

ESP-12F WiFi module

Specifications

Version 1.0

August 23, 2015

Disclaimer and Copyright Notice

Information in this document, including URL address for reference, subject to change without notice.

Document "AS IS", WITHOUT ANY WARRANTY, including merchantability, fitness for any particular purpose or non-infringement guarantee in any guarantees and any proposal, specification or sample mentioned in his place. This document assumes no liability, including liability for infringement of any patent behavior of the use of this information within the document produced. The documents in this not confer any intellectual property rights to prohibit estoppel or otherwise Use license, either express or implied license.

Wi-Fi Alliance member's logos are owned by all the Wi-Fi Alliance.

All trade names mentioned in the text, trademarks and registered trademarks are the property of their respective owners, and are hereby acknowledged.

CAUTION

Since the product version upgrade or other reasons, the contents of this manual are subject to change. Shenzhen Shun Technology Co., Ltd. can be claimed without any notice or prompt information in this manual is subject to change reservations. This manual only as a guide, Shenzhen Shun Technology Co., Ltd. can make every effort to provide accurate information in this manual, but Shenzhen Shun Technology Co., Ltd. can not ensure the manual is no error, all statements in this manual, information and suggestions do not constitute any kind, express or implied.

Table of Contents

1. Product Overview2
1.1 Features3
1.2. The main parameters4
2. Interface Definition5
3. The shape and size7
4. Functional Description9
4.1. MCU9
4.2 Storage Description9
4.3. Crystal9
4.4 Interface Description10
4.5. Maximum Ratings11
4.6. The recommendations of the working environment11
4.7 Digital Port Characteristics11
5. RF parameters12
6. Power
7. tilt warming14
8. Schematic

9. Product Trial16

1. Product Overview

ESP-12F WiFi module is a security technology developed by the Letter to the module integrated core processor ESP8266 smaller package size Tensilica L106 industry-leading ultra-low power 32-bit micro MCU, with 16 compact mode frequency support 80 MHz and 160 MHz, supports RTOS, integrated Wi-Fi MAC / BB / RF / PA / LNA, on-board antenna.

The module supports standard IEEE802.11 b / g / n protocol, a complete TCP / IP protocol stack. Users can use the module for the existing equipment to add networking capabilities, you can build a separate network controller.

ESP8266 is a high performance wireless SOC, at the lowest cost to provide maximum practicality, the WiFi functionality into other systems offer endless possibilities.

Figure 1 ESP8266EX Chart

ESP8266EX is a complete and self-contained WiFi network solution that can run independently, it can also be mounted as a slave to another host MCU operation. ESP8266EX when the device is mounted as the only application should — Use processor can boot directly from the external flash memory. Built-in cache system is conducive to mention high- performance and reduce memory requirements.

Also — species case, ESP8266EX responsible for wireless Internet access WiFi adapter undertake the task, you can add it to any microcontroller-based design, the connection is simple and easy YES, simply by SPI / SDIO interface or I2C / UART port can.

ESP8266EX powerful processing chip and the memory can be subjected to, it can be integrated through the GPIO port sensors and other application-specific equipment to achieve the lowest pre-development and operation occupy minimal system resources.

Within a highly integrated chip ESP8266EX, including the antenna switch balun, power management converter, thus with minimal external circuitry, and the entire solution including front-end modules, including in the design of the PCB occupied space to a minimum.

There ESP8266EX system manifested leading features are: energy in the sleep / wake quickly switch between modes, with low-power operation of the adaptive radio bias, front-end signal processing functions, troubleshooting and radio systems coexist characteristic for the elimination of cellular / Bluetooth / DDR / LVDS / LCD interference.

1.1 Features

• 802.11 b/g/n

• Built Tensilica L106 ultra-low power 32-bit micro MCU, clocked at 80 MHz and supports 160 MHz, support for RTOS

- Built-in 10 bit precision ADC
- Built-in TCP / IP protocol stack
- Built TR switch, balun, LNA, power amplifier and matching network
- Built-in PLL, voltage regulator and power management components, 802.11b mode +20 dBm output power

The guard interval • A-MPDU, A-MSDU aggregation and 0.4 s of

- WiFi @ 2.4 GHz, supports WPA / WPA2 security mode
- Supports remote upgrade and cloud AT OTA upgrade
- Support STA / AP / STA + AP mode
- Support Smart Config function (including Android and iOS devices)
- HSPI, UART, I2C, I2S, IR Remote Control, PWM, GPIO
- Deep sleep holding current 10 uA, shutdown current of less than 5 uA
- Within 2 ms of wake-up, connect and transfer data packets
- Standby power consumption is less than 1.0 mW (DTIM3)
- Operating temperature range: -40 $^\circ\!\mathrm{C}\text{-}$ 125 $^\circ\!\mathrm{C}$

1.2. The main parameters

Table 1 describes the main parameters of the module.

Category	Parameters	Explanation	
	Standards Certification	FCC/CE/TELEC	
Radio parameters	Wireless Standard	802.11 b/g/n	
	Frequency Range	2.4GHz-2.5GHz (2400M-2483.5M)	
		UART/HSPI/I2C/I2S/Ir Remote Contorl	
	Data access	GPIO/PWM	
	Operating Voltage	3.0~3.6V (Suggested 3.3V)	
Hardware	Working current	Mean : 80mA	
parameters	Operating temperature	-40°~125°	
	Storage temperature	At room temperature	
	Package Size	16mm * 24mm * 3mm	
	External Connector	N/A	
	Wireless Network Mode	station/softAP/SoftAP+station	
	Security Mechanism	WPA/WPA2	
	Encryption Type	WEP/TKIP/AES	
	Upgrading firmware	Local serial programming / Cloud Upgrade / Host Download Burn	
Software parameters	Software Development	Supports customer-defined server To provide secondary development SDK	
	Network protocol	IPv4, TCP/UDP/HTTP/FTP	
	User Profiles	AT + instruction set, cloud server, Android/iOS APP	

Table 1 Parameters Table

2. Interface Definition

ESP-12F received a total of 18 interfaces, Table 2 is the interface definition.

Figure 2 ESP-12F pin map

Fable 2 ESP-12F	pin function	definitions
-----------------	--------------	-------------

No.	Pin Name	Function Description
1	RST	Reset Module
2	ADC	A / D conversion result. Input voltage range of 0 ~ 1V, in the range: 0 to 1024
3	EN	Chip Enable end, high effective
4	IO16	GPIO16; do wake deep sleep when receiving RST pin。

5	IO14	GPIO14; HSPI_CLK
6	IO12	GPIO12; HSPI_MISO
7	IO13	GPIO13; HSPI_MOSI; UART0_CTS
8	VCC	powered by 3.3V
9	CS0	Chip Select
10	MISO	Slave Master Input Output
11	IO9	GPIO9
12	IO10	GBIO10
13	MOSI	Master Out Slave
14	SCLK	Clock
15	GND	GND
16	IO15	GPIO15; MTDO; HSPICS; UART0_RTS
17	IO2	GPIO2; UART1_TXD
18	IO0	GPIO0
19	IO4	GPIO4
20	IO5	GPIO5
21	RXD	UART0_RXD; GPIO3
22	TXD	UART0_TXD; GPIO1

Mode	GPIO15	GPIO0	GPIO2
UART Download mode	Low	Low	High
Flash Boot Mode	Low	High	High

Parameters	Smallest	Typical	Maximum	Unit
	value	values		

Input Frequency	2412		2484	MHz
Input resistance		50		Ω
Input reflection			-10	dB
72.2 Mbps down, PA output power	14	15	16	dBm
Under 11b mode, PA output power	17.5	18.5	19.5	dBm
Sensitivity				
DSSS, 1 Mbps		-98		dBm
CCK, 11 Mbps		-91		dBm
6 Mbps (1/2 BPSK)		-93		dBm
54 Mbps (3/4 64-QAM)		-75		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm
Adjacent suppression				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
HT20, MCS0		37		dB
HT20, MCS7		20		dB

3. The shape and dimensions

ESP-12F SMD module appearance Size inch of 16mm * 24mm * 3mm (Figure 3). The module uses a capacity of 4MB, packaged as SOP-210 mil of SPI Flash. Modules using a 3 DBi of PCB-board antenna.

Figure 3 ESP-12F module appearances

Figure 4 ESP-12F module size view of a smooth surface

Table 5 ESP-12F Module Size Chart

Long	Width	Height	Size PAD (bottom)	Pin Foot spacing
16 mm	24 mm	3 mm	0.9 mm x 1.7 mm	2 mm

4. Functional Description

4.1. MCU

ESP8266EX built Tensilica L106 ultra-low power 32-bit micro MCU, with 16 compact mode, clocked at 80 MHz and supports 160 MHz, is compatible with the RTOS. Using the WiFi protocol stack is currently only 20% of MIPS, the other can be used for application development. MCU chip through the following interfaces and other parts of synergies \pm as:

1. Connect the memory controller can also be used to access external memory encoding RAM / ROM interfaces (iBus)

- 2. The same connection data RAM memory controller interfaces (dBus)
- 3. Access register AHB interface
- 4.2 Storage Description
- 4.2.1. Built-in SRAM and ROM

Auto body built ESP8266EX chip memory controller, comprising ROM and SRAM. MCU can access the storage controller iBus, dBus and AHB interface. These interfaces are accessible ROM or RAM unit, memory arbiter to determine the running order in the order of arrival. Based on the current Division I Demo SDK use SRAM, the user can remaining SRAM space: (next station mode, even after routed, heap + data area generally available around 36KB) RAM size <36kB not programmable ROM on ESP8266EX sheet Currently, users the program stored in the SPI Flash.

4.2.2. SPI Flash

Current ESP8266EX chip SPI interface supports external Flash, a theoretical maximum support to 16 MB of SPI flash. At present, the module is 4MB of external SPI Flash.

Recommendations Flash Capacity: 1 MB-16MB.

Supported SPI mode: Standard SPI, Dual SPI, DIO SPI, QIO SPI, and Quad SPI. Note that you need to select the corresponding mode in the download tool when downloading firmware, or after downloading the program will not be run correctly.

4.3. Crystal

Currently crystal 40M, 26M and 24M support, please pay attention to selecting the corresponding type of crystals in the download tool use. Crystal input and output of the applied determination of adjusted capacitors C1, C2 may be set to a fixed value, the value range in 6pF ~ 22pF, specific values need to be adjusted after the system test. Based on the current market situation in the mainstream of the crystal, the crystal 26Mhz General points added input and output capacitors C1, C2 in less than 10pF; General points 40MHz crystal input and output capacitance added 10pF <C1, C2 <22pF.

Optional precision crystal itself need to ± 10PPM. Crystal operating temperature -20 ° C- 85 ° C.

Crystal position as close to the chip XTAL Pins (traces not too long), while crystal alignment to be wrapped up well shielded land.

Crystal input and output traces can not punch alignment, that can not cross-layer. Crystal input and output traces can not cross, cross-layer cross too.

Crystal input and output bypass capacitors placed left and right side close to the chip, please, try not to put 走 line.

4 layers beneath the crystal can not take the high-frequency digital signal, the best situation is below the crystal does not go any signal lines, paved TOP crystal surface area the better. Crystal sensitive devices around the crystal can not have magnetic induction devices, such as large inductors.

4.4. Interface Description

Table 6 Interface Description

Interface	Pin	Function Description
Name		
HSPI Connector	IO12(MISO), IO13(MOSI), IO14(CLK), IO15(CS)	External 4SPI Flash, display and MCU like.
PWM- connector	IO12(R), IO15(G),IO13(B)	The demo offers four PWM (to 8 users can expand their own way), it can be used to control lights, buzzers, relays and motors.
IR-connector	IO14(IR_T), IO5(IR_R)	IR Remote Control4 interfaces implemented by software, interface NEC coding and modulation and demodulation, using 38KHz modulated carrier.

ADC Connector	тоит	This is useful for the detection VDD3P3 (Pin3, Pin4) supply voltage and TOUT (Pin6) input voltage (not both). It can be used for sensor applications.
I2C	IO14(SCL), IO2(SDA)	External sensors and displays and other
Connector		
		May be devices, external UART interface.
		Download: U0TXD + U0RXD or GPIO2 + U0RXD
		Communication (UART0): U0TXD, U0RXD, MTDO (U0RTS),
		MTCK (U0CTS) Debug: UART1_TXD (GPIO2) can be used as a
	UART0: TXD(U0TXD),	print debug information.
UART	RXD(U0RXD), IO15(RTS),	UART0 default on ESP8266EX power output will be some
Connector	IO13(CTS)	printed information. This sensitive applications, you can use
	UART1: IO2(TXD)	the internal UART pin swapping function in initialization time,
		will U0TXD, U0RXD were exchanged with U0RTS, U0CTS.
		Admiral MTDO MTCK hardware connected to the
		corresponding external MCU serial-connector to
		communicate.
	I2S Enter :	
	IO12 (I2SI_DATA) ;	
	IO13 (I2SI_BCK);	
	IO14 (I2SI_WS);	
I2S接口	I2S Export :	Use main audio capture, processing and transmission.
	IO15 (I2SO_BCK);	
	IO3 (I2SO_DATA);	
	IO2 (I2SO_WS).	

4.5. Maximum Ratings

RATINGS	Condition	Value	Unit
Storage temperature		-40 to 125	°C
Maximum soldering temperature		260	°C
Supply voltage	IPC/JEDEC J-STD-020	+3.0 to +3.6	V

4.6. The recommendations of the working environment

Working environment	Name	Min	Average	Maximum	Unit
Operating temperature		-40	20	125	°C
Supply voltage	VDD	3.0	3.3	3.6	V

4.7 Digital Port Characteristics

End-connector	Typical values	Min	Average	Maximum	Unit
Input logic level low	VIL	-0.3		0.25VDD	V
Input logic level ADVANCED	Vih	0.75VDD		VDD+0.3	V
Output logic level low	Vol	N		0.1VDD	V
Output Logic Level ADVANCED	Vон	0.8VDD		N	V

Note: Unless otherwise specified, the test conditions: VDD = 3.3 V, temperature is 20 $^\circ\!\mathrm{C}$

5. RF parameters

Description	Min	Average	Maximum	Unit
Input Frequency	2400		2483.5	MHz
Input impedance value		50		ohm
Enter the reflectance values			-10	dB
PA output power of 72.2 Mbps	15.5	16.5	17.5	dBm
11b mode at PA output power	19.5	20.5	21.5	dBm
Receiver sensitivity				
CCK, 1 Mbps		-98		dBm
CCK, 11 Mbps		-91		dBm
6 Mbps (1/2 BPSK)		-93		dBm
54 Mbps (3/4 64-QAM)		-75		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-72		dBm
Adjacent suppression				
OFDM, 6 Mbps		37		dB
OFDM, 54 Mbps		21		dB
НТ20, МСS0		37		dB
HT20, MCS7		20		dB

6. Power

The following data is based on a 3.3V power supply, ambient temperature of 25 ° C, and measured using the internal regulator.

[1] All measurements were carried out at no SAW filter, the antenna interface is complete.

[2] all transmit data based on a 90% duty cycle, continuous transmission mode at measured.

Mode	Min	Average	Maximu m	Unit
Transfer 802.11b, CCK 11Mbps, Pout=+17dBm		170		mA
Transfer 802.11g, OFDM 54Mbps, Pout =+15dBm		140		mA
Transfer 802.11n, MCS7, Pout =+13dBm		120		mA
Receiving 802.11b, packet length of 1024 bytes, -80dBm		50		mA
Receiving 802.11g, packet length of 1024 bytes, -70dBm		56		mA
Receiving 802.11n, packet length of 1024 bytes, -65dBm		56		mA
Modem-Sleep①		15		mA
Light-Sleep②		0.9		mA
Deep-Sleep3		10		uA
Power Off		0.5		uA

Table 11 Power

Note ①: Modem-Sleep Use to require CPU has been in working condition, such as PWM or I2S should use, etc. In keeping WiFi connection, if no data transmission, according to the 802.11 standard (such as U-APSD), turn off WiFi Modem circuit power. For example, in DTIM3, each sleep 300mS, wake 3mS received the Beacon AP packages, etc., the overall average current of about 15mA.

Note ②: Light-Sleep may be suspended for the CPU applications such as WiFi switch. In keeping WiFi connection, if no data transmission, according to the 802.11 standard (such as U-APSD), closed circuit and pause WiFi Modem CPU to save power. For example, in DTIM3, each sleep 300 ms, wake 3ms received the Beacon AP packages, etc., the overall average current of approximately 0.9 mA.

Note ③: Deep-Sleep has remained without a WiFi connection, long time to send a packet of applications, such as — second temperature sensor measurements every 100 seconds. For example, every 300 s after waking need 0.3s - 1s even send data on AP, the overall average current can be far less than 1mA.

7. tilt warming

Tilt the maximum temperature TS -TL Preheat	Maximum of 3 °C / sec
The minimum temperature value (TS Min.)	150℃
Typical temperatures (TS Typ.)	175℃
Temperature value is largest (TS Max.)	200°C
Time (TS)	60~180秒
Tilt temperature (TL to TP)	Maximum of 3 °C / sec
Duration / temperature (TL) / time (TL)	217°C/60~150秒
Peak temperature (TP)	Maximum temperature 260 °C, sustained 10 seconds
Target temperature peak (TP target)	260°C+0/-5°C
Actual peak (tP) 5 °C Duration	20~40秒
Tilt cooling	Maximum 6 °C / sec
Time (t) from the desired peak temperature was adjusted to 25 $^\circ\!C$	Maximum 8 minutes

Table 12 tilt warming

8. Schematic

Figure 5 ESP-12F Schematic

(3) Technical Support E-mail: support@aithinker.com