or the 

StereoVision application. 

 

 

 

 

 

 

 

1.2.1.3 Case III: Recording tapped data 

When gathering test video driving around in a car, the splitter will enable tapping 

and recording of data onto a desktop/laptop computer, while the NightVision or 

the StereoVision system functions as normal. 
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1.2.1.4 Case IV: Recording processed data 

When gathering test video in a car, the splitter will enable recording of processed 

video from the ECU onto a desktop computer 

 

 

 

 

1.2.1.5 Case V: Recording both unprocessed and processed data 

Using two splitters the unprocessed and the processed video can be compared and 

recorded simultaneously onto only one desktop computer. 

 

 

 

 

 

 

 

1.2.1.6 Case VI: Testing of NightVision and StereoVision algorithms 

For high testability of the NightVision and StereoVision systems the splitter needs 

to support playback of CAN data together with video transparently from a desktop 

computer to the ECU. The setup is the same as for case II. 

 

Apart from handling video as described in cases I-VI, the splitter will have the 

functionality to be able to control a camera using either the I
2
C or the RS232 standards. 

The splitter will have no hardware configuration switches, instead it will be controlled 

and configured via the software application on the desktop computer.  

1.2.2 System users 

The splitter will be used for a multitude of development and testing purposes within the 

NightVision, the StereoVision and future camera system project groups at Autoliv 

Electronics AB. 

• It will be used for testing during development of algorithms and verification of 

the implementation of the same.  

• The splitter will be used for system test and final verification of the current 

NightVision system, assembled at the Autoliv Electronics production facility in 

Motala, and the StereoVision system as well as future camera systems. 
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ECU 
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The splitter ECU The splitter 
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• The splitter will be used in product validation, a process in which currently the 

NightVision system is subjected to tough environments; heat, electromagnetic 

radiation etc, and is tested over a prolonged time, up to thousands of hours. 

• The splitter will be available to the customers of the NightVision system and the 

StereoVision system as well as to customers of future camera systems, for them to 

perform their own tests.  

 

AEV, Autoliv Electronics Vision, in Goleta, CA, USA, assembles the NightVision 

cameras and they may want to use the splitter for development and testing purposes. 

 

The splitter will also be used in the FNIR project (Fusing Far and Near InfraRed imaging 

for pedestrian injury mitigation) in which Autoliv Electronics AB is a partner.  

1.2.3 System developer 

As his master thesis project, Erik Irestål, employed by ENEA Linköping and directed by 

Lars Asplund, will develop the hardware box, the splitter.  

1.3 Document overview 

The purpose of this document is to summarize all the requirements of the next, hence the 

second, generation of the “Wicer box”. This document is intended to state all the 

requirements of every group within Autoliv Electronics AB that has an interest in the 

splitter. To identify the requirements, every requirement is numbered with a requirement 

identification number (RIN), which is a three digit number preceded by the letter R, an 

example would be R123. A requirement specification list is attached at the end of the 

document.  

2 Requirements 

2.1 Required modes 

The splitter will be required to be able to operate in the following modes: 

2.1.1 Idle (R001) 

In this mode the I/O ports of the splitter and the camera connected to the splitter can be 

configured and controlled. The splitter is waiting either to start to record or to start to 

playback data in this mode.  

2.1.2 Recording data (R002) 

In this mode the splitter records data from one of its I/O ports to the desktop computer. 

2.1.3 Playback of data (R003) 

In this mode the splitter plays data from the desktop computer to one of its I/O ports. 

 

In all of the modes, diagnostics of the splitter can be retrieved. 
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2.2 System capability requirements 

2.2.1 Video recording 

The splitter is required to be able to record video from an LVDS receiver connected to its 

LVDS I/O ports (R004). The format and protocol of the video may differ between 

different LVDS standards and cards. The splitter is required to be able to record video 

from the LVDS receiver based on National DS90C124 

(http://www.national.com/pf/DS/DS90C124.html), which currently is used in the 

NightVision and StereoVision projects at Autoliv Electronics AB (R005). The FNIR 

project uses an infrared camera, which has a low-rate LVDS transmitter implemented in 

an FPGA, transmitting over three differential pairs. The splitter needs to support and 

deserialize the data on those differential pairs and other custom LVDS links with up to 5 

differential pairs (R007). The splitter is required to be future compatible in hardware, in 

the sense that it should be able to accommodate other LVDS receivers for video 

recording than the receiver mentioned above, with only changes to its onboard firmware 

configuration (R008). 

2.2.2 Relaying video while recording 

The splitter is required to be able to output video to an LVDS transmitter at the same time 

as video is recorded from an LVDS receiver onto the desktop computer (R009). The 

maximum latency between the input video from the LVDS receiver and the output video 

to the LVDS transmitter is limited by the fact that the ECU needs to process the video 

from the camera together with concurrent CAN data from the car; yaw rate, speed and 

temperature. The figure below shows an overview of the ECU, the microcontroller, MCU, 

is connected to the car’s CAN bus. The car’s yaw rate, the speed of the car’s rotation, is 

the most critical parameter and the MCU receives it every 20 ms. The SPI link between 

the MCU and the Vision Processor, VP, has only got bandwidth enough to send the yaw 

rate to the VP once every 100 ms. With video at 30 frames per second the main loop of 

the VP, which is based on a video frame, executes for a maximum of 33 ms. It polls the 

yaw rate value twice during that loop, therefore the maximum duration between two 

different yaw rate values is 100 + 33/2 ≈ 117 ms. The latency between the input and the 

output of the video in the splitter is required to be complaint with a future increase of the 

bandwidth of the SPI link so that the yaw rate can be updated every 20 ms in the VP. 

Therefore the latency is required to be able to cope with a maximum duration between 

two different yaw rate values of 20 + 33/2 ≈ 37 ms (R010). 
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2.2.3 Video playback to a single LVDS transmitter 

The splitter is required to be able to play video from the desktop computer to a single 

LVDS transmitter connected to an LVDS I/O port (R011). The format and protocol of the 

video may differ between different LVDS standards and cards. The splitter is required to 

be able to playback video to the LVDS transmitter based on National DS90C241 

(http://www.national.com/pf/DS/DS90C241.html), which currently is used in the 

NightVision and StereoVision projects at Autoliv Electronics AB (R012). In the same 

way that the splitter needs to support and deserialize data on custom LVDS links (R007), 

it also is required to serialize data onto custom LVDS links with up to 5 differential pairs 

(R014). The splitter is required to be future compatible in hardware, in the sense that it 

should be able to accommodate other LVDS transmitters for video recording than the 

transmitter mentioned above, with only changes to its onboard software configuration 

(R015). 

2.2.4 Video and data playback to a single LVDS transmitter (R016) 

The splitter is required to be able not only to send video to an LVDS transmitter but also 

video and data combined that is being played back from the desktop computer. 

2.2.5 Real-time video and CAN data processing support (R053) 

Using the splitter in a car, the whole system, the splitter and the software on the computer, 

is required to support real-time processing of the video and the CAN data and not only 

recording of the same. This is used during algorithm and ECU development when 

powerful computers emulate the ECU of a normal NightVision, StereoVision or future 

system. 

2.2.6 Splitter configuration from the desktop computer (R017) 

The “Wicer box” can’t be configured at all without sending it back to the manufacturer. 

Configuration, reset and restart of the splitter are required to be performed only from the 

software on the desktop computer. The splitter will have no hardware configuration 

switches at all.  

2.2.7 Splitter diagnostics from the desktop computer (R018) 

To get any diagnostics from the current “Wicer box” isn’t possible. Therefore when an 

error appears in the test lab it can be difficult to track the cause of the error. With this 

background the splitter is required to have diagnostics indicating the current mode of the 

splitter, the status of the communication link between the splitter and the desktop 

computer and the status of the currently connected I/O cards. All these parameters will be 

monitored in software on the desktop computer.  

2.2.8 Splitter status LEDs 

With the background of requirement R018 the splitter is required to have LEDs, 

indicating its power status (R019) and the status of the connection to the desktop 

computer (R020), to simplify the use of the splitter. 
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2.2.9 Capability of controlling camera 

The different automotive cameras used in the different projects, in which the splitter will 

be used for development, are controlled differently. The splitter is required to support 

control of the cameras over both I
2
C (R021) and over RS232 (R022). The current 

StereoVision camera uses the CAN protocol to control the camera, therefore the software 

on the desktop computer, together with an, to the desktop computer connected, external 

CAN interface, is also required to be able to control the camera (R023). The control 

interface is required to be in software on the desktop computer (R024). Also for 

development purposes the control software is important, because it is easier and faster to 

develop algorithms for exposure control for a desktop computer than for the ECU.  

2.2.10 CAN bridge (R025) 

In a normal setup and in many test situations, especially the way that the NightVision 

system is tested currently, the camera is controlled by the ECU rather than by the desktop 

computer. Therefore the splitter needs to have a CAN bridge, to relay the private CAN 

communication from the ECU to the camera. This requirement is a result of the fact that 

the physical interface and the cables for LVDS and CAN data between the ECU and the 

camera are combined. 

2.2.11 I2C bridge (R026) 

Future camera systems will use the I
2
C protocol to control the camera. The splitter is 

required to have an I2C bridge to relay the I2C link between the ECU and the camera. As 

for requirement R025 this setup will be the normal setup for future systems, but will also 

be used in certain tests. 

2.2.12 Emulate camera in software (R027) 

Not only is camera control capabilities over I
2
C (R021), RS232 (R022) and CAN (R023), 

important for testability of the system, in order for an ECU connected to the splitter to 

work properly without a camera connected to it, the desktop computer is required to 

emulate the camera and answer to messages sent to the splitter from the ECU. The ECU 

expects for example acknowledgements from the camera after having sent exposure 

parameters to the same. In playback mode (R003) only a splitter might be connected to 

the ECU instead of a camera and therefore the splitter is required to send “dummy” 

acknowledgements to the ECU. The ECU also requests temperature readings from the 

camera; therefore the splitter is required to send a “dummy” temperature to the ECU 

when asked for. This behavior is true for the ECU of all systems, but will likely only be 

used by the StereoVision and future projects. Nonetheless the emulation of cameras is 

required to be supported over I
2
C, RS232, and CAN. 

2.2.13 Software API (R028) 

For future extensions of the desktop computer software and for customers of the 

NightVision, StereoVision and future systems to be able to build their own specific test 

applications, the splitter is required to be supplied with a software API. The software 

application used on the computer for video recording, camera control and camera 

emulation is preferably also built using the same API.  
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2.2.14 Video format support 

The splitter is required to support the currently used raw data video format (R029). This 

way the existing video material for the NightVision project will be supported also with 

the new splitter. The splitter is also required to support a possible future migration to a 

commercial software framework for synchronized video and data record and playback 

(R030). 

2.2.15 Video and CAN data record synchronization (R031) 

The system as a whole, the hardware splitter and the software on the desktop computer, is 

required to synchronize the video recorded from the camera, via the splitter, and the CAN 

data recorded, via an external CAN interface connected to the desktop computer, from 

the car’s CAN bus. 

2.2.16 Video time stamping (R032) 

The video recorded from the LVDS receiver is required to be time stamped in order for 

the synchronization of requirement R031 to be accurate enough. 

2.2.17 Data loss indication for the communication link between the 
splitter and the desktop computer (R033) 

The current development box, the “Wicer box”, doesn’t indicate if video data is lost on 

the communication link between the box and the desktop computer. Since recorded video 

becomes distorted when video data is lost the system as a whole, the hardware splitter 

and the software on the desktop computer, is required to be able to indicate when the 

communication link between the splitter and the desktop computer loses video data 

packets. This could potentially happen when the bandwidth of the communication link is 

exceeded. The indication could either be an LED on the splitter or a message in the 

software, or both.  

2.2.18 Operating system compatibility 

The system as a whole, the hardware splitter and the software on the desktop computer, is 

required to be compatible with both Microsoft Windows XP (R034) and Linux (R035). 

2.2.19 Voltage requirement (R036) 

The splitter is required to be able to run at 12V, the voltage of the electrical system of a 

car. 

2.3 System external interface requirements 

2.3.1 Interface identification 

The external interfaces of the splitter are: 

• A communication link between the splitter and the desktop computer 

• The two LVDS I/O ports 

• The two CAN ports 

• The two serial (I
2
C/RS232) ports 
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The interfaces will be identified with interface identification numbers (IIN), a three digit 

number preceded by the letter I, for example I456. 

2.3.2 Communication link between the splitter and the desktop 
computer (I001) 

The communication link between the splitter and the desktop computer is required not to 

be the currently, by the “Wicer box” and the desktop computer, used FireWire link, an 

IEEE 1394 link (R037). A multitude of problems have been experienced with the current 

FireWire link: 

• Separate FireWire I/O cards are needed in the desktop computers. 

• Now and again software hot fixes are needed to be installed under Windows XP 

in order for the FireWire communication link to work. 

• At times Windows XP loses the connection to the “Wicer box”, even though the 

box is physically connected.  

• The physical FireWire connector doesn’t have a mechanism hindering the 

connector to be pulled out of the FireWire jack accidentally. This has been a 

problem using the “Wicer box” in tougher environments, such as in a car when 

driving around capturing test video. 

 

The communication link between the splitter and the desktop computer is required to be a 

standard link, in order to avoid the problems described above (R038). The bandwidth of 

the link is crucial, the FireWire link of the “Wicer box” has bandwidth 400 MBit/s and 

that is not enough to accommodate the bandwidth required by the StereoVision project. 

The bandwidth of the link is required to be enough to accommodate the higher bandwidth 

of the StereoVision project (R039). A standard which has evolved and has multiple 

operation modes at different bandwidths is preferable, since the NightVision project 

could do with only 100 MBit/s. Such a standard is likely cheaper at 100 MBit/s than at a 

higher bandwidth, adding the extra bandwidth only when needed (R040). An already 

standardized communication protocol stack both for Windows XP (R041) and for Linux 

(R042) is required. Lastly a communication link is required that has physical connectors 

that can’t be unplugged accidentally (R043). 

Desktop computer link LVDS I/O port 1 (I002) 

CAN port (I004) 

Serial port (I006) 

The Splitter 

LVDS I/O port 2 (I003) 

CAN port (I005) 

Serial port (I007) 
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2.3.3 The two LVDS I/O ports (I002, I003) 

The splitter is required to have an input for an LVDS receiver and an output for an LVDS 

transmitter card. The splitter needs to support the LVDS cards listed in the table below 

and have future compatibility to support other cards as well. 

LVDS I/O card Receiver/Transmitter Usage Requirement 

National DS90C124 Receiver R005 

National DS90C241 Transmitter 

Used in NightVision 2 

and current StereoVision R012 

Table 2.3.3.1 

 

Each of the two LVDS I/O ports is required to be a GPIO, general purpose input/output, 

with 32 pins (R044). Requirement R007 and R014 will be realized within the 32 pin 

GPIO.  

   

The splitter is also required to support future LVDS receivers and transmitters that have a 

backchannel for either I
2
C or RS232 (R045). 

2.3.4 The two CAN ports (I004, I005) 

The two CAN ports will be standard CAN ports that will relay the CAN communication 

between the ECU and the camera (R025). For CAN communication between the camera 

and the desktop computer an external CAN interface connected to the desktop computer 

will be used (R023). 

2.3.5 The serial ports (I006, I007) 

Either the I
2
C or the RS232 protocol will run on the serial port. The serial ports will be 

used either to relay the communication between the ECU and the camera (R026). A serial 

port can also be configured to control either a camera (R021, R022) or to connect to an 

ECU when emulating the camera in software (R027). Since there are only two serial 

ports both R026 and R021 or R027 can’t be fulfilled at the same time. 

2.4 System environment requirements 

The environment in which the splitter will be used will vary greatly. The splitter will be 

mounted in cars for the purpose of recording test video, it will also be used in the product 

validation process where harsh environments are simulated. The splitter will also be used 

in production running for long periods of time day in and day out.  

2.4.1 Sustainability against high or low temperatures 

The splitter will be used both in high and low temperatures, for example in heat tests 

during product validation or in potentially cold cars. In both environments the splitter is 

required to be able to operate correctly (R046).  

2.4.2 Sustainability against moisture 

The splitter is required to operate correctly in moist environments, in which it may be 

used (R047). 
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2.4.3 Sustainability against electromagnetic radiation 

The splitter is required to operate correctly in environments in which the electromagnetic 

radiation is higher than normal, such as prototype cars or test labs (R048). 

2.4.4 Sustainability against supply voltage variations  

The splitter is required to operate correctly in environments with variations in supply 

voltage, which is a common phenomenon in prototype cars (R049). 

2.5 Computer resource requirements 

The desktop computer, to which the splitter will be connected and on which the software 

application will run, is required to be powerful enough to handle the real-time video 

recording and playback (R050). 

2.6 System development requirements 

The system development is required to be well documented, using a documentation style 

that is easy to understand and maintain (R051). The quality and the readability of the 

hardware description code and the software programming code are required to be such 

that a third person easily can get an overview and understand the design of the splitter 

and extend or redo the design with ease (R052).    

3 Notes 

3.1 Future extensions 

There are a multitude of extensions that the splitter could support. Some of those might 

not be possible to add at a later stage in the life of the splitter, while others will.  

3.1.1 CAN communication capability 

The capability to record or playback CAN data via the splitter or to control a camera over 

CAN via the splitter is a neat feature, but costly to implement. The splitter will be 

extendable to have such CAN capability but in an early stage, the synchronization that is 

required between recorded video and CAN data (R031) can be implemented in software 

on the desktop computer. Hence at an early stage the system will keep the current 

solution where an external CAN interface is connected to the desktop computer, over 

which CAN messages can be sent to and received from the ECU and the camera, see 

figure below for an example. 

 

 

 

 

 

 

 

ECU The splitter 

CAN 

PC 
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3.1.2 Capability of three or more LVDS I/O cards 

A possible extension to the splitter would be to add the capability to connect more than 

only one LVDS receiver card and one LVDS transmitter card. There could be cases 

where one would want to compare different imaging algorithms on different ECUs. Then 

the need to connect one LVDS receiver and two LVDS transmitters would exist. 

 

 

 

 

 

 

 

3.1.3 Internal flash memory for test video 

If a flash memory is added to the splitter, it could be used as a standalone test equipment. 

Video from a camera could be recorded onto the flash memory and be played back 

directly from the flash memory without the need of a desktop computer. 

 

3.1.4 Testability of camera over CAN 

From the perspective of camera manufacturers, it would be interesting to make the 

splitter support testing and further diagnostics of cameras over CAN, I
2
C or RS232. 

3.1.5 Internet diagnostics 

For the purpose of diagnostics it would be useful with the possibility to diagnose a 

splitter remotely over the Internet. This way Autoliv Electronics AB in Linköping could 

remotely access diagnostics of its customers using the splitter in their test environments. 

3.1.6 Internet browser interface 

An Internet browser interface for the splitter is another useful feature, which could be 

used to configure and diagnose the splitter over the Internet. If the splitter could be 

connected to an Internet router this feature could be implemented without the need for a 

desktop computer to always be connected to the splitter for it to be configured and 

diagnosed. To support this possible extension an additional requirement on the 

communication link between the splitter and the desktop computer is that it supports the 

IP protocol. 

 

 

 

 

 

The splitter 
PC Internet 

The splitter FLASH ECU CAM The splitter FLASH 

CAM 
PC 

ECU1 

ECU2 

The splitter 
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Appendix C

Design specification

Starting on the next page the original design specification document is attached.
The specification documents the design both on the system level and on the mod-
ule level. There are block diagrams for every module of the BoB, which in this
document is referred to as the Splitter. Compared to chapter 3, System design,
the module descriptions of this document are more detailed.
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1 Introduction 

1.1 Abbreviations 

BoB Break out Box 
CAN Controller Area Network 
FIFO First In, First Out 
FPGA Field-Programmable Gate Array 
IP Internet Protocol 
LVDS Low Voltage Differential Signaling 
MPMC Multi Port Memory Controller 
RAM Random Access Memory 
RTP Real-time Transport Protocol 
SDRAM Synchronous Dynamic RAM 
TBD To Be Determined 
TCP Transmission Control Protocol 
UDP User Datagram Protocol 
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2 Detailed Design Specification 

2.1 Top level system design 

 

Figure2.1-1 Block level diagram of the top level of the Splitter, the block arrows represent off 
chip signals. 

2.2 Channel router module 

The data links connected to the channel router; the Ethernet link, the LVDS video link, the CAN bus 
etc, are defined as channels in the BoB. The channel router handles the data from these channels and 
routes it to the correct destination channel. The data is assumed to be packetized in RTP packets with 
an RTP header and payload.   
 
The external interface of the channel router is presented below 

Generic Parameters 

Name Type Comment 

data_channel_width Positive Bit width of data 

number_of_channels Positive Number of channels of channel router 

synchronizer_width Positive Bit width of synchronizer 
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Ports 

Name Type Dir Comment 

reset_main_domain                       std_logic in Synchronous reset main clock 
domain 

clk_main                                std_logic in Clock in main clock domain 

data_in                std_logic_vector 
(data_channel_width - 1:0 ) 

in Data input for Channel router 

data_transmission_req      std_logic_vector 
(number_of_channels - 1:0 ) 

in Data transmission request for each 
channel 

data_transmission_ack                   std_logic_vector 
(number_of_channels - 1:0 ) 

out Data acknowledgement for 
transmissions 

data_out            std_logic_vector 
(data_channel_width - 1:0 ) 

out Data output for Channel router 

data_reception_req           std_logic_vector 
(number_of_channels - 1:0 ) 

in Data reception request for each 
channel 

data_reception_ack                      std_logic_vector 
(number_of_channels - 1:0 ) 

out Data acknowledgement for 
receptions 

 

Name Type Dir Comment 

mpmc_0_PIM1_InitDone_pin std_logic in Initialization of MPMC port is done 

mpmc_0_PIM1_RdFIFO_Latency_pin std_logic_vector 
(1:0) 

in Latency from Pop signal of read 
FIFO to valid data on data bus 

mpmc_0_PIM1_RdFIFO_Flush_pin std_logic out Flush read FIFO 

mpmc_0_PIM1_RdFIFO_Empty_pin std_logic in Read FIFO is empty 

mpmc_0_PIM1_WrFIFO_Flush_pin std_logic out Flush write FIFO 

mpmc_0_PIM1_WrFIFO_AlmostFull_pin std_logic in Write FIFO almost full 

mpmc_0_PIM1_WrFIFO_Empty_pin std_logic in Write FIFO is empty 

mpmc_0_PIM1_RdFIFO_RdWdAddr_pin std_logic_vector 
(3:0) 

in Indicates the word of a cacheline 
transfer to which 
mpmc_0_PIM1_RdFIFO_Data_pin 
corresponds. 

mpmc_0_PIM1_RdFIFO_Pop_pin std_logic out Read FIFO pop signal 

mpmc_0_PIM1_RdFIFO_Data_pin std_logic_vector 
(31:0) 

in Read FIFO data bus 

mpmc_0_PIM1_WrFIFO_Push_pin std_logic out Write FIFO push signal 

mpmc_0_PIM1_WrFIFO_BE_pin std_logic_vector 
(3:0) 

out Write FIFO Byte enable 

mpmc_0_PIM1_WrFIFO_Data_pin std_logic_vector 
(31:0) 

out Write FIFO data bus 

mpmc_0_PIM1_RdModWr_pin std_logic out Read Modify Write for writes 

mpmc_0_PIM1_Size_pin std_logic_vector 
(3:0) 

out Size, indicating the type of read or 
write from SDRAM 

mpmc_0_PIM1_RNW_pin std_logic out Read or Write, 

mpmc_0_PIM1_AddrAck_pin std_logic in Address acknowledgement 

mpmc_0_PIM1_AddrReq_pin std_logic out Address request 

mpmc_0_PIM1_Addr_pin std_logic_vector 
(31:0) 

out Address bus of MPMC port 

Figure 2.2-1 External ports of the channel router 
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Figure 2.2-2 Block level diagram of the channel router, the grey arrows represent internal 
control signals 
 
The channel router supports up to 16 channels, the routing scheme assumes that channel 0 is the 
Ethernet link from the BoB to a desktop computer. Data on channels 1 to 16 is routed to channel 0 and 
data on channel 0 is routed to the appropriate destination channel determined from the SSRC 
identifier in the RTP packet header. The routing is handled by the Packet insertion module which 
writes the packets to the Write FIFO together with a control line before every packet containing the 
destination channel and the SSRC identifier of the packet. The most significant bit in the FIFO line is a 
line valid bit. Between packets in the FIFO there has to be two invalid lines. The Packet insertion 
module accepts new packets as long as the Write FIFO has enough space for at least one packet and 
as long as the circular buffer in the SDRAM for all channels has free space for at least one packet. 

 

Figure 2.2-3 Data structure of the Write and Read FIFO. 

 
Counters keep track of the number of RTP packets in the Write FIFO and the Read FIFO. As soon as 
there is at least one packet in the Write FIFO the Write SDRAM module requests access to the 
MPMC. Once access is granted the RTP packet is written to the SDRAM in the circular buffer of the 
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destination channel. The Read SDRAM module waits for a request from the reception arbitration unit 
for one of the 16 channels. Once a channel requests an RTP packet the Read SDRAM module checks 
if there is a packet in the SDRAM for that channel, if so access to the MPMC is requested. Once 
access is granted the packet is written to the Read FIFO. Once the Read FIFO holds at least one 
packet the Packet extraction module acknowledges the correct channel and reads out the RTP packet 
for that channel. For the SDRAM not to overflow the Read SDRAM module has priority over the Write 
SDRAM module in the contention for the MPMC. The Write SDRAM module and the Read SDRAM 
module always writes and reads to/from the MPMC using 32 word burst mode, this minimizes the 
overhead accessing the memory. Behavioural simulation of the Channel Router shows that 
transmission and reception of normal sized RTP packets through the Channel Router has a 50% 
overhead, this is due to channel arbitration overhead, MPMC contention and the memory access 
scheme used by the MPMC etc.  
 
The arbitration units give priority to the lower numbered channels in the case of two or more channels 
requesting to either transmit or receive packets to/from the channel router in the same clock cycle. 
Each channel can only have one outstanding transmission request and one outstanding reception 
request. 
 
The data flow of the channel router is externally request based, that is to say that the channel router is 
passive and acknowledges requests both to receive and to transmit RTP packets. Hence it is the task 
of the drivers connected to the channel router to request to transmit RTP packets to and to request to 
receive RTP packets from the channel router. Implementing the channel router like this makes it 
transparent to whether the BoB is working in recording or in playback mode.  

2.3 Clock and reset controller module 

The Clock and reset module handles all the clocks and reset for the splitter, some clocks related to the 
Ethernet Controller are generated within that module.  
 

Ports 

Name Type Dir Comment 

clk_main_external std_logic in External main clock 

clk_main std_logic out Internal main clock 

clk_main90 std_logic out 
Internal main clock phase shifted 90 
degrees 

clk_gtx_external std_logic in 
External 125 MHz clock for Ethernet 
transmission at 1 Gbps 

clk_gtx std_logic out 
Internal 125 MHz clock for Ethernet 
transmission at 1 Gbps 

clk_mii_tx_external std_logic in 
External 125 MHz clock for Ethernet 
transmission at 1 Gbps 

clk_mii_tx std_logic out 
Internal 125 MHz clock for Ethernet 
transmission at 1 Gbps 

phyrxclk_external std_logic in 
External 125 MHz clock for Ethernet 
transmission at 1 Gbps 

phyrxclk std_logic out 
Internal 125 MHz clock for Ethernet 
transmission at 1 Gbps 

lvds_rx_clk std_logic in External LVDS reception clock 

reset_external_n std_logic in External asynchronous reset 

reset_main_domain std_logic out 
Synchronous reset for main clock 
domain 

reset_phy_n std_logic out Reset for phy (active low) 

reset_ethernet_controller std_logic out 
Synchronous reset for Ethernet clock 
domain 

reset_lvds_rx_domain std_logic out 
Synchronous reset for LVDS FPGA 
driver clock domain 
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reset_can_domain std_logic out 
Synchronous reset for CAN FPGA driver 
clock domain 

reset_i2c_domain std_logic out 
Synchronous reset for I2C FPGA driver 
clock domain 

reset_rs232_domain std_logic out 
Synchronous reset for RS232 FPGA 
driver clock domain 

Figure 2.3-1 External ports of the Clock and reset controller 

2.4 FPGA Config Register 

The FPGA config register is connected to port 15 of the channel router. It holds the configuration file of 
the BoB to which a configuration is written by sending an RTP packet to the FPGA config register. To 
read out the configuration and status of the splitter there is a special bit assigned to make the FPGA 
config register transmit the configuration file in an RTP packet.  
 
The configuration file is 32 bits wide and 10 lines depth. Presently only a small number of bits are 
reserved, fig 2.4-3. The lines of the configuration file will be assigned to the modules of the BoB for 
module configuration and status.   

 
Generic Parameters 

Name Type Comment 

data_channel_width positive Bit width of data 

Ports 

Name Type Dir Comment 

reset_main_domain std_logic in   

clk_main std_logic in Clock in main clock domain 

data_inbound_tx std_logic_vector 
(data_channel_width - 1:0) 

out Data port to transmit to the channel 
router 

data_inbound_tx_req std_logic out Request to transmit data to the 
channel router 

data_inbound_tx_ack std_logic in Acknowledgement for transmission of 
data to the channel router 

data_inbound_rx std_logic_vector 
(data_channel_width - 1:0) 

in Data port to receive from the channel 
router 

data_inbound_rx_req std_logic out Request to receive data from channel 
router 

data_inbound_rx_ack std_logic in Acknowledgement for reception of 
data from the channel router 

gpio_led_1 std_logic out GPIP led 1 

gpio_led_2 std_logic out GPIP led 2 

gpio_led_3 std_logic out GPIP led 3 

gpio_led_4 std_logic out GPIP led 4 

gpio_led_5 std_logic out GPIP led 5 

gpio_led_6 std_logic out GPIP led 6 

gpio_led_7 std_logic out GPIP led 7 

gpio_led_8 std_logic out GPIP led 8 

reset_out std_logic out Reset the splitter from the 
configuration 

Figure 2.4-1 External ports of the FPGA config register 
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Figure 2.4-2 Block level diagram of the FPGA config register, the grey arrows represent internal 
control signals 

 

Line Bit Function 

0 0 Request for configuration file 

1 24 GPIO led 1 

1 25 GPIO led 2 

1 26 GPIO led 3 

1 27 GPIO led 4 

1 28 GPIO led 5 

1 29 GPIO led 6 

1 30 GPIO led 7 

1 31 GPIO led 8 

Figure 2.4-3 Assigned bits of the configuration file 

 

 

Figure 2.4-4 Data structure of the configuration file. 

2.5 Ethernet controller module 

The Ethernet controller is a wrapper around the IP Tri-Mode Ethernet Media Access Controller 
provided by Xilinx, through Core Generator. The wrapper instantiates the Ethernet Controller 
Configuration which configures the IP through its configuration vector, the Clock Generator which 
generates the clocks needed by the Ethernet IP and the GMII interface sub module creates a correct 
implementation of the GMII interface to the Ethernet PHY.   
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Ports 

Name Type Dir Comment 

reset std_logic in Asynchronous reset 

clk_main std_logic in Clock in main clock domain 

rx_clk std_logic out Reception clock for the EMAC reception client 

rx_data std_logic_vector(7:0) out Frame data received is supplied on this port. 

rx_data_valid std_logic out Valid data on rx_data port 

rx_good_frame std_logic out Asserted at end of frame reception to indicate that 
the frame should be processed by the MAC client. 

rx_bad_frame std_logic out Asserted at end of frame reception to indicate that 
the frame should be discarded by the MAC client. 

tx_clk std_logic out Transmission clock for the EMAC transmission 
client 

tx_data std_logic_vector(7:0) in Frame data to be transmitted 

tx_data_valid std_logic in Valid data on tx_data port 

tx_ack std_logic out Handshaking signal. Asserted when the current 
data on tx_data port has been accepted. 

tx_underrun std_logic in Asserted by client to force MAC core to corrupt the 
current frame. 

gtx_clk std_logic in Input of 125 Mhz clock for transmission at 1 Gbps 

gmii_txd std_logic_vector(7:0) out Data for transmission to PHY 

gmii_tx_en std_logic out Enable signal for transmission to PHY 

gmii_tx_er std_logic out Error control signal to PHY 

gmii_tx_clk std_logic out Output of transmission clock when operating at 1 
Gbps 

gmii_rxd std_logic_vector(7:0) in Data reception from PHY 

gmii_rx_dv std_logic in Data Valid control signal from PHY 

gmii_rx_er std_logic in Error control signal from PHY 

gmii_rx_clk std_logic in Input of reception clock from the PHY, 125 Mhz for 
1 Gbps, 25 Mhz for 100 Mbps or 2.5 Mhz for 10 
Mbps 

gmii_col std_logic in Control signal from PHY 

gmii_crs std_logic in Control signal from PHY 

mii_tx_clk std_logic in Input of transmission clock from the PHY for 
transmission at 10 Mbps or 100 Mbps 

Figure 2.5-1 External ports of the Ethernet Controller 
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Figure 2.5-2 Block level diagram of the Ethernet controller, the grey arrows represent internal 
control signals and clocks 

2.6 LVDS Driver NightVision module 

The task of the LVDS Driver NightVision is to receive deserialized data, to time stamp and to packetize 
that data into RTP packets. A future revision of the module will also have the capability to perform the 
reverse task, transmitting data to an LVDS serializer. The LVDS driver NightVision is built to interface 
with LVDS deserializer National DS90C124, used by the NightVision project.  
 
As soon as reset is released and the lock signal from the deserializer is high the deserialized data is 
written to the Asynchronous LVDS NV reception FIFO. The RTP encapsulator reads the 
Asynchronous LVDS NV reception FIFO as soon it holds at least one line of data. It time stamps the 
data with the synchronizer signal and performs parity checks on the data. As of now the parity check 
increments an error counter and isn’t used for anything but Chipscope debugging. The RTP 
encapsulator synchronizes with a video frame of the NightVision video and starts encapsulating data 
into RTP packets as soon as it gets frame synchronization. Into every RTP packet one line of video is 
packed. All types of video lines; blank, control and image lines are encapsulated and written to the 
RTP Transmission FIFO. As soon as there is at least one full RTP packet in the RTP Transmission 
FIFO, the Inbound Transmission logic requests the channel router to send an RTP packet. 
 
Because of the clock frequency difference between rx_clk (4 MHz) and clk_main (62.5 MHz), it is 
assumed that the Asynchronous LVDS NV reception FIFO never overflows. 
 

Generic Parameters 

Name Type Comment 

data_channel_width positive Bit width of data 

synchronizer_width positive Bit width of synchronizer 

Ports 

Name Type Dir Comment 

reset_main_domain std_logic in Synchronous reset main clock 
domain 

reset_lvds_domain std_logic in Synchronous reset lvds clock 
domain 

clk_main std_logic in Buffered clock in main clock 
domain 

synchronizer std_logic_vector 
(synchronizer_width - 1:0) 

in Synchronizer for timestamping 

tx_clk std_logic out Transmission clock for the LVDS 
serializer 

data_outbound_tx std_logic_vector (19:0) out Transmission data for the LVDS 
serializer 

rx_clk std_logic in Reception clock from the LVDS 
deserializer 

data_outbound_rx_locked std_logic in Reception data and clock from 
LVDS deserializer is locked 

data_outbound_rx std_logic_vector (19:0) in Reception data from the LVDS 
deserializer 

data_inbound_tx std_logic_vector 
(data_channel_width - 1:0) 

out Data port to transmit to the 
channel router 

data_inbound_tx_req std_logic out Request to transmit data to the 
channel router 

data_inbound_tx_ack std_logic In Acknowledgement for 
transmission of data to the 
channel router 
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data_inbound_rx std_logic_vector 
(data_channel_width - 1:0) 

in Data port to receive from the 
channel router 

data_inbound_rx_req std_logic out Request to receive data from 
channel router 

data_inbound_rx_ack std_logic in Acknowledgement for reception 
of data from the channel router 

Figure 2.6-1 External ports of the LVDS Driver NightVision 

 

 

Figure 2.6-2 Block level diagram of the LVDS Driver NightVision, the grey arrows represent 
internal control signals 

 

 

Figure 2.6-3 RTP Packet Format 

 
The fields used are: 
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EH 1 Extended Header Flag. Always “1” (use Extended Header) 

CSRC_ID 4 TBD… Always “0000”. 

M 1 M-Flag. Always “0”. 

PT 7 Payload Type. Use “0000001” for first line in a frame and “0000000” 
for all other lines. 

SEQUENCE_NBR 16 16-bit RTP packet Sequence Number. 

TIMESTAMP 32 32-bit Time Stamp. Uses the upper 32-bits of the Synchronizer input, 
thus resolution is (1/clk_main)*2^10 = 13.65 uS. 

SSRC_ID 32 32-bit Source identifier. Use 1 for NightVision data. 

PROFILE_SPEC_ID 16 TBD… Always “0000000000000000”. 

EXT_HDR_LENGTH  Extended Header Length. Always “000000000000001” (1 ext header 
word is used). 

RTP_PKT_LENGTH 32 The total length of the RTP Packet (in number of bits). Fixed for 
NightVision to "00001500". 

Figure 2.6-4 Explanation of the RTP protocol 

2.7 Synchronizer module 

The synchronizer module is essentially a counter which is used for time stamping of the incoming 
data; video, CAN, etc. The counter can be set to a desired value using the set_synchronizer port. If 
set_synchronizer has value other than 0x00000000 the counter is set to that value minus a predefined 
head start value. The external interface of the Synchronizer is presented below. 
 

Generic Parameters 

Name Type Comment 

synchronizer_width positive   

Ports 

Name Type Dir Comment 

reset_main_domain std_logic in Synchronous reset main clock domain 

clk_main std_logic in Buffered clock in main clock domain 

synchronizer std_logic_vector 
(synchronizer_width - 
1:0) 

out Synchronizer value 

set_synchronizer std_logic_vector 
(synchronizer_width - 
1:0) 

in Set synchronizer value, asserted by 
the channel router 

Figure 2.7-1 External ports of the Synchronizer 

2.8 TCP/UDP filter 

The TCP/UDP filter is connected between the UDP/IP encapsulator and the Ethernet controller. Its 
task is to filter the IP packets received from the Ethernet controller to the either the UDP/IP 
encapsulator (UDP packets) or to a Microblaze interface (TCP packets) and to act as an arbiter 
between UDP IP encapsulator and the Microblaze for transmitting to the Ethernet controller. At the 
current revision there is no Microblaze connected to the TCP/UDP filter. Therefore the arbitration 
mechanism isn’t implemented yet. The TCP/UDP packet filtering is implemented and functions for 
UDP packets. 
 
IP packets received from the UDP IP encapsulator are written to the asynchronous UDP Inbound 
Packet FIFO. Once the FIFO isn’t empty the Inbound Transmission Logic requests to transmit an 
Ethernet packet. The frequency of clk_main is 62.5 MHz and that of tx_clk is 125 MHz (at 1 Gbps), but 
since the write port of the UDP Inbound Packet FIFO is four times as wide as the read port, it is 
assumed that as soon as there is something in the FIFO, data will be written to the FIFO faster than it 
is read from the FIFO.  
 
Ethernet frames received from the Ethernet controller are written into the synchronous Small 
Outbound FIFO while the transport protocol is determined, TCP or UDP. Once the transport protocol is 
determined the Ethernet frame is read from the Small Outbound FIFO, the Ethernet header is removed 
and the IP packet is routed to its correct destination. The Frame Check Sequence (FCS) of an 
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Ethernet frame is located at the end of a frame, therefore the validity of an Ethernet frame is written to 
the valid FIFO, once the whole IP packet has been written to the UDP Outbound FIFO. For IP packets 
using TCP as the transport protocol this functionality has yet to be implemented.  
Once there is at least one packet in the UDP Outbound FIFO the validity of the packet is checked. 
Valid packets, hence packets whose Ethernet FCS was correct, are transmitted to the UDP IP 
encapsulator, after the transmission request was acknowledged. Invalid packets are read out from the 
UDP Outbound FIFO and are discarded.  
 
 

Generic Parameters 

Name Type Comment 

data_channel_width positive Width of the Channel router data bus 

Ports 

Name Type Dir Comment 

reset_main_domain std_logic in Synchronous reset main clock domain 

reset_ethernet_domain std_logic in Synchronous reset Ethernet clock 
domain 

clk_main std_logic in Buffered clock in main clock domain 

rx_clk std_logic in Buffered receive Ethernet clock 

tx_clk std_logic in Buffered transmit Ethernet clock 

clientemactxd std_logic_vector ( 7:0 ) out Frame data to be transmitted 

clientemactxdvld std_logic out Control signal for clientemactxd port 

emacclienttxack std_logic in Handshaking signal. Asserted when the 
current data on clientemactxd has been 
accepted. 

clientemactxunderrun std_logic out Asserted by client to force MAC core to 
corrupt the current frame. 

emacclientrxd std_logic_vector ( 7:0 ) in Frame data received is supplied on this 
port. 

emacclientrxdvld std_logic in Control signal for the emacclientrxd port. 

emacclientrxgoodframe std_logic in Asserted at end of frame reception to 
indicate that the frame should be 
processed by the MAC client. 

emacclientrxbadframe std_logic in Asserted at end of frame reception to 
indicate that the frame should be 
discarded by the MAC client. 

data_outbound_tx std_logic_vector 
(data_channel_width - 1:0) 

out Data port to transmit to the IP/UDP 
encapsulator 

data_outbound_tx_req std_logic out Request to transmit data to the IP/UDP 
encapsulator 

data_outbound_tx_ack std_logic in Acknowledgement for transmission to the 
IP/UDP encapsulator 

data_outbound_rx std_logic_vector 
(data_channel_width - 1:0) 

in Data port to receive from the IP/UDP 
encapsulator 

data_outbound_rx_req std_logic in Request to receive data from the IP/UDP 
encapsulator 

data_outbound_rx_ack std_logic out Acknowledgement for reception from the 
IP/UDP encapsulator 

Figure 2.8-1 External ports of the TCP/UDP filter 
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Figure 2.8-2 Block level diagram of the TCP/UDP filter, the grey arrows represent internal 
control signals 

 

2.9 UDP IP encapsulator module 

The UDP IP encapsulator is connected between the channel router and the TCP/UDP filter. The UDP 
IP encapsulator encapsulates RTP packets or decapsulates IP packets. The inbound data flow is 
encapsulated first with an UDP header and then with an IP header. The length of the RTP packets is 
used to calculate the length fields of the UDP and IP headers. For the IP header a checksum is 
calculated. IPv4 is the only IP version currently supported for encapsulation of the RTP packets. The 
inbound reception logic is constantly requesting RTP packets from the channel router. The inbound 
transmission logic is requesting to transmit as soon as there is at least one IP packet in the inbound 
packet FIFO. 
 
For the outbound dataflow the incoming IP packets are decapsulated of their IP and UDP headers to 
get RTP packets. Both IP versions IPv4 and IPv6 are supported and the checksum of IPv4 headers is 
checked. If the IP destination address or the UDP destination port of a packet is incorrect or if the 
checksum of the IPv4 header is corrupt, the packet is discarded. The UDP checksum is never 
checked, it’s assumed correct. The outbound reception logic acknowledges requests to receive 
packets if the outbound packet FIFO has space for one RTP packet of maximum size. The outbound 
transmission logic requests to transmit to the channel router when there is at least one RTP packet in 
the outbound packet FIFO. The external interface of the UDP IP encapsulator is presented below. 
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Generic Parameters 

Name Type Comment 

data_channel_width positive Width of the channel router data bus  

Ports 

Name Type Dir Comment 

reset_main_domain std_logic in Reset in main clock domain 

clk_main std_logic in Clock in main clock domain 

data_inbound_rx std_logic_vector (31:0) in Data port to receive data from the 
UDP/TCP filter 

data_inbound_rx_req std_logic in Request for data port to receive data 
from the UDP/TCP filter 

data_inbound_rx_ack std_logic out Acknowledgement for data port to 
receive data from the UDP/TCP filter 

data_inbound_tx std_logic_vector (31:0) out Data port to transmit data to the 
UDP/TCP filter 

data_inbound_tx_req std_logic out Request for data port to transmit data 
to the UDP/TCP filter 

data_inbound_tx_ack std_logic in Acknowledgement for data port to 
transmit data to the UDP/TCP filter 

data_outbound_tx std_logic_vector  
(data_channel_width - 1:0) 

out Data port to transmit to the channel 
router 

data_outbound_tx_req std_logic out Request to transmit data to the 
channel router 

data_outbound_tx_ack std_logic in Acknowledgement for transmission of 
data to the channel router 

data_outbound_rx std_logic_vector 
(data_channel_width - 1:0) 

in Data port to receive from the channel 
router 

data_outbound_rx_req std_logic out Request to receive data from channel 
router 

data_outbound_rx_ack std_logic in Acknowledgement for reception of 
data from the channel router 

Figure 2.9-1 External ports of the UDP IP encapsulator 

 
 



17 (17) 

 

Figure 2.9-2 Block level diagram of the UDP IP encapsulator, the grey arrows represent internal 
control signals 
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