Experimentelle Modalanalyse (EMA)

Kurze Einfuhrung

Modalanalyse ist der Vorgang zur Ermittlung der Modalparameter einer Struktur
fur alle Eigenschwingformen im zu untersuchenden Frequenzbereich.

Erster Schritt der EMA ist die Ermittlung der
Modalparameter eines Systems:

* Modalfrequenz
* Modaldampfung
 Modenform

Ziel letztendlich ist die Entstehung eines Modal-
Modells des Strukturverhaltens anhand dieser
Parameter.



dee der Modalanalyse

Grund




Experimentelle Modalanalyse (EMA)

Kurze Einfuhrung

Jede erzwungene Schwingung einer Struktur lasst sich als bewertete Summe
ihrer Schwing(Moden)formen darstellen. Jede Schwingform lasst sich durch ein
Ein-Freiheitsgrad-Modell darstellen
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Experimentelle Modalanalyse (EMA)

Kurze Einfuhrung

Voraussetzungen:

Linearitat : Systeme mussen sich linear verhalten, d.h.
Antwort immer proportional zur Erregung.

Fir die Messung der Ubertragungsfunktion folgt daraus:

- Uberlagerung: Ubertragungsfunktion ist unabhingig
von der Art der Erregerfunktion; Gleitsinus
Breitbanderregung

- Homogenitit: gemessene Ubertragungsfunktion ist
unabhangig von Erregungspegel

- Reziprozitat: Ubertragungsfunktion gleich unabhingig
davon, wo Messpunkt und wo Erregerpunkt ist.

Erregung x(t) ruft System - Antwort y(t) hervor.
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Kurze Einfuhrung

Zusammenhang zwischen Antwort und Erregung durch
DUHAMELsches Integral:

t
y)=[g(m) x(t-1) dr=g(t)" - x(t) O
0

d(t) - Gewichtsfunktion, welche als Systemantwort auf
einen DIRAC-Impuls definiert ist.

Gunstigere Darstellung der dyn. Eigenschaften eines
Systems durch FOURIER-Transformation von (1) im
Frequenzbereich moglich:

Y(jo) = G (jo) X(jo) (2)
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Kurze Einfuhrung

Mit (2) sind Systemeigenschaften aus Antwortspektrum Y(jw)) und
dem Erregerspektrum X(jw) ermittelbar, Frequenzgang G(jw)
mathematisch beschrieben als gebrochene rationale Funktion:
Y(jco)u _agtaqjo +..+ag(jo)"

X(jo),  bg+bjjo + ... +by(je)" O

Gy =

G (jow) — bei multivariablen Strukturmodellen Frequenzgangmatrix,
enthalt alle Frequenzgange, die das Systemverhalten von
Antwortstelle 1 zur Erregerstelle v beschreiben.

 Polstellen: Charakter der Schwingung, System-Eigenfrequenzen
* Nullstellen des Polynoms: Einfluss auf Schwingungsamplitude

ladae Avinamierha Quetam lkann hnenhrieben Werden mlt

MY (1) + Ky (0 + Cy(®) = x(0) R
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Kurze Einfuhrung
Die Dgin. in (4) sind im Allgemeinen verkoppelt.

Mit Modaltransformation besteht Moglichkeit, die Dgin. zu
entkoppeln, d.h. in n DgIn. aufzulosen. Entkopplung durch
Diagonalisierung der Systemmatrizen M, K, C. Die gleichzeitige
Diagonalisierung der 3 Matrizen ist nur moglich, wenn die
Matrizen M, K, C symmetrisch und die
Bequemlichkeitshypothese It. (5) gilt:

Annahme: proportionale Dampfung bei schwach gedampften
Systemen. Modaltransformation - Ahnlichkeitstransformation
mit der Modalmatrix V. Mit Ansatz:

y:Vp (6)
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Kurze Einfuhrung

und Multiplizieren von (4) mit V™ erhalt man mit (5):

diag (M) + diag (R) p+diag (€] p =¥Tx (1)

Danach FOURIER-Transformation - Frequenzgang (bei
homogenen (,,Null“)-Anfangsbedingungen) ist Quotient aus
Antwort Y und Erregung X beschrieben in der Form — damit

Komponente der Frequenzgangmatrix G:

S IRVAFERY, Vi Vvi
w i) = 2. L’w “jor  jo-jo

(8)

Vyis Vi Elemente der Modalmatrix
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Schlussfolgerungen:

« Jeder Frequenzgang ist Summe der Frequenzgange modaler
Systeme mit einem FG (siehe Folie 2).

* Frequenzgang auf die auf die Erregung bezogene Antwort
nach (2) und kann somit gemessen werden.

* Damit erhalt man Zusammenhang zwischen den Messwerten
fur Frequenzgang und Systemeigenschaften.

* Mit geeigneten Identifikationsverfahren konnen entsprechend
die modalen Parameter bestimmt (geschatzt) werden.

* Gl. (8): schon in einer Komponente G alle Eigenwerte
vorhanden und in einer Zeile bzw. Spalte der Frequenzgang-
matrix alle Eigenvektoren des Systems enthalten.

* Eine Zeile der Matrix erhalt man, indem an einer Stelle
gemessen und an allen anderen Stellen erregt wird und eine
Spalte, wenn an einer Stelle erregt und an allen Stellen
gemessen wird.
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Kurze Einfuhrung

Hinweise fur eine vollstandige Identifikation:

3.Beobachtbarkeit:
- keine Messung im Schwingungsknoten
- keine Messung von Relativkoordinaten
2. Steuerbarkeit:

- keine Erregung im Schwingungsknoten

- Kraftwirkungslinie moglichst auerhalb des geschatzten
Schwerpunktes

- bei simultaner Erregung an unterschiedlichen Stellen
unterschiedliche Erregerfunktionen wahlen

3. Identifizierbarkeit:

- die aus Messdaten gebildete Kriteriumsfunktion fur die
Fehlerbewertung muss ein globales Minimum besitzen,
welches mit den gewahlten exp. Mitteln und Algorithmen
bestimmt werden kann
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Kurze Einfuhrung

Prinzipieller Weg:

- System durch eine dynamische (gemessene Kraft) angeregt.

- Resultierende Systemantwort mit Messaufnehmern erfasst.

- Zeitsignale von Erregung und Antwort werden konditioniert, dem
FFT-Analysator ubergeben und dort gefiltert, abgetastet,
digitalisiert und mit der FFT in den Frequenzbereich transformiert.

Ergebnis: Frequenzgang in diskreten Werten.

3 Aspekte der Frequenzgangermittiung:

1. Lagerung und Erregung der Struktur

2. Aufnahme der zu messenden GroRen (Kraft, Bewegung)

3. Signalverarbeitung (Analysatoreinstellung entspr. der Aufgabe)
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Idealfall:
Bildung des Frequenzganges G nach (2).

Praktisch entstehen Probleme durch:

- mechanische Storsignale in der Struktur,

- nichtlineares dynamisches Verhalten des Systems
- elektrische Rauschsignale in Messgeraten.

Losung durch Mittelungsverfahren angewendet — nach genugend
groBer Anzahl von Mittelungen wird:

- stochastisches Rauschen unterdrickt

- deterministische Signale addieren sich.
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Einfluss der Storsignale in der Koharenzfunktion, sie bewertet
Linearitat zwischen Eingangs- und Ausgangssignal:

2
2=Eﬂy_l__ "(0<72<1)

Y klein — dann groBer Einfluss von Storsignalen auf den
Frequenzgang. Praktisch meist ausreichend:
y> 0,75

Mit der Koharenzfunktion ist Kontrolle des Versuchsaufbaus
moglich, Ursachen schlechter Koharenz:

- Kabeleinflusse

- schlechte Wahl der Erreger- und Messpunkten, Nichtlinearitat)

Koharenz sollte in Abhangigkeit von Mittelungszahl bestimmt
werden; Fehlerquellen konnen so erkannt und notwendige
Mittelungszahl festgelegt werden.
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Grundidee der Modalanalyse
Erregerarten

Elektrodynamischer Schwingerreger
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Erregersignale
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Schaufel - Spektrum Periodic Chirp 0 - 10 kHz
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Schaufel - Spektrum Periodic Chirp 0 - 10 kHz
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Nichtlineare Schwingungen

1§+ 200 + we*qg = 0 Lineare autonome Bewegungsgleichung Autonome
t =0:q=¢qy; ¢d=1u, (Freie Schwingungen) Bewegungs-
gleichungen
2 ¢+ /Hg;9) =0 Nichtlineare autonome Bewegungsgleichung
t =0:q=20qy;¢=1u, (Freie Schwingungen)
Sonderfall: Bewegungsgleichung der selbst-
' erregten Schwingungen
3 {4 20¢ + wy?q = f(t) Lineare Bewegungsgleichung fiir erzwungene Erzwungene
' Schwingungen Schwin-
‘ gungen
4§+ f1(d;5 @) = [o(¢) Nichtlineare Bewegungsgleichung fir erzwun-
gene Schwingungen
5 G+ f1(t) ¢ + f.(¢) g = 0 Rheolineare Bewegungsgleichung Parameter-
' (Parametererregte Schwingungen) - erregte
' Schwin-
¢ + f1(t) f2(d; 9) = O Rheonichtlineare Bewegungsgleichung gungen

(Parametererregte Schwingungen)

~1

G + f1(¢) fo(d; @) = f4(t) Rheonichtlineare Bewegungsgleichung mit
' Storglied ’ /

Heteronome Bewegungsgleichungen
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Nichtlineare Schwingungen

Selbsterregte Schwingungen:
- Reibschwinger
- Regen- Windinduzierte Schwingungen

Parameterregte Schwingungen:
- Pendel mit bewegtem Aufhangepunkt oder
veranderlicher Lange

- Kupplungsstangenantrieb von Lokomotiven
- Trager mit vershiebbarem Lager



Nichtlineare Schwingungen

Typische Erscheinungen:
2. Schwingfrequenz ist Funktion der Amplitude:

z = 5+2@% —1%

I, O T .

6. Bewegung der freien und harmonisch erregten
Schwingungen ist eine Zeitfunktion

7. Bei ,negativer Dampfung (Anfachung) treten
selbsterregte Schwingungen auf

8. Bei harmonischer Erregung mit Q treten Bwegungen
mit Subharmonischen auf:

Q :%Qk v4 | 7 2\’
\ V4
11. Kippeffekt der I/ .\ o

Resonanzkurve J \k J ,




Nichtlineare Schwingungen

Beispiel: Nichtlineares Pendel

Das lineare und nichtlineare Pendel
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ITI-SIM

MKS-System von ITI-GmbH Dresden

ITI-SIM Simulation - [Modell 1]
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