
T.P.A Division
DMD Group

STMicroelectronics
60, rue Lavoisier – 38330 Montbonnot St. Martin - France

ST10 Flasher DLL

Document Name:
Revision: 1.01
Date: 28-05-01
Status: Draft

Author/Owner: L.Regnier
Email: L.Regnier@st.com
Organization: TPA/DMD/Tools/Emulators

History:
Version Date Author Comments
1.00 S.Legrix Creation
1.01 28/05/2001 L.Regnier Release for version 2.2 of ST10 Flasher

 Table of contents

Microelectronics Confidential 30 May 2001
Revision: 1.01 2/19

STMicroelectronics Confidential.
This document contains proprietary and confidential information of the STMicroelectronics
Group. This document is not to be copied in whole or part.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics
assumes no responsibility for the consequences of use of such information nor for any
infringement of patents or other rights of third parties, which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of
STMicroelectronics. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support
devices or systems without express written approval of STMicroelectronics.

is a registered trademark of the STMicroelectronics Group.
© 2000 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia -
Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan -
Thailand - United Kingdom - U.S.A.

STMicroelectronics Limited is a member of the STMicroelectronics Group.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 3/19

Table of contents
1. Purpose. ...5
2. Products. ..5

2.1. BSL acknowledge..5
2.2. Chip ID..5
2.3. Monitor filename ...6

3. Dll version table. ..6
4. Auto detection of ST10 Frequency ...6
5. Available Baud rates versus ST10 Frequency ...6
6. Auto detection of target ..7

6.1. BSL acknowledge..7
6.2. Chip ID..7

7. Known problems ..7
8. Visual Basic interface. Dll functions...8

8.1. Function descriptions...8
8.2. New functions..18
8.3. obsolete functions ..19

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 5/19

1. Purpose.
This document describes how to handle the "st10flasher.dll" file to interface it with an
external application. It describes all available functions, which can be useful to design a
flasher tool.

2. Products.
The flash products concerned by the dll are: ST10F167, ST10F168, ST10F169, ST10F269
and ST10F280.
External flashes M29F40 and M29F400 are also supported.
Each product needs a specific monitor file, which is stored in the folder "monitor".
The files “startidchip.hex” and “st10noflash.hex” needs also to be in the folder "monitor",
they are used during the startup for the auto detection of the target.
The auto detection is based on the recognition of the BSL acknowledge and the chip ID. It
works only if you want to program the internal flash of the ST10.
For external flash, you have to force the target (Ex. M29F400B).

Warning: The ST10Flasher.Dll must be in one of following path:
The application folder.
The system path.
The user path.

Warning: Monitor files should be located in a child folder ‘Monitor’ in the same folder
as the ST10Flasher.Dll.

DEVICE Acknowledge
value (2.1)

Chip ID (2.2) Project name Monitor file
(2.3)

ST10F168 0xD5 0x00A8x Monitor168 Monitor001
ST10F169 0xD5 0x00A9x Monitor168 Monitor001
ST10F269 0xD5 0x10dx Monitor269 Monitor002
ST10F280 0xD5 0x108x Monitor280 Monitor003
M29F400 0x00 Don’t care Monitor29f400 monitor29f400
M29F40 0x00 Don’t care Monitor29f40 monitor29f40
Other ST10 Don’t care Don’t care MonitorNoFlash MonitorNoFlash

2.1. BSL acknowledge
Acknowledge is sent by the ST10 just after the reception of the NULL character. As the
ST10F168, ST10F169, ST10F269 have the same acknowledge but not the same programming
algorithm, it is not possible to base the auto detection on this value.
If the acknowledge is not recognized, the Standard ST10 monitor will be used. This monitor
is not able to program any kind of flash (external/internal).

2.2. Chip ID
This value contents the type of CPU (bits 15-4) and the version of the core (bits 3-0).
The version of the core is ignored because it doesn’t make difference for programming.
If the chip ID is not recognized, the Standard ST10 monitor will be used. This monitor is not
able to program any kind of flash (external/internal).

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 6/19

2.3. Monitor filename
For confidentiality reasons, the device name must not appear in the monitor file name.
That’s why the monitor168.hex is renamed in monitor001.hex, and monitor269.hex in
monitor002.hex.

3. Dll version table.
Visual Basic –
st10flasher.exe

ST10Flasher.dll Monitor version

V1.5 V1.6 No version number
V1.6 V1.7 No version number
V1.61 V1.7A No version number
V1.62 V1.7B (not delivered) No version number
V2.0 V2.0 No version number
V2.2 May 28, 01 7

4. Auto detection of ST10 Frequency
Knowing at witch frequency the ST10 runs is compulsory for two reasons:

• For the F168, the embedded flash algorithm need the period of the Cpu.
• To change the speed of the serial port on the ST10 side.

The principle of the auto detection is based on the measurement of a known signal. To do this,
the PC send a null byte that takes 8 bits and the ST10 measures the length of this pulse.

5. Available Baud rates versus ST10 Frequency
To works well, the baud rates deviation between the PC and the ST10 must be lower than 2%
Grayed boxes mean that the frequency is Ok at sartup.
Boxes with ‘Ok’ text means that frequency is available after download of monitor.
BR \ F (MHz) 2.5 5 7.5 10 15 20 25

9600 Ok Ok Ok Ok Ok Ok Ok

14400 Ok Ok Ok Ok Ok Ok

19200 Ok Ok Ok Ok Ok Ok Ok

38400 Ok Ok Ok Ok Ok Ok Ok

56000 Ok Ok

57600 Ok Ok Ok Ok

115200 Ok Ok

128000 Ok

230400 Ok Ok

256000 Ok

460800 Ok

Figure 1: Available baud rates versus the ST10 frequency. Grayed boxes are Ok for startup.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 7/19

6. Auto detection of target
The auto detection is based on the recognition of the BSL acknowledge and the chip ID. It
works only if you want to program the internal flash of the ST10.
For external flash, you have to force the target (Ex. M29F400B).

6.1. BSL acknowledge
This acknowledge is send by the ST10 just after the reception of the NULL character. It can
have the following value

ST10F168 ST10F169 ST10F269 ST10F280 Other ST10
0xD5 0xD5 0xD5 0xD5 Don’t care

As the ST10F168, ST10F169, ST10F269 have the same acknowledge but not the same
programming algorithm, it is not possible to base the auto detection on this value.
If the acknowledge is not recognized, the Standard ST10 monitor will be used. This monitor
is not able to program any kind of flash (external/internal).

6.2. Chip ID
This value contents the type of CPU (bits 15-4) and the version of the core (bits 3-0).
It can have the following value

ST10F168 ST10F169 ST10F269 ST10F280 Other ST10
0x00A8x 0x00A9x 0x10dx 0x1180 Xxxx

The version of the core is ignored because it doesn’t make difference for programmation.
If the chip ID is not recognized, the Standard ST10 monitor will be used. This monitor is not
able to program any kind of flash (external/internal).

7. Known problems
Actually the software is not able to work with the ST10F167. This is due to the internal BSL
that doesn’t respect the standard BSL of the ST10: the XRAM isn’t enable (XPERCON=0,
SYSCON.2=0) and IDCHIP=0. These points seem not documented.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 8/19

8. Visual Basic interface. Dll functions.

8.1. Function descriptions

.SetCom
Prototype:
unsigned int SetCom(char *PortName, unsigned int ComSpeed)
Parameters:
PortName: Communication port name (ex. « com1 »).
ComSpeed: Communication speed. See table 1 for available frequency
Description
This function initializes the serial communication at the beginning of the software. The goal is
to fix communication parameters in order to be able to load the ST10 monitor.
It returns 1 if the initialization was OK, 0 otherwise.

.CloseCom
Prototype:
 unsigned int CloseCom(void)
Parameters:
None.
Description
This function closes the serial communication.
It returns 1 if the operation was OK, 0 otherwise.

.ComIsKline
Prototype:
unsigned int ComIsKline(void)
Parameters:
None.
Description
This function returns 1 if the a k-line communication has been detected; 0 otherwise.

.AdjustFrequency (obsolete)
Prototype:
double AdjustFrequency(double frequency, int *DevError)
Parameters:
frequency: Communication port name (ex. « com1 »).
DevError: Communication speed. See table for available frequency
Description

Warning: Obsolete function. Used AdjustCpuFrequency instead.
This function performs ST10 frequency detection and can also adjust frequency.
The “DevError” parameter returns 1 if the operation was OK, 0 otherwise.
If the parameter frequency is 0, the function returns the target frequency CPU (in MHz).
Else it sets frequency CPU to frequency parameter value (in MHz).
Knowing at witch frequency the ST10 runs is compulsory for two reasons :

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 9/19

• For the F168, the embedded flash algorithm need the period of the CPU.
• To change the speed of the serial port on the ST10 side.

The principle of the auto detection is based on the measurement of a known signal. To do this,
the PC sends a null byte.
Return value
0 if the function failed. Resetting the target and reloading the monitor is greatly
recommended.
1 otherwise.

.AdjustCpuFrequency
Prototype:
double AdjustFrequency(double frequency)
Parameters:
frequency: New ST10 frequency to set.
Description
The function return true if the deviation between the frequency and the internal CPU
frequency (calculated at startup) is lower than 1%. In that case, the function changes the CPU
frequency that is used to change the communication speed.
If deviation is >1% the function return false and the CPU frequency stays unchanged,
because we consider that a wrong input has been done and a bad can crash the serial
communication.
Return value
0 if the function failed
1 otherwise.

.SetComSpeed
Prototype:
unsigned int SetComSpeed(char *PortName, unsigned int ComSpeed)
Parameters:
PortName: Communication port name (ex. « com1 »).
ComSpeed: Communication speed. See table for available frequency
Description
Change the serial communication speed between PC and the ST10 Target baud rate. This
means that both, the PC and the ST10 board should accept the new baud rate. If the two
targets accept the speed change, a test is done to verify that the communication works
properly.
If not, the rate is restored to 9600 baux and the two targets try to resynchronize together.
Return value
0 if the function failed. Resetting the target and reloading the monitor is greatly
recommended.
1 otherwise.

.TestCom (obsolete)
Prototype:
unsigned int TestCom(void)
Parameters:
None

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 10/19

Description
Tests if the serial communication speed between PC and the ST10 Target works fine. The PC
sends a NULL byte and receives an acknowledge from the ST10. This function can be used to
test the serial communication and also the monitor

Warning: This function is now obsolete. The has been integrated in the SetComSpeed
function.

Return value
0 if the function failed. In that case, it means that the communication is broken between the
two parts or the ST10 monitor has crashed. In both cases, resetting the target and reloading
the monitor is greatly recommended.
1 Test OK.

.LoadFile
Prototype:
unsigned int LoadFile(char *filename)
Parameters:
Filename: Name of the file to be loaded.
Description
Load the file into the PC memory.
Return value
1 if the loading was OK,
0 otherwise.

.InitMonitor
Prototype:
Prototype : unsigned int InitMonitor(char *target)
Parameters:
target: Address of a string that will contain the name of target (ex: ST10F168) after the return
of the function.

Warning: The size of this string must be at least 32 bytes.
Description
This function loads the monitor and initializes the flash parameters. The first action of this
function is to make the autodetection of the target. If this action succeeds, the right monitor
file will be load and target .will contain the name of the target.

Warning: Monitor files are search under the folder “Monitor\” in the ST10Flasher.Dll
directory.

Return value
1 if the initialization was OK.
0 otherwise.

.GetST10FlasherVersion
Prototype:
unsigned int GetST10FlasherVersion(char *cBlock)
Parameters:
cBlock: Sting that will receive the version of the flasher.

Warning: This string must contain at least 256 bytes.
Description

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 11/19

Return the internal version of the ST10Flasher DLL.
Return value
1 if OK.
0 otherwise.

.IsAvailableBaudRate
Prototype:
unsigned int IsAvailableBaudRate(const double frequency, unsigned int baudrate)
Parameters:
frequency: ST10 cpu frequency.
Baudrate: Serial baudrate that you want to test.
Description
Return 1 the deviation for BaudRate is low enough to allow a good reliability of the
communication between the PC and the ST10.
Return value
1 if OK.
0 otherwise.

.IsMonitorAlive
Prototype:
unsigned int IsMonitorAlive(void)
Parameters:
None
Description
Return 1 if the communication works well between the PC, ST10 and monitor.
If the function return 0 it means that something wrong has append and you have to reset the
ST10 and reload the monitor.
Return value
1 if OK.
0 otherwise.

.AutoROMS1
Prototype:
unsigned int AutoROMS1(unsigned int &SegNumber)
Parameters:
SegNumber:If the function succeeds, SegNumber will contain the polarity of
Syscon.ROMS1 bit.
Description
Try to see if Syscon.ROMS1 can be set automatically or not. This bit can be set if there isn't
simultaneously code in segment 0 and 1. In that case SegNumber will contain the right value.
If the code contains simultaneously datas in segment 0 and 1, the function SetRomS1 has to
be called to force Syscon.ROMS1 to the desired value.
Return value
1 if the autodetection was OK.
0 otherwise.

.SetROMS1

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 12/19

Prototype:
void SetROMS1(unsigned int ROMS1).
Parameters:
If ROMS1 =0, the first bank of the flash will be located at address 00000.
If ROMS1= 1. the first bank of the flash will be located at address 0x10000.
Description
This function sets or clears the Syscon.ROMS1 bit of the ST10.
This function should only to be call when codes are present simultaneously in segment 0 and
1. In that case the AutoRomS1 function cannot finds which polarity to be given to
Syscon.ROMS1. So in that case, call SetRomS1 to force this bit.
Return value
None

.EraseFlash
Prototype:
unsigned int EraseFlash(unsigned int BlockMask)
Parameters:
BlockMask: Block is in hexadecimal format (i.e.: to erase blocks 0 and 1, BlockMask will be
3).
Description
This function erases the memory area defined by the value BlockMask.
Return value
1 if the Erase was OK.
0 otherwise.

.VerifyFlash
Prototype:
unsigned int VerifyFlash(unsigned int BlockMask)
Parameters:
BlockMask: BlockMask is in hexadecimal format (i.e.: to verify blocks 0 and 2, Block will
be 5).
Description
This function checks if the memory area defined by the value BlockMask corresponds to the
current file loaded.
Return value
1 if the initialization was OK.
0 otherwise.

.BlockNbToErase
Prototype:
unsigned int BlockNbToErase(bool ErrorToSet)
Parameters:
ErrorToSet: If non zero, an error message occurs when there is block(s) to erase. Else no
error message will be set.
Description
Compute the intersection between the non-blank blocks and the blocks concerned by the
current file loaded.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 13/19

Return value
This function returns blocks that need to be erased (9 means that blocks 0 and 3 have to be
erased).

.GetHexFileBlock
Prototype:
unsigned int GetHexFileBlock(unsigned int &BlockMask)
Parameters:
BlockMask: If the function succeeds, BlockMask will contain blocks concerned by the
hexfile.
Description
Computes which blocks are concerned in the hexfile currently loaded in memory.
Return value
1 if OK.
0 otherwise.

.ProgramAndVerify (obsolete)
Prototype:
unsigned int ProgramAndVerify(void)
Parameters:
None.
Description
program the flash and verify the programming.

Warning: This function is obsolete. Used ProgramFlash instead
Return value
1 if the programmation and the verification was OK.
0 otherwise.

.ProgramFlash
Prototype:
Prototype : unsigned int ProgramFlash(void)
Parameters:
None.
Description
This function programs and verify the flash with the current loaded file.
Return value
1 if the programmation and the verification was OK.
0 otherwise.

.GetError
Prototype:
unsigned int GetError(char *BufferForStatus)
Parameters:
BufferForStatus. String to get back the description of the error.

Warning: The size of BufferForStatus must be at least 256 bytes.
Description

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 14/19

When errors are detected, GetError returns non zero value and BufferForStatus contains the
first error that has occurred
All pending errors are cleared.
Return value
1 if an error has occured.
0 if no error has occured.

.BlankCheck (obsolete)
Prototype:
unsigned int GetError(char *BufferForStatus)
Parameters:
Description
Return value
1 if OK.
0 otherwise.

Prototype:
unsigned int BlankCheck(void)
Parameters:
None
Description
This function is returns a value indicating if the different blocks are blank or not.
If bit number i of the returned value is set it means that block i is blank, else block i is not
blank.

Warning: It’s better to use GetBlankBank.
Return value
If an error occurs, a code error (value = 240) is returned.
Else returns non blank blocks mask (6 means that blocks 1 and 2 are blanked).

.GetBlankBank
Prototype:
unsigned int GetBlankBank(unsigned int &BlanckBlockMask))
Parameters:
BlanckBlockMask: If the function succeeds, BlanckBlockMask will contain blank blocks (6
means that blocks 1 and 2 are blanked)..
Description
Gives blank blocks mask. It’s the same function as BlankCheck, only prototype has changed.
Return value
1 if OK.
0 otherwise.

.EnablePort
Prototype:
unsigned int EnablePort(UWordT PortNb, UWordT BitPosition,bool Val)
Parameters:
PortNb: The port number.
BitPosition: The bit number of the port

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 15/19

Val: 1 to set the port, 0 to reset it.
Description
Put PortNb.BitPosition pin in output state with the Val polarity (0 or 1).
Return value
1 if OK.
0 otherwise.

.DisablePort
Prototype:
unsigned int DisablePort(UWordT PortNb, UWordT BitPosition)
Parameters:
PortNb: The port number.
BitPosition: The bit number of the port
Description
This function is devoted to disable the port PortNb,BitPosition. To disable it, the port is
configured as input.
Return value
1 if OK.
0 otherwise.

.DumpBlock (obsolete)
Prototype:
unsigned int DumpBlock(char *filename, unsigned int BlockNb, unsigned int format)
Parameters:
Filename: Name of the output file.
BlockNb: Mask for blocks to dump.
Format: output format: 1 for byte, 2 for Word, 4 for Long word.
Description
This function dumps the flash memory area defined by BlockNb in a file *filename with the
specified format. Dump is done in ASCII format
If the bit i of the parameter BlockNb is set, block i will be dumped.

Warning: This function is obsolete. Used DumpBlocks instead
Return value
1 if OK.
0 otherwise.

.DumpOffset (obsolete)
Prototype:
unsigned int DumpOffset(char *filename, unsigned int BlockNb, unsigned int format,
unsigned int Offset)
Parameters:
Filename: Name of the output file.
BlockNb: Mask for blocks to dump.
Format: output format: 1 for byte, 2 for Word, 4 for Long word.
Offset: Offset of the start address
Description
Dump in ASCII format the content of the flash memory. The size is limited to 4096 elements.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 16/19

Warning: This function is obsolete. Used DumpBlocks instead
Return value
1 if OK.
0 otherwise.

.DumpAddress (obsolete)
Prototype:
DumpAddress(char *filename, unsigned int StartAddr, unsigned int Size, unsigned int
format)
Parameters:
Filename: Name of the output file.
StartAddr: StartAddress for the dump.
Size: Number of elements to dump (the size of ‘element’ depends of Format).
Format: output format: 1 for byte, 2 for Word, 4 for Long word.
Description

Warning: This function is obsolete. Used DumpBlocks instead
Return value
1 if OK.
0 otherwise.

.DumpBlocks
Prototype:
unsigned int DumpBlocks(char *filename, unsigned int BlockNb, unsigned int Option)
Parameters:
Filename: Output filename (if still exists, it will be overwritten).
BlockNb: Block mask for the dump.
Option: Description of the output format

Bits 3-0: Size of element 0=Byte, 1= Word, 2= LongWord…
Bits 7-4: 0=IntelHex, 2=Text, other values not supported.

Description
Dump the content of the flash in a file by block.
Return value
1 if OK.
0 otherwise.

.DumpRange
Prototype:
unsigned int DumpRange(char *filename, ULWordT Start, ULWordT Size, ULWordT
Option)
Parameters:
Filename: Output filename (if still exists, it will be overwritten).
Start: StartAddress for the dump.
Size: Number of elements to dump (the size of ‘element’ depends of Option.Format).
Option: Description of the output format

Bits 3-0: Size of element 0=Byte, 1= Word, 2= LongWord…
Bits 7-4: 0=IntelHex, 2=Text, other values not supported.

Description

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 17/19

Dump the content of the flash in a file by address.
Return value
1 if OK.
0 otherwise.

.GetNbBlock
Prototype:
unsigned int GetNbBlock(void)
Parameters:
None.
Description
Return the number of blocks in the current flash.
Return value
the number of blocks in the current flash.

.GetBlockDescription
Prototype:
unsigned int GetBlockDescription(const unsigned int BlockNb, char *cBlock)
Parameters:
BlockNb: Block number.
cBlock : String .that receives the description of the block.

Warning: This string must contain at least 256 bytes.
Description
If BlockNb is a valid block number, the function returns in the string cBlock the description
of this block: name, size and range(ex cBlock=’Bank1: 16k (0000-3FFF’).
Return value
1 if OK.
0 otherwise.

.GetBlockMaskDescription
Prototype:
unsigned int GetBlockMaskDescription(const unsigned int BlockMask, char *cBlock,
const char *Header)
Parameters:
BlockMask: Mask for blocks.
cBlock : String .that receives the description of the block.

Warning: This string must contain at least 256 bytes.
Header:’Header’ for each block (if BlockMask=5 and Header=’bank’, the result will be
‘bank0, bank2‘).
Description
Convert a block mask to a string. This function can be used for example after a
GetBlankBank called to display which bank are erased or not.
Return value
1 if OK.
0 otherwise.

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 18/19

.GetBlockRange
Prototype:
unsigned int GetBlockRange (const unsigned int BlockNb , char * Description, unsigned
int& Start , unsigned int& Size, unsigned int First)
Parameters:
BlockNb: Block number to retrieve information.
Description: String that will received the description of the block.

Warning: This string must contain at least 256 bytes.
Start: Will receive the start address of the block.
Size: Will receive the size of the block
First:This parameter is used when a block can be split in two ranges (for example the block1
of the ST10F168 is 4000-7FFF, 18000-1FFFF). The first call to GetBlockRange with First=1
will return 4000-7FFF and a second call to this function with First=false and Start and Size
that still contain previous results will return 18000-1FFFF. In fact, when First=0, the
function return the first available address for the block after (Start+Size).
By default First must be set to 1.
Description
If BlockNb is valid, return the description, start address and size of the desired block.
Return value
1 if OK (valid block number).
0 otherwise.

.Alignement
Prototype:
unsigned int Alignement(unsigned int&Addr, unsigned int Align, unsigned int ToUpper)
Parameters:
Addr: Address to be rounded. If the function succeeds, this address will be modified.
Align: size of the alignement. 0=Byte, 1= Word, 2= Double word…..
ToUpper: If 1 rounds to upper value.
Description
Round an address to upper or lower bound regarding the Align parameter.
Ex: if align=2 (double word) and address 0x1FF6

ToUpper=0 � Address=0x1FF4.
ToUpper=1 � Address=0x1FF7.

Return value
1 if OK (valid block number).
0 otherwise.

8.2. New functions
Following functions have been added in the release 2.2 of the DLL. They are not compulsory
to program ST10 flashs but it can help developers.

o unsigned int GetNbBlock(void)
o unsigned int GetBlockDescription(const unsigned int BlockNb, char *cBlock)
o unsigned int GetBlockMaskDescription(const unsigned int BlockMask, char *cBlock,

const char *Header)
o unsigned int GetST10FlasherVersion(char *cBlock)

 ST10FlasherDLL.doc

Microelectronics Confidential 30 May 2001
Revision: 1.01 19/19

o unsigned int GetBlankBank(unsigned int &BlanckBlockMask)
o unsigned int CloseCom(void)
o unsigned int IsAvailableBaudRate(const double frequency, unsigned int baudrate)
o unsigned int IsMonitorAlive(void)
o unsigned int DumpBlocks(char *filename, unsigned int BlockNb, unsigned int

Option)
o unsigned int DumpRange(char *filename, ULWordT Start, ULWordT Size, ULWordT

Option)
o unsigned int GetBlockRange (const unsigned int BlockNb , char * Description,

unsigned int& Start , unsigned int& Size, unsigned int First)
o unsigned int Alignement(unsigned int& Addr,unsigned int Align,unsigned int

ToUpper)

8.3. obsolete functions
Following functions are now obsolete and won’t be supported later. Try to replace them by
their equivalent if possible.

o unsigned int BlankCheck(void) // --> Replaced by GetBlankBank
o unsigned int Close(void) // --> Replaced by CloseCom
o unsigned int ProgramAndVerify(void)// --> Replaced by ProgramFlash.
o double AdjustFrequency(double frequency, int *DevError)--> Replaced by

AdjustCpuFrequency
o unsigned int TestCom(void)
o unsigned int TestComSpeed(unsigned int *i,unsigned int *WrongData)
o unsigned int DumpToScreenAddress(char *filename, unsigned int StartAddr,

unsigned int Size, unsigned int format) --> Replaced by DumpBlocks
o unsigned int DumpAddress(char *filename, unsigned int StartAddr, unsigned int

Size)--> Replaced by DumpBlocks
o unsigned int DumpOffset(char *filename, unsigned int BlockNb,unsigned int format,

unsigned int Offset) --> Replaced by DumpBlocks

