
The

CASHFLOW 340

REFERENCE SERIES

CREDITOR

APPLICATIONS DESIGN GUIDE

23083 G2 143363044

Publi	shed	by	
-------	------	----	--

Mars Electronics International

Eskdale Road

Winnersh Triangle

Wokingham, Berkshire RG11 5AQ

United Kingdom

For information on translations in your country, please write to the Technical Communications Manager at the above address.

CashFlow® 340 creditor Applications Design Guide ©, Mars, Inc., 1996. All rights reserved.

Except as permitted under the relevant local legislation, no part of this publication may be copied, transmitted, transcribed, or distributed in any form or by any means, or stored in a database or retrieval system, or translated into any language (natural or computer), without the prior written permission of Mars Electronics International.

Mars[®], CashFlow[®] and the Mars Electronics International device are registered trademarks. ©, Mars, Inc., 1996.

Mars Electronics reserves the right to change the product or the product specifications at any time. While every effort has been made to ensure that the information in this publication is accurate, Mars Electronics disclaims any liability for any direct or indirect losses (howsoever caused) arising out of use or reliance on this information.

This document does not necessarily imply product availability.

Part Number: 143363044

This Edition (March 1996)

TABLE OF CONTENTS

SAFETY AND EMC	1
GLOSSARY	2
OVERVIEW	3
PRODUCT OPERATION	4
COIN ACCEPTANCE	4
MECHANICAL	
ELECTRICAL	
OPERATIONAL	9
COIN ACCEPTANCE RATE	10
RELIABILITY	10
PRODUCT VARIANTS	11
MAXI FRONT PLATE	11
INTERFACE	
External Interface	
Serial	
Parallel - Video Credit	11
Interface P.C.B	
MINI and MIDI FRONT PLATE	12
MOUNTING (for both versions)	12
INTERFACE	
External Interface	12
Serial	12
Parallel - Video Credit	
Interface P.C.B	
DISPLAY	12
ELECTRICAL INTERFACES	13
HOST INTELLIGENT INTERFACE (HI2)	13
Electrical Specifications	
LOCAL EXPANSION INTERFACE	

APPLICATIONS SUPPORT	16
SUPPORT TOOLS	17
MACHINE INTERFACE PCB's	18
FUNCTIONALITY	
DISPLAY FUNCTIONS	
Incrementing games	20
Decrementing credit	
Display shows game price when idle. Decr	
to 0	
Display Connector Pin-Outs	21
Signal Descriptions	
Serial Data Format	
Digit Segment Format	
COIN ENTRY LAMP	
Lamp ON continuously	
Lamp OFF	
Lamp Flashing	23
CONFIGURATION	28
Coin parameters	28
Coin enables/inhibits	28
Coin value	
Game price	
Bonus settings	
Credit Dispense mode	
Test credit	
FACTORY CONFIGURATION	
Specific Coinsets	30
FIELD CONFIGURATION	
VIA MAN MACHINE INTERFACE (MMI)	31
To set Inhibit Specific Coins mode	32
To set Enable Specific Coins mode	33
To set Game Price mode	33
To set Bonus Levels mode, level 1	
To set Bonus Levels mode, level 2	
To set Bonus Award mode, level 1	
To set Bonus Award mode, level 2	34

To enter Test Credit mode	34
VIA MARS® ROUTE ALPHA 250 TERMINAL	
Key Functions	36
Other Facilities Of The Terminal	36
Auto Repeating Keys	36
Double Click Hotkeying	37
Using The Terminal	
ENVIRONMENTAL PERFORMANCE	43
TEMPERATURE RANGE	43
HUMIDITY	43
VIBRATION	44
TRANSPORTATION	44
LIQUIDS	
CLASSIFICATION	46
FLAMMABILITY	
POWER SUPPLY INPUT PROTECTION	47
MECHANICAL PARTS	47
MARS ELECTRONICS INTERNATIONAL OFFICES	48
INDEX	49
APPENDIX	54
INTERFACE DRAWINGS	
= / . ~ =	

CashFlow [®] 340 creditor Applications Design Guide

SAFETY AND EMC

International & National Standards Conformance

When installed and operated according to the instructions for the particular unit, CashFlow® 340 products are designed to meet the applicable Safety and Electro Magnetic Compatibility standards for any country in which they are used.

Maximum Operating Voltages

Do not apply more than the indicated voltage.

Dangerous Environments

Do not operate in the presence of flammable gases, fumes or water.

Disposal of Product

Do not dispose of this product by incineration.

Warning: Before removing or replacing modules SWITCH OFF or ISOLATE the ELECTRICITY SUPPLY to the host machine.

THIS MANUAL IS PROVIDED FOR USE ONLY BY PERSONNEL TRAINED TO UNDERTAKE ELECTRICAL INSTALLATION.

GLOSSARY

Accept Gate Control gate that routes coins/tokens to accept or reject

route.

Acceptor Discriminator assembled together with an accept gate

and back cover.

Back Cover Moulding that provides various mountings for the

acceptor facilitating optional routing.

Coin entry The point at which coins enter the throat of the acceptor.

Coin exits Routing from the accept gate.

Coin set Defines the coin types that the creditor will accept.

Coin type Coin denomination, for example, a 20p piece.

Discriminator A mechanism that accepts coin/tokens of different values

and electronically compares their characteristics with a set of pre-programmed criteria. Those coins that meet the requirements are directed towards an accept route,

and those that fail go to a reject route.

Flight deck The main component of the discriminator, providing the

initial path to be taken by coins.

Front Plate Accessory facilitating the mounting of the product to the

front of the host machine.

Inhibit lines A set of electrical lines controlled by the host machine

that stops acceptance of one or more coins.

Interface The electrical or mechanical boundary between the

creditor and the host machine.

Parallel Additional facilities and benefits accessed via range of

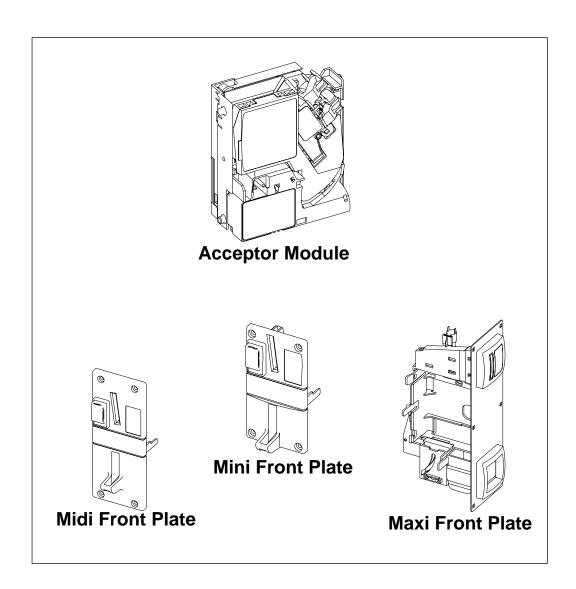
Interface optional customer interface PCB's.

Serial Interface All standard interface functions made directly through

host machine. Also called HI².

Snubber Facility used to absorb impact of coin entry and reduce

impetus through flight deck.


OVERVIEW

The CashFlow[®] 340 product is available in a variety of configurations. These are for the Maxi front plate, the Mini front plate and the Midi front plate.

At the heart of all of these is the acceptor module which controls the discrimination and coin routing functions.

An optional 4 digit backlit LCD display for use in conjunction with the Mini and Midi front plate versions is available.

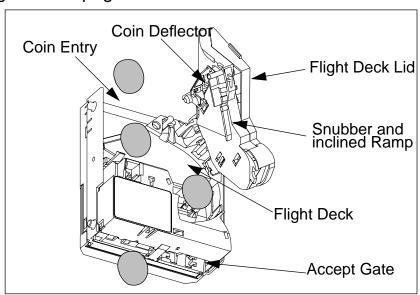
The operating voltage for all versions is 12v DC.

PRODUCT OPERATION

COIN ACCEPTANCE

The functionality of the CashFlow[®] 340 creditor is described in the following sections, under the headings of Mechanical, Electrical and Operational.

MECHANICAL


The acceptor is built up from the following modules, each of which is available in a number of variants:

- Discrimination module
- Back Cover
- Accept Gate module
- Interface PCB
- PCB Cover

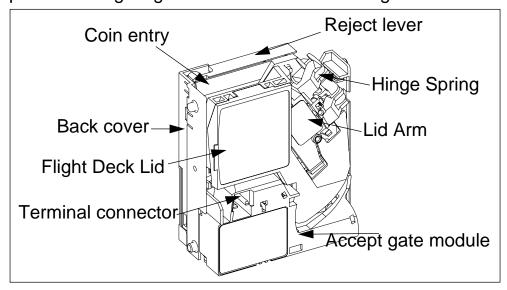
The discrimination module comprises a flight deck and flight deck lid which control the coin entry and flow path. The coin deflector and Snubber serve to bring coins under control by removing or dampening their inherent kinetic energy.

The coin deflector is a mechanical device incorporated near the coin entry point to direct coins towards the snubber and against the face of the flight deck.

Once under control coins roll down an inclined ramp, which is part of the flight deck lid, and past discrimination sensors behind the flight deck and flight deck lid until leaving the end of this ramp and entering the accept gate module.

Coin Path through Acceptor.

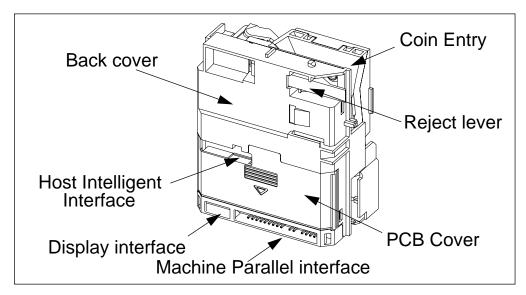
The flight deck is hinged at the top right side to allow coupling with the flight deck lid via an intermediate component (lid arm) permitting the lid to locate accurately to the Deck independently of the hinge spring and the tolerances associated with it.


The lid maintains a parallel coin throat by being located on three bosses which position the lid in all three axis when subject to the closing force exerted by a tension spring between the deck and lid arm.

The design of the lid arm/hinge area allows the Lid to open to 100 degrees relative to the deck, facilitating access for cleaning.

The opening is restricted by the back cover to prevent the lid fouling adjacent parts such as the front plate.

If the reject lever is operated the flight deck lid is raised so that it remains parallel to the flight deck. This has the benefit of not funneling coins into a narrowing gap as they roll or fall and possibly create a further jam.


This also means that the creditor can be defined within a smaller envelope as the edge of the lid furthest from the hinge does not have to open more to give greater clearance at the hinge end.

Acceptor with top entry back cover used

The action of the hinge spring is an "over-centre" one which means that the lid will be held open when past about 100 degrees and will "snap" shut when closed to below about 60 degrees.

The discrimination module provides a mounting for the discrimination PCB connection and to the accept gate module via a flexible interconnect cable.

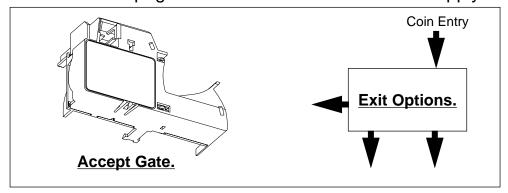
Acceptor with front entry back cover used

The back cover, which incorporates the reject lever assembly, clips to the discrimination module and provides protection for the discrimination PCB. There are two variants of back cover:

Top Entry, used for Maxi front plate mounting.

Front Entry, used for Mini & Midi front plate mounting.

These back covers provide appropriate mounting points for use with either the Maxi, Mini or Midi front plates.


The back cover has apertures to allow access to the serial interface and the remote expansion interface. In addition, a removable PCB cover allows access to the interface PCB and parallel interface.

The position of the reject lever will depend on which version of back cover is being used. Clearance of debris and jammed coins from the creditor can be achieved by use of the reject lever.

The accept gate module contains a solenoid-operated gate, optical coin strobes and routing components. The module clips and plugs onto the flight deck. Three variants of accept gate module are available. The coin exits for both accepted and rejected coins are defined by the type of accept gate module fitted and can be one of the following:

- Accept right down / Reject left down
- Accept right down / Reject left side
- Accept left down / Reject right down

The standard accept gate solenoid is driven from 12V supply.

The table below shows the mechanical build standards available.

Back Cover	Accept Gate Module Exits	
Front Entry	RD/LS	
Top Entry	RD/LD	
Top Entry	LD/RD	

Note:

In the above table: RD = Right Down; LS = Left Side; LD = Left Down

ELECTRICAL

The CashFlow[®] products are based on a serial interface, 12v, discrimination PCB. The circuitry is contained within a single PCB mounted on the rear of the flight deck behind the back cover. All internal connections to this discrimination PCB are via a flexible interconnect PCB.

Internal connections are to the sensors on the flight deck and flight deck lid and to the accept solenoid and optical strobes in the accept gate module via the connector through the accept gate module.

External connections to the discrimination PCB are via staked pins, accessible through apertures in the back cover. Additional staked pins on the discrimination PCB allow the video credit interface PCB to be connected.

The electronics on the Discrimination PCB operate from 5v generated by an on-board regulator from the 12v customer supply via the interface PCB.

Coins are discriminated by inductive sensors mounted on both the flight deck and flight deck lid. These sensors allow a number of coin parameters to be measured which relate to the coins' thickness, diameter and material type. The processing of these parameters is performed by the micro-controller and compared against limits stored within a non-volatile memory.

Coins satisfactorily discriminated are routed to the accept exit by energising the accept gate. Coins not accepted will be routed to the reject exit. Accepted coins will generate a credit as they pass through the coin strobes in the accept exit. The strobes consist of two pairs of LED's and photo-transistors mounted in the accept gate module, opposite prisms mounted on the lower part of the flight deck.

OPERATIONAL

A coin offered to the creditor has its validity determined using the discrimination process. This process involves matching the payment's measured parameters with parameters stored in non-volatile memory.

A coin's identity consists of a coin type number and a coin type status code. The coin type status code defines whether a coin is in fact a coin or a token. If a match is found then the payment is given the value of the corresponding stored data.

Next, the inhibit status of the payment is checked, and if the payment is not inhibited it will be accepted. Inhibit status is determined from either the coin inhibit map stored in non-volatile memory or from the video credit interface. Video credit interface inhibit information overrides the coin inhibit map.

If a payment is accepted the accept gate will be opened. Credit signalling is delayed until the coin has passed the accept gate. Once the payment has passed the accept gate, the gate will be closed.

When payment has been confirmed, acceptance of further payments is permitted. If a fraud is detected, the creditor will inform its host machine, and the appropriate output signal will be activated. Acceptance of any further payments will be inhibited for one second after the host has been informed.

If a payment is rejected, either due to it failing the discrimination process, or because it has been inhibited, the accept gate will not be opened and further coin acceptance will be inhibited for a period of 500ms. If a following coin is thus rejected, this time period will be restarted.

If the reject lever is operated, causing the lid to open, a pulse will be generated and, if an appropriate interface is fitted, an output signal will be activated.

COIN ACCEPTANCE RATE

The acceptor module can validate at a rate of up to 2.5 coins per second.

Coins closer than this may be rejected. After a coin has been rejected no further coins will be accepted for a period of 500ms. Should further coins enter the acceptor module during this period the reject period will be re-initiated.

The Cashflow® creditor will operate with all coins and tokens that are validated by the acceptor module.

RELIABILITY

The design target is the following:

Mean Coins Between Failure

Acceptors: < 1 in 300k excluding coin jams cleared by

reject operation.

Mean Time Between Failures

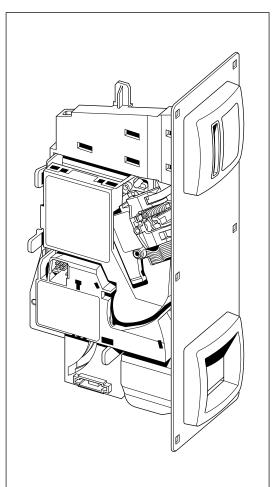
Acceptors: < 2.5% of field base per annum for any non-

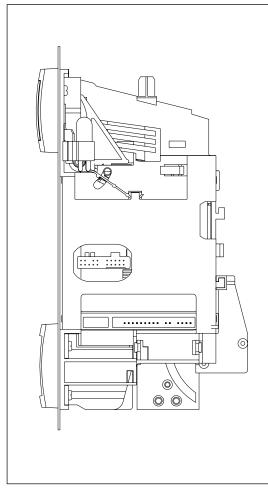
coin related failure requiring a service call

out.

Other:

Connectors: Mars[®] Route Alpha 250 terminal


Connector; 100 insertions.


Electromechanical modules: 50 insertions.

PCB based modules; 50 insertions.

PRODUCT VARIANTS

MAXI FRONT PLATE

MOUNTING

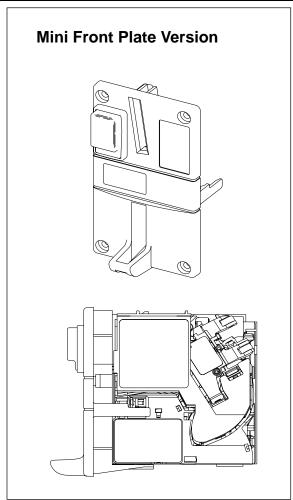
In adaptor moulding/front plate assembly attached to face of the host machine

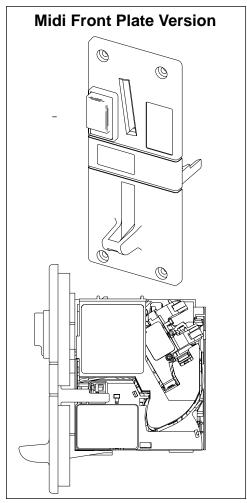
INTERFACE

External Interface

Serial

Parallel - Video Credit


Interface P.C.B.


Robust Video Credit Interface (RVCI)

_

PRODUCT VARIANTS

MINI and MIDI FRONT PLATE

MOUNTING (for both versions)

In front plate assembly to the front of the host machine

INTERFACE

External Interface

Serial

Parallel - Video Credit

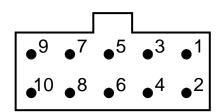
Interface P.C.B.

Robust Video Credit Interface (RVCI)

DISPLAY

A 4 digit backlit LCD credit display option is available for use with both Mini and Midi front plates.

ELECTRICAL INTERFACES

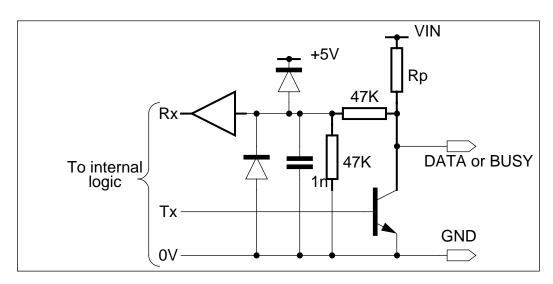

HOST INTELLIGENT INTERFACE (HI²)

The HI² interface offers serial control of the following functions:

- Inhibiting Coins
- Enabling Coins
- Allocating Coin Values
- Defining Game Prices
- Specifying Bonus Levels
- Configuring Credit Modes
- Setting Test Credit Mode

The connections to the 10 way connector of the HI^2 are shown below.

1	DATA	2	GND
3	BUSY	4	GND
5	RESET	6	POWER FAIL
7	VIN	8	VNEG
9	RESERVED	10	VSOL


Viewed from loom end

Electrical Specifications

I/O Ports

Data and Busy

Input high voltage	Vih	8.0V min. max	VIN + 1.5V
Input low voltage	Vil	GND - 1.5V min	1.3V max.
Input impedance	Rp	4.7K Ω nom. to \	/IN
Output high voltage	Voh	9.0Vmin.	VIN max.
Output low voltage	Vol	GND min.	0.5V max.
Output sink current	lol		25mA max.

Data and Busy line equivalent circuit

The Data and Busy lines are active low signals and are designed to be wire-ORed with other HI^2 nodes. The selector represents an HI^2 system load of 3 units.

Reset

Input high voltage	Vih	Open circuit or > 3.5V (5.5V max.)
Input low voltage	Vil	(GND - 0.5V) min. 0.9Vmax.
Input impedance	Rp	47kΩ nom. to + 5V
Input capacitance	Cin	1.5μF nom.
Input series resist.	Rserl	56Ω nom.

In addition to the on-board power-on reset circuit, an external device

may reset the system by pulling RESET low. The RESET line is active low and is intended to be driven by an open collector transistor referenced to 0V. A series resistor is provided to limit the peak current drawn when the on-board reset capacitor is discharged by an external device.

PF (Power Fail)

Input high voltage	Vih	3.7V min.	5.5V max.
Input low voltage	Vil	(GND - 0.5V)	min. 0.9Vmax.
Input impedance	Rp	4.7 k Ω nom. to	o + 5V

In addition to the on-board power fail circuit, there is an input on the host connector to allow an external device to warn of an impending power failure. The power fail input is active low and is intended to be driven by an open collector transistor referenced to 0V.

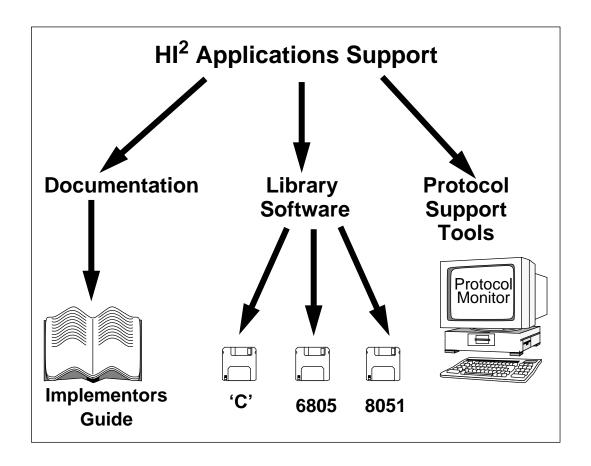
VIN (Power)

viit (i owei)			
Input supply voltage	Vin	10V min. 15V max. (Abs.max. not operational 20V)	
Supply voltage ripple	Vrip	Within Vin min. to max. up to 100Hz	
		250mV pk-pk frequencies > 100Hz	
Supply rise time	Trise	75ms max.	
Input current	lin	500mA max.	

VIN is the input supply voltage referenced to the supply return, VNEG.

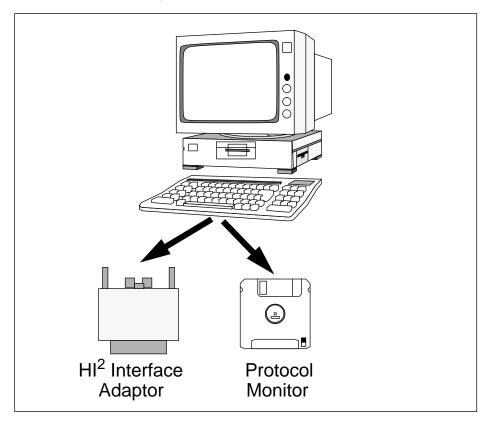
VNEG is connected to GND on the acceptor.

LOCAL EXPANSION INTERFACE

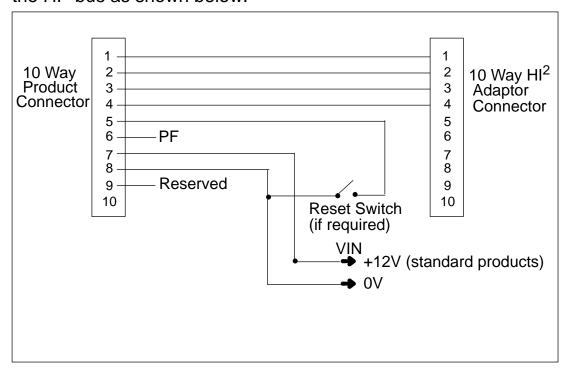

The local expansion interface is provided on the CashFlow[®] 340 creditor to allow connection of the interface PCB. The interface consists of two sets of staked pin connectors along the lower edge of the discrimination PCB, behind the interface PCB cover. The interface can only be used for connection to MEI supplied interface PCB's.

APPLICATIONS SUPPORT

The Host Intelligent Interface (HI²) is a high functionality interface for point to point or multi node systems.


It is currently only available under licence and confidentiality agreements.

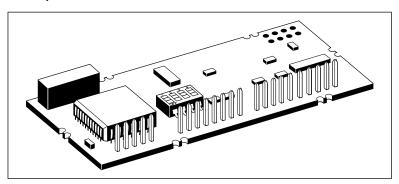
Applications support for HI² is in the form of documentation and support. These are all intended to make it straightforward to designin the interface.



SUPPORT TOOLS

With the use of a HI² interface adaptor and with the aid of the special "Protocol Monitor" software application it is possible to connect a PC serial port to the HI² signals.

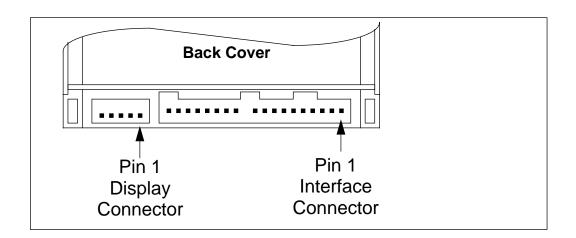
The adaptor should be plugged into the PC serial port and wired to the HI² bus as shown below.


MACHINE INTERFACE PCB's

All CashFlow[®] coin products incorporate a serial machine interface called HI² which offers maximum configuration flexibility.

The video credit interface PCB is used to provide a parallel host interface.

The interface PCB is attached directly to the discrimination PCB and enclosed within the back cover of the acceptor.


The PCB contains a four-bit DIL switch known as the Man Machine Interface (MMI). This switch can be used to configure certain aspects of the product.

Robust Video Credit Interface PCB

The Robust Video Credit Interface (RVCI) is available in single player and 4 player versions with appropriate dispense inputs and outputs.

Both provide a player lamp output, an entry lamp output, a coin meter output and a secondary credit input.

Connector locations - version RVCI

FUNCTIONALITY

The video credit interface PCB contains a masked microprocessor which performs the credit accumulation and host interface functions. The microprocessor communicates with the discrimination processor via the local expansion interface.

Profile specific set-up information is contained within the non-volatile memory on the discrimination PCB and is passed on at power-up. Credit is stored in volatile memory within the interface processor and will be lost if power is removed.

On receipt of a confirmed non-fraudulent payment, the interface processor assigns the appropriate value to the payment type accepted and adds this value to the accumulated credit. If the coin meter option is enabled, the processor will send an appropriate number of pulses, for the payment type accepted, to the coin meter output.

The creditor can be configured for either single or multi-player operation and for either automatic or manual credit dispense in the single player configuration. In automatic credit dispense mode, the appropriated number of game pulses will be dispensed when the accumulated credit exceeds the game price.

In manual credit dispense mode, a single game pulse will be dispensed, to the appropriate player output, each time a dispense input becomes active and sufficient game credits exist.

If the creditor is configured for multi-player operation credit dispense mode is implied, but should in any case be enabled to ensure correct functioning of the product.

In manual credit dispense mode, the creditor will drive the player lamp output to indicate that there are game credits available. The lamp(s) will flash ON for 0.5 sec. and OFF for 0.5 sec. when game credits exist.

The creditor has a programmable maximum games limit which, if exceeded, will cause coin acceptance to be disabled.

The creditor can be configured to give additional games at two defined bonus credit levels. The number of additional games for each bonus level is programmable. The additional games will be given provided the bonus credit level is reached within a programmable time period.

The creditor can accept a credit input from an external device such as a mechanical coin mechanism or bill validator. The credit value associated with the input is programmable. Appropriate coin meter pulses will be generated in response to an external credit input.

DISPLAY FUNCTIONS

An optional external display may be connected to the creditor via the display interface. The type of information displayed can be any one of the following modes, but not nescessarily all of them:

Incrementing games.

Shows 0000 when idle, counts games as credit increases.

Decrementing credit.

Display shows game price when idle. Decrements to 0

Mixed Credit / Games

Display shows game price when idle, plus number of games, counts down to 0 as credit increases, then counts up number of games.

Display Options

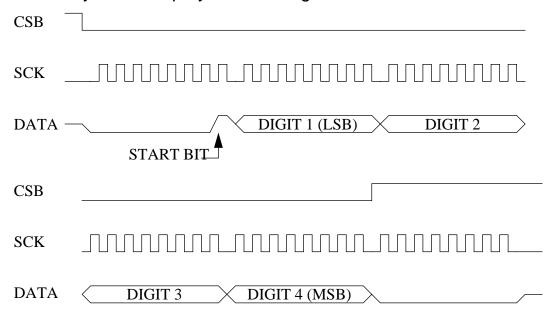
	Single Line Output Normal mode	Single Line Output Credit Dispense	Four Line Pulse Output
Incrementing games	x	×	x
Decrementing credit	✓	×	x
Mixed Credit/ Games	×	✓	✓

Display Connector Pin-Outs

Pin	Description	Function	
1	VIN	Supply Voltage	
2	0V	Supply Return	
3	SCK	Serial Clock	
4	DATA	Serial Data	
5	CSB	Chip Select - Active Low	

Signal Descriptions

The five signals to the display module electrical interface are as defined below:


1)	VIN	Positive supply voltage to display. Direct connection to the VSUPPLY pin on the interface PCB host connector.
2)	0V	Supply common. Reference for serial interface signals. Direct connection to GND pin on the interface PCB host connector.
3)	SCK	Serial Clock output. Open collector transistor drive. See section 3.2 for electrical parameters.
4)	DATA	Serial Data output. Data valid on positive edge of clock and changes on negative edge. Open collector transistor drive. See section 3.2 for electrical parameters.
5)	CSB	Active low display driver Chip Select output. Open collector transistor drive. See section 3.2 for electrical parameters.

Serial Data Format

The data is transmitted as six, eight bit bytes. The first byte consists of a single start bit (logic 1) with leading zeros (logic 0).

The next four bytes contain the data for the four display digits, starting with the least significant digit and ending with the most significant digit.

The last byte is a stop byte consisting of all zeros.

Digit Segment Format

The data byte for each digit consists of eight segment bits, where a logic 1 indicates that the segment will be illuminated. The order of the segment data is as follows:

Fist bit (MSB)Decimal Point

Segment e

Segment d

Segment c

Segment b

Segment a

Segment g

Last bit (LSB)Segment f

COIN ENTRY LAMP

The coin entry lamp is used to indicate the following:

Lamp ON continuously

Indicates that the creditor is functioning normally.

Lamp OFF

Indicates that the creditor detects an internal fault.

Lamp Flashing

(ON for 1.0 sec., OFF for 1.0 sec.)

Indicates a fraud condition has been detected.

The player 1 output is defined as outputs PLAYER1HI and PLAYER1LO, and all other player outputs as PLAYER2-4. The player lamp output is defined as PLAMP, the entry lamp as ELAMP and the coin meter output as CMETER. The dispense inputs are defined as DISP1-4 and the credit input as CREDIT

The PLAYER1HI and PLAYER1LO outputs consist of a floating npn transistor with the collector and emitter made available at the connector. The output transistor is driven from a pnp buffer transistor, from VSUPPLY, through a series resistor.

The other player outputs each consists of an open collector transistor referenced to GND. The output transistors, defined as PLAYER 2-4, are pulsed active to indicate a game output.

Both the player lamp and the entry lamp consist of paralleled darlington transistors, referenced to GND. Their output is active low to illuminate the player lamp(s).

The coin meter output is a darlington transistor referenced to GND, and is pulsed low to increment the coin meter.

The four dispense inputs are CMOS inputs with input protection and pull-up resistor. They are active low to dispense credit.

The credit input is a CMOS input with input protection and pull-down resistor, which is active high to input credit.

Display Parameters

All outputs Voff Max 40V

Von Max 0.5V Ion Max 20mA

Fmax 250kHz (100kHz typical)

Typical Display

module input: CMOS i/p with pull-up resitor

Power

12V operation, VSUPPLY (pin 8) referenced to GND (pin12):

Input supply voltage Vin 10V min. 15V max.

(Abs. max. not operational 20V)

Supply voltage ripple Vrip Within Vin min. to max. up to

100Hz

250mV pk-pk frequencies >

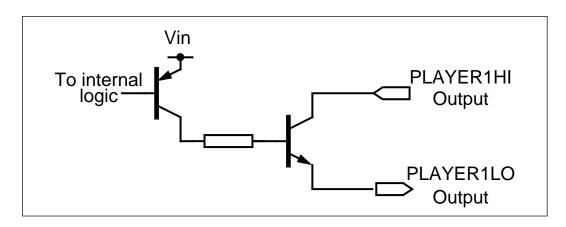
100Hz

Supply rise time Trise 75ms max.

Input current. Iin 500mA max. Creditor only

Outputs

Player 1 output: (PLAYER1HI, PLAYER1LO) pins 9 and 10


Off state voltage Vceoff +30V max.

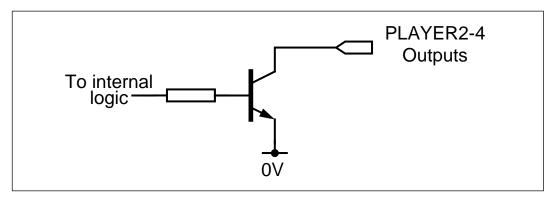
Leakage current lin 5μA

On state voltage Vcesat 0.5V max.

On state current Ic 30mA max.

Emitter voltage Ve 0V min. (Vin -2V) max.

Player 1 output equivalent circuit


Player 2-4 outputs: (PLAYER2-4) pins14, 16 and 18

Off state voltage Vceoff +30V max.

Leakage current lin 5μA

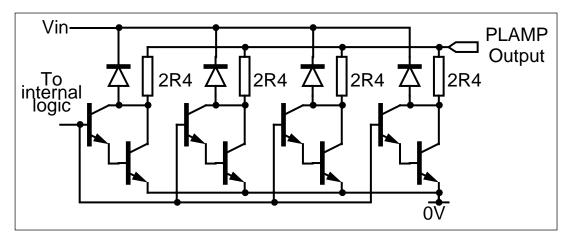
On state voltage Vcesat 0.5V max.

On state current Ic 30mA max

Player 2-4 output equivalent circuit

Player lamp output: (PLAMP) pin 7

Off state voltage Vceoff Vin max.


Leakage current lin 100μA

On state voltage Vcesat 1.5V max. (transistor only)

Maximum load Ic 750mA max.

Output is designed to sink current of up to 4 off 12V 2.2W bulbs connected in parallel, to

Vin

Player lamp output equivalent circuit

All other outputs: (SOL1, ELAMP/SOL2, CMETER) pins 1, 3 and 5

Off state voltage Vceoff Vin max.

Leakage current lin 100μA pins 3 and 5

3.2mA @ Vceoff = Vin max. pin

1 only

On state voltage Vcesat 1.5V max. (transistor only)

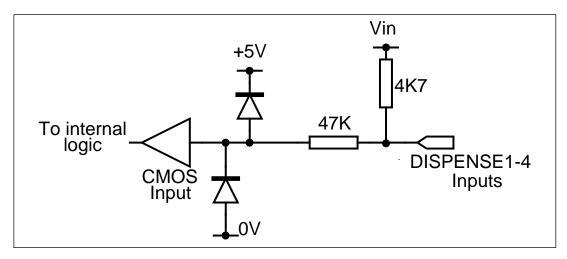
Maximum load Ic 500mA max.

Output is designed to sink the

current of one

12V 2.2W bulb connected to Vin

Inputs


Dispense inputs (DISPENSE1-4) pins 13, 15, 17, 19

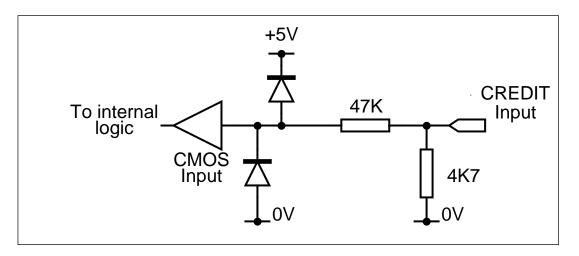
Inactive Vin > +4 V (+30V max)

or input open circuit

Active Vin between 0V and +1V

Input Impedance: $4k7\Omega$ nom. to Vin

Dispense 1-4 input equivalent circuit


Credit input: (CREDIT) Pin 1

Active Vin > +4 V (+30V max)

Inactive Vin between 0V and +1V

or input open circuit

Input Impedance: $4k7\Omega$ nom. to +0V

Credit input equivalent circuit

CONFIGURATION

The configuration of the creditor can be divided into two areas; Factory Configuration and Field Configuration, these are defined in the following sections. The table below summarises which aspects are factory or field configurable.

	ion	Field	Field Configuration		
Configuration item	Factory Configuration	Mars® Route Alpha 250 Terminal	MMI Switches (when fitted)	Serial Interface	
Coin Parameters	✓				
Coin Enable/Inhibit	✓	✓	✓	✓	
Coin Values	✓	✓		✓	
Game Price	✓	✓	✓	✓	
Bonus Settings	✓	√	✓	✓	
Creditor Mode	✓	√		✓	
Test Credit	✓	✓	✓	✓	

Coin parameters

Parameters are defined for each coin to determine the limits for the validation of a payment.

Coin enables/inhibits

Each of the coins may be individually enabled or inhibited. An enabled coin will be accepted unless it is inhibited by the interface processor.

Coin value

Each coin is allocated a value which may is used by the interface processor.

Game price

The game price defines the credit level at which a game pulse is sent to the host machine.

Bonus settings

Up to two bonus levels can be defined at which a specified number of additional games are given.

Credit Dispense mode

A single player creditor can be configured to automatically dispense games once a game price has been reached, or to wait for a dispense credit input before dispensing a game pulse.

Test credit

In the test credit mode the creditor will dispense a game pulse each time the reject lever is actuated (within a 10 second time-out period).

FACTORY CONFIGURATION

The CashFlow® 340 creditor is configured for:

- Single Player
- Multiple Players (4 maximum)

Specific Coinsets

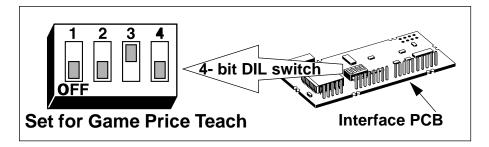
The acceptor is pre-programmed to accept a specific range of coins and/or tokens from the following countries.

This list does not preclude any other coinsets not specifically listed.

Australia	Hungary	Singapore	
Austria	India	South Africa	
Bahrain	Israel	South Korea	
Belgium	Italy	Spain	
Canada	Japan	Sweden	
Colombia	Kuwait	Switzerland	
Cyprus	Malta	Taiwan	
Denmark	Mexico	Turkey	
Eire	Netherlands	UAE	
Finland	New Zealand	UK	
France	Norway	USA	
Germany	Portugal		
Greece	Saudi Arabia		

FIELD CONFIGURATION

The CashFlow[®] 340 creditor product offers various field configuration options. There are two methods available; via an interface PCB (MMI) or a Mars[®] Route Alpha 250 hand held terminal.


VIA MAN MACHINE INTERFACE (MMI)

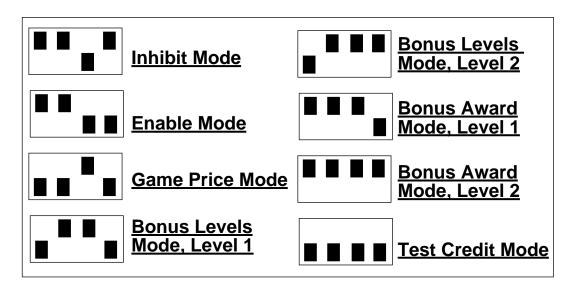
The Man Machine Interface is designed to provide a simple standalone interface which allows frequently used functions to be accessed and varied by an operator or route person without the use of a Mars[®] Route Alpha 250 terminal. The interface consists of a 4bit DIL switch on the Machine Interface PCB. The following functions are available:

- Inhibit a specific Coin
- Enable a specific Coin
- Set a Game Price
- Set a Bonus level

I

- Set a Bonus Award level
- Enter Test Credit mode

To change the function of the product there is a sequence of events that must be followed **in order**:


- 1 Switch off power and remove the acceptor module from the machine.
- 2 Dis-connect the loom(s).
- 3 Remove the interface PCB cover by pressing downwards in the direction of the arrow on the cover.
- 4 Re-connect the loom(s).
- 5 Switch on power to the acceptor module.
- 6 Adjust the switch positions on the 4-bit DIL switch.

- 7 Replace the acceptor module back into machine.
- 8 Press the reject lever within a 20 second time-out period.
- 9 Insert coins until desired function has been achieved.
- 10 Press the reject lever.

Important points to remember

- The acceptor module must be powered up before changing the switch positions.
- The reject lever must be pressed within the 20 second timeout period to return to the normal operational mode.

Care should be taken while the creditor is not mounted in the machine.

Switch positions for MMI modes

To set Inhibit Specific Coins mode

- 1 Adjust slide switches to: 1=ON, 2=ON, 3=OFF, 4=ON.
- 2 Press the reject lever.
- Insert specific coins to be inhibited and check that they are accepted.
- 4 Press the reject lever to return to operational mode.

To set Enable Specific Coins mode

- 1 Adjust slide switches to: 1=ON, 2=ON, 3=OFF, 4=OFF.
- 2 Press the reject lever.
- Insert specific coins to be enabled and check that they are accepted.
- 4 Press the reject lever to return to operational mode.

To set Game Price mode

- 1 Adjust slide switches to: 1=OFF, 2=OFF, 3=ON, 4=OFF.
- 2 Press the reject lever.
- Insert coins to the value of the game and check that they are accepted.
- 4 The display (if fitted) will show the game price.
- 5 Press the reject lever to return to operational mode.

To set Bonus Levels mode, level 1

- 1 Adjust slide switches to: 1=OFF, 2=ON, 3=ON, 4=OFF.
- 2 Press the reject lever.
- Insert coins to the value of the required bonus level and check that they are accepted.
- The display (if fitted) will show the bonus price, level 1.
- 5 Press the reject lever to return to operational mode.

To set Bonus Levels mode, level 2

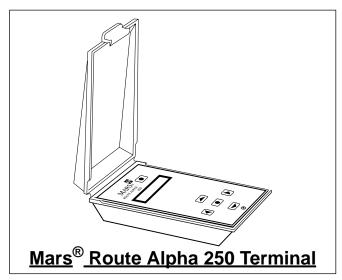
- 1 Adjust slide switches to: 1=OFF, 2=ON, 3=ON, 4=ON.
- 2 Press the reject lever.
- Insert coins to the value of the required bonus level and check that they are accepted.
- The display (if fitted) will show the bonus price, level 2.
- 5 Press the reject lever to return to operational mode.

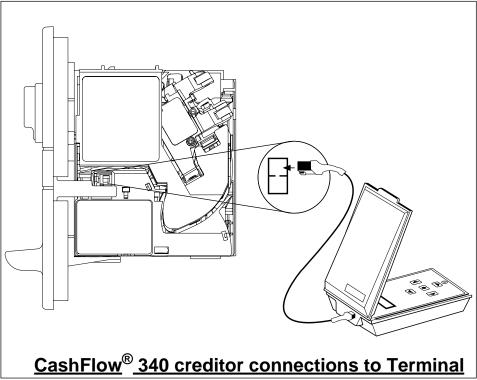
To set Bonus Award mode, level 1

- 1 Adjust slide switches to: 1=ON, 2=ON, 3=ON, 4=OFF.
- 2 Press the reject lever.
- Insert coins equal to number of bonus awards required and check that they are accepted.
- 4 The display (if fitted) will show number of bonus awards.
- 5 Press the reject lever to return to operational mode.

To set Bonus Award mode, level 2

- 1 Adjust slide switches to: 1=ON, 2=ON, 3=ON, 4=ON.
- 2 Press the reject lever.
- Insert a number of coins to the value of the required bonus level.
- 4 The display (if fitted) will show the bonus price, level 1.
- 5 Press the reject lever to return to operational mode.

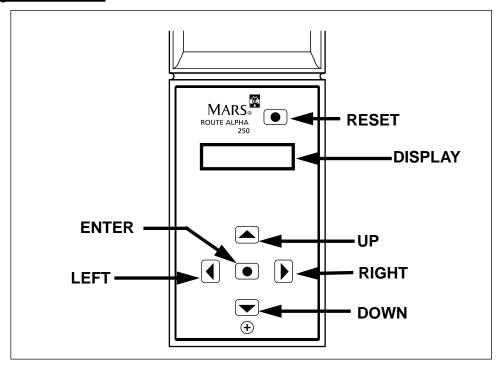

To enter Test Credit mode


- 1 Adjust slide switches to: 1=OFF, 2=OFF, 3=OFF, 4=OFF.
- 2 Press the reject lever.
- If credit dispense mode is enabled then the test credits will be accumulated by the creditor each time the reject lever is pressed. The display will show the number of games in credit.
 - If not in credit dispense mode then the teset credits will be issued to the host machine each time the reject lever is pressed. The display will show 0000.
- The display (if fitted, and the creditor in manual dispense mode) will show the number of games in credit.
- 5 Allow full time-out to occur for return to operational mode.

When you have completed configuring the acceptor module the interface PCB cover needs to be replaced. To do this follow the instructions below:

- 1 Switch off power and remove the acceptor module from the machine.
- 2 Dis-connect the loom(s). When dis-connecting hold down the interface PCB before pulling on the loom.
- 3 Replace the interface PCB cover.
- 4 Re-connect the loom(s).
- 5 Place the acceptor module back into the machine.
- 6 Switch on power.
- 7 Test the unit to ensure it is working correctly.

VIA MARS® ROUTE ALPHA 250 TERMINAL



The Mars[®] Route Alpha 250 terminal is used to check or change certain data which affects the way the creditor operates. The data is held in addresses. Each address has a unique number which identifies the feature you wish to read or change.

The following pages will explain how to access and change the data in certain addresses. At the end of this section there is a list of addresses and the relevant values.

The terminal is connected to the CashFlow® 340 creditor via a six way terminal connector at the front of the acceptor module.

Key Functions

Reset Key: used to reset all modes and to initialise any settings that you have changed. If the reset key is pressed while an address is being updated then the address may not be updated. The reset key must be pressed to store the changes that you have made.

Up Key: used to increase the value displayed on the screen.

Down Key: used to decrease the value displayed on the screen.

Left Key: used to scroll the display to the left when a large number is being accessed that cannot be fully displayed on the screen.

Right Key: used to scroll the display to the right when a large number is being accessed that cannot be fully displayed on the screen.

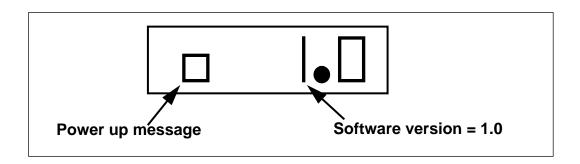
Enter Key: used to change between the address and data displays.

Other Facilities Of The Terminal

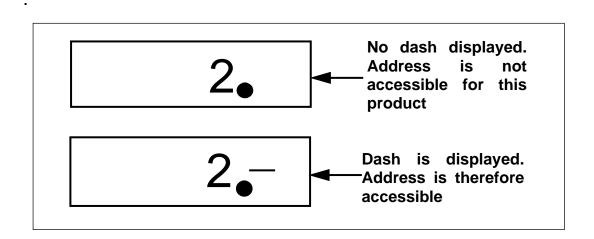
The terminal has built-in features to speed up its use, including the ability to scan at a higher speed with the keys auto repeating, to automatically roll over from its highest to lowest address and to inform the operator should a communication error occur.

Auto Repeating Keys

If either the UP or DOWN keys are kept pressed they automatically repeat. The repeat speed of the key increases the longer the key is held down.


Double Click Hotkeying

If a key is doubled clicked (pressed twice in quick succession) then this causes the address number to increment by a larger amount. e.g. if the user starts at address number 1 then double clicks the UP key, the address will jump to 40, double click again the address will jump to address 100 etc. You can also double click the DOWN key to decrement by larger amounts.


Using The Terminal

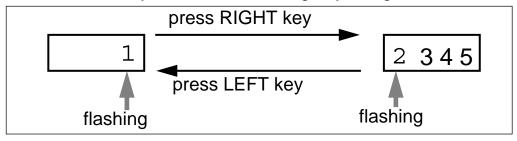
As soon as the terminal is connected to a creditor it powers up and interrogates the product.

The terminal display will clear and briefly show a message that indicates the version of software in the terminal. A display of [0 1.0] means software with a version number of 1.0 is fitted in the terminal.

After a few seconds the display will show the number [1.] or [1.-]. Not all configuration items are applicable to every product but all the address values are shown on the display. If the value for the address is applicable to the product a dash will be present at the far right position on the display. The value can then be accessed and changed if required

The basic operation to alter the information held in an address is:

- 1 Connect the terminal to the CashFlow[®] acceptor module.
- 2 Wait for the terminal to power up correctly.
- 3 Select the address by using the UP and DOWN keys.
- 4 Examine the data by pressing the ENTER key.
- Alter the data value by pressing the UP or DOWN keys until the new value has been reached.
- 6 Press the ENTER key to return to displaying addresses.
- 7 Press the RESET key to initialise the new value.


When the terminal is displaying values stored at addresses, no decimal point will be displayed.

If an error occurs with the communication between the terminal and the creditor the display will show an error message of four half height zeroes.

This message will stay on the display. Pressing the RESET key may clear the fault. The display will then revert to showing the current address. If the error occurred while updating an address then the value of that address should be checked as it may not have been updated correctly. If, after pressing the RESET key, the fault remains the error message will stay and you need to return the terminal for repair.

As the screen is capable of only displaying four digits at any one time the number displayed on the screen can be scrolled if it is greater than 9999 by using the Left Key LEFT and RIGHT keys. The outside left or right digit will flash indicating an extra digit or digits can be examined by use of the scrolling keys. E.g. value is 12345

The tables below show you how the addresses for the creditor can be reconfigured and their possible values.

Address	Parameter	Range	Meaning
1	Coin 1 inhibit	0-1	0 = coin allowed,1 = inhibited
2	Coin 2 inhibit	0-1	0 = coin allowed,1 = inhibited
3	Coin 3 inhibit	0-1	0 = coin allowed,1 = inhibited
4	Coin 4 inhibit	0-1	0 = coin allowed,1 = inhibited
5	Coin 5 inhibit	0-1	0 = coin allowed,1 = inhibited
6	Coin 6 inhibit	0-1	0 = coin allowed,1 = inhibited
7	Coin 7 inhibit	0-1	0 = coin allowed,1 = inhibited
8	Coin 8 inhibit	0-1	0 = coin allowed,1 = inhibited
9	Coin 9 inhibit	0-1	0 = coin allowed,1 = inhibited
10	Coin 10 inhibit	0-1	0 = coin allowed,1 = inhibited
11	Coin 11 inhibit	0-1	0 = coin allowed,1 = inhibited
12	Coin 12 inhibit	0-1	0 = coin allowed,1 = inhibited
15	Accept direction	0-1	0 = left,1 = right
16	Strobes	0-15	Value = sum of codes 1 = direction strobe left 2 = direction strobe right 4 = post gate left, 8 = post gate right
21	Coin 1 type	0-2	0 = coin 1 = value token 2 = vend token
22	Coin 2 type	0-2	0 = coin 1 = value token 2 = vend token
23	Coin 3 type	0-2	0 = coin 1 = value token 2 = vend token
24	Coin 4 type	0-2	0 = coin 1 = value token 2 = vend token

Address	Parameter	Range	Meaning
25	Coin 5 type	0-2	0 = coin 1 = value token 2 = vend token
26	Coin 6 type	0-2	0 = coin 1 = value token 2 = vend token
27	Coin 7 type	0-2	0 = coin 1 = value token 2 = vend token
28	Coin 8 type	0-2	0 = coin 1 = value token 2 = vend token
29	Coin 9 type	0-2	0 = coin 1 = value token 2 = vend token
30	Coin 10 type	0-2	0 = coin 1 = value token 2 = vend token
31	Coin 11 type	0-2	0 = coin 1 = value token 2 = vend token
32	Coin 12 type	0-2	0 = coin 1 = value token 2 = vend token
41	Price	0-65,535	Required credit for game output
43	Display mode	0-3	0 = incrementing credit 1 = decrementing credit 2 = number of games 3 = number of games and Decrementing credit
44	Display shift	0-2	0 = nil shift 1 = shift to right by one move 2 = shift to right by two moves

Address	Parameter	Range	Meaning
45	Decimal point position	0-4	0 = retain point at right side 1 = move point to left once 2 = move point to left twice 3 = move point left three times 4 = no decimal point
60	Bonus credit mode	0-1	0 = dis-able 1 = enable
61	Coin meter output enable	0-1	0 = dis-able 1 = enable
62	Auxiliary credit input enable	0-1	0 = dis-able 1 = enable
63	Credit dispense mode	0-1	0 = dis-able 1 = enable
64	Test credit mode enable	0-1	0 = dis-able 1 = enable
65	Separator drive enable	0-1	0 = dis-able 1 = enable
66	Game pulse width	0-5	0 = 75ms ON 75ms OFF 1 = 75ms ON 200ms OFF 2 = 100ms ON 200ms OFF 3 = 100ms ON 330ms OFF 4 = 150ms ON 330ms OFF 5 = 330ms ON 330ms OFF
67	Coin meter pulse width	0-3	0 = 50ms ON 50ms OFF 1 = 100ms ON 100ms OFF 2 = 150ms ON 150ms OFF 3 = 200ms ON 200ms OFF
68	Bonus time width	0-15	Time in steps of 2.5secs.
69	Auxiliary credit input units	0- 255	Value divided by payment scaling factor
70	Trigger level 1 award	0-127	Games awarded at trigger level 1
71	Trigger level 1	0-65,535	Credit trigger level 1

Address	Parameter	Range	Meaning
72	Trigger level 2 award	0-127	Games awarded at trigger level 2
73	Trigger level 2	0-65,535	Credit trigger level 2
74	Maximum game limit	0-127	Maximum number of games limit
75	Coin meter value scalar	0-255	Number of pulses = credit/ coin meter scalar
80	Payment scaling factor	0-255	Scalar applied to coin/auxiliary value
81	Value of coin 1	0-255	Real coin value divided by payment scaling factor
82	Value of coin 2	0-255	Real coin value divided by payment scaling factor
83	Value of coin 3	0-255	Real coin value divided by payment scaling factor
84	Value of coin 4	0-255	Real coin value divided by payment scaling factor
85	Value of coin 5	0-255	Real coin value divided by payment scaling factor
86	Value of coin 6	0-255	Real coin value divided by payment scaling factor
87	Value of coin 7	0-255	Real coin value divided by payment scaling factor
88	Value of coin 8	0-255	Real coin value divided by payment scaling factor
89	Value of coin 9	0-255	Real coin value divided by payment scaling factor
90	Value of coin 10	0-255	Real coin value divided by payment scaling factor
91	Value of coin 11	0-255	Real coin value divided by payment scaling factor
92	Value of coin 12	0-255	Real coin value divided by payment scaling factor

ENVIRONMENTAL PERFORMANCE

Products will meet the following environmental specification:

TEMPERATURE RANGE

Working ambient 0° to 60°C

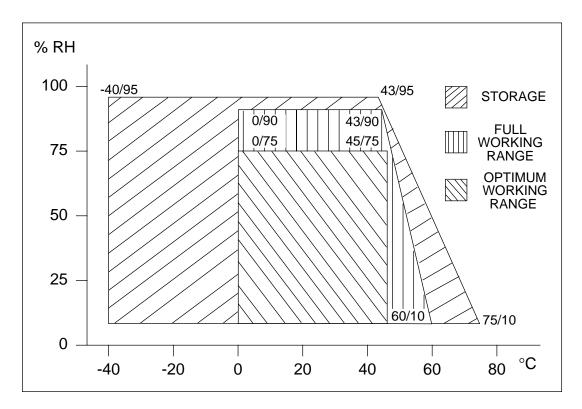
Max rate of change 15°C/hr. non condensing

Storage -40° to $+65^{\circ}$ C

Recovery 1 hour per 10°C to working ambient

temperature range

Solar radiation Max. working ambient applies


HUMIDITY

Operational 10% to 90% RH

Storage 10% to 95% RH, non-condensing at 65°C

Recovery 1 hour per 10% RH to working ambient

humidity range

Temperature / Humidity specification

VIBRATION

Operational - units will not be damaged by these conditions:

Vibration 0.25g at 5 to 500 Hz.

(Coin acceptance will not be seriously affected.)

life. Refer to BS2011: part 2.1 Fc:1983 / IEC 68-2-6

Intermittent over the unit's

TRANSPORTATION

Units in the packed state will not sustain any physical damage under these conditions:

Shock Half sine, 30g shock, 18ms dur. Refer to BS

2011: part 2.1 Ea: 1988 / IEC 68-2-27

Bump 1000 bumps 6ms duration at 25g. Refer to

BS 2011: part 2.1 Eb: 198 7/ IEC 68-2-29

Free Fall 1000mm fall onto packing faces. Refer to

BS 2011: part 2.I Ed: 1992 / IEC 68-2-

32:1975

Crush Neatly stacked units of the same type may

be stacked to a height of 2 metres.

LIQUIDS

Water

The units inclusive of PCBs will be splash protected.

The coin entry encourages excess water towards the reject path on an accept right product, and the front of the product out of the coin path. Coin stall under these conditions will be minimised.

Salt water

Prolonged exposure in a salt laden atmosphere will lead to PCB corrosion damage. Suitable packaging will be required when shipped by sea.

Other Liquids

Exposure to these will cause impairment of function. To include: dilute carbonic acid, dilute citric acid, carbonated drinks, beer, tea, coffee, chocolate, soup, syrup and sugar residue, uric acid.

Comments:

- Certain beverages and the dilute acids may cause similar effects to salt water if they contact the PCB's.
- Performance when wet will be similar to that described for water.
- Liquids which leave a residue on drying which affects the passage of coins will cause malfunction.

SUBMISSIONS & SAFETY

CLASSIFICATION

The defined creditor products will satisfy the requirements of a class II (un-earthed) appliance as defined in IEC 335.

The creditor products will comply with:

- UL 756 "Coin and currency changers and actuators"
- IEC 335, 3rd Edition "Safety of Household and similar Electrical Appliances"

FLAMMABILITY

All major plastic parts will be moulded in materials with a flammability rating of UL 94 V-2/IEC 707 FV2 or better. Some small parts are moulded in materials with a minimum flammability rating of 94 -HB/IEC 707 FH2.

POWER SUPPLY INPUT PROTECTION

Overcurrent protection is not included in the creditor and should be provided as part of the host machine.

Recommended fuse ratings are:

• 12V: 2.0A

Other protection methods may be used providing the overall protection envelope remains within that defined by the fuse characteristics.

MECHANICAL PARTS

The CashFlow® products will not contain mechanically moving parts, or sharp edges, which can present a hazard in normal use.

MARS ELECTRONICS INTERNATIONAL OFFICES

AUSTRALIA	ITALY		
MARS ELECTRONICS INTERNATIONAL	MARS ELECTRONICS INTERNATIONAL		
302 PARRAMATTA ROAD	27011 BELGIOIOSO (PV)		
AUBURN	VIALE DANTE, 40		
NEW SOUTH WALES, 2144	TELEPHONE: 0382 - 979313		
TELEPHONE: 2 - 7375390	FACSIMILE: 0382 - 970790		
FACSIMILE: 2 - 7375399			
CANADA	JAPAN		
MARS ELECTRONICS INTERNATIONAL	MARS ELECTRONICS INTERNATIONAL		
37, HOLLAND DRIVE	A DIVISION OF MASTER FOODS LTD.		
BOLTON	3F MUSASHI-KOSUGI TOWER PLACE		
ONTARIO, L7E 5S4	403 KOSUGIMACHI 1-CHOME		
TELEPHONE: 416 - 239 - 2782	NAKAHARA-KU		
FACSIMILE: 416 - 239 - 3322	KAWASAKI-SHI		
	KANAGAWA-KEN 211		
	TELEPHONE: 44 - 712 - 1315		
	FACSIMILE: 44 - 712 - 1439		
FRANCE	SPAIN		
MARS ELECTRONICS INTERNATIONAL	MARS ELECTRONICS INTERNATIONAL		
BOULEVARD DES CHANATS	M. ^a DE MOLINA, 40-3 ^a		
BP 7	28006 MADRID		
45550 ST. DENIS DE L'HOTEL	TELEPHONE: 9 - 3379182 FACSIMILE: 91- 5635517		
TELEPHONE: 38 - 59 - 6161	FACSIMILE. 91-3033317		
FACSIMILE: 38 - 59 - 6172			
GERMANY	SWITZERLAND		
MARS ELECTRONICS INTERNATIONAL	MARS ELECTRONICS INTERNATIONAL		
INDUSTRIERING 17 A	CH. PONT-DU-CENTENAIRE 109		
41751 VIERSEN	PLAN-LES-OUATES		
TELEPHONE: 02162 - 9560	P.O. BOX 2650		
FACSIMILE: 02162 - 41544	1211 GENEVA 2		
	TELEPHONE: 22 - 8840505		
	FACSIMILE: 22 - 8840504		
GREAT BRITAIN	UNITED STATES		
MARS ELECTRONICS INTERNATIONAL	MARS ELECTRONICS INTERNATIONAL		
ESKDALE ROAD	1301 WILSON DRIVE		
WINNERSH TRIANGLE	WEST CHESTER		
WOKINGHAM	PA 19380		
BERKSHIRE, RG41 5AQ	TELEPHONE: 610 - 4302500		
TELEPHONE: 01734 - 697700	FACSIMILE: 610 - 4302694		
FACSIMILE: 01734 - 446412			

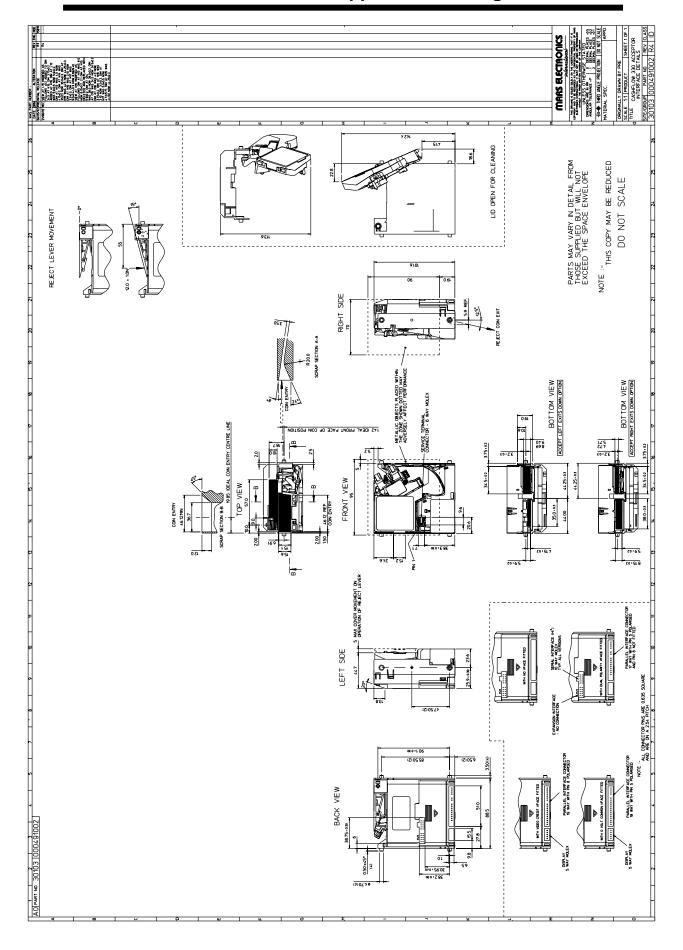
INDEX

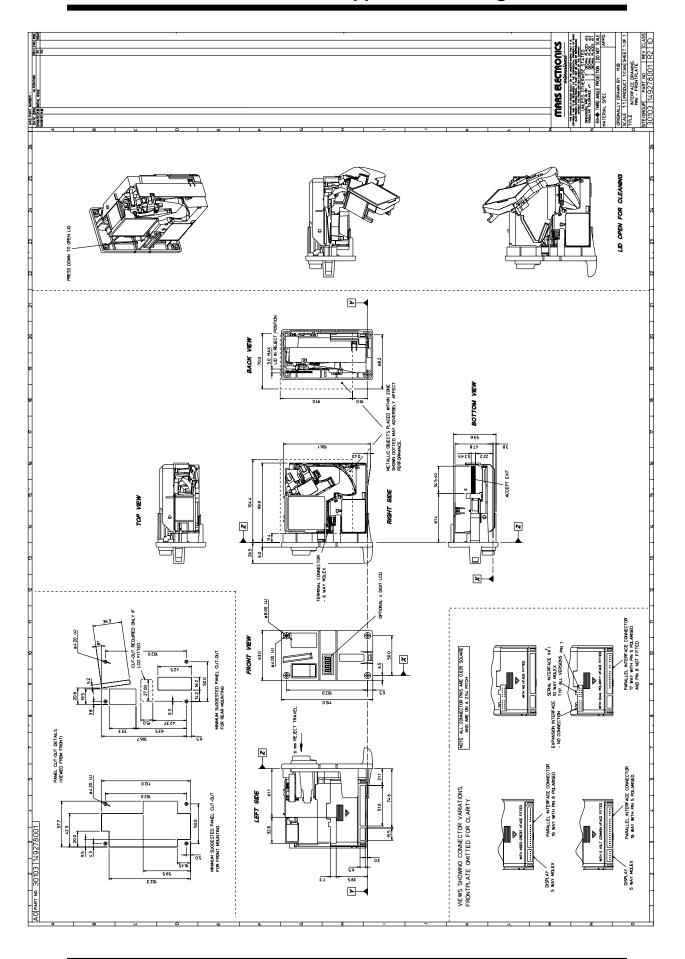
Α	
Accept Gate Module	2, 4, 5, 7, 8, 9
Acceptor Module	2, 3, 10, 31, 32, 38,
	54
Appendix	54
Applications Support	16
Auto Repeating Keys	36
Automatic Credit Dispense	19
В	
Back Cover	2, 4, 5, 6, 8
Bonus Awards Mode	31, 33
Bonus Credit levels	19
Bonus Levels Mode	31, 33
C	
Classification	46
Coin Acceptance	4
Coin Acceptance Rate	10
Coin Deflector	4
Coin Enable/Inhibit	28
Coin Entry	2, 4
Coin Entry Lamp	23
Coin Exits	2, 7
Coin Inhibit	9
Coin Meter Output	18, 23
Coin Meter Pulses	20
Coin Output Map	28
Coin Parameters	28
Coin Routing	3, 29
Coin Set	2
Coin Strobes	8
Coin Type	2, 9
Configuration	28, 30
Configuration Addresses	35, 36, 38, 39
Connectors	10
Credit Input	18, 23
Creditor Configuration	39
Creditor Mode	29

Customer Interface Inhibit D	9
Decrementing Credit Discrimination Module Discrimination PCB Discrimination Sensors Dispense Inputs Display Display Display Functions Disposal Of Product Double Clicking Down Key E	20 2, 3, 4, 9 5, 6, 8, 18 4 23 12 20 1 37 36, 38
Electrical Functions Electrical Interfaces Electrical Specification	4, 8 13 14, 15, 24, 25, 26, 27
Enable Teach Mode Enter Key Entry Lamp Output Environmental Performance External Credit Input External Interface F	13, 31, 33 36, 38 18, 23 1, 43, 44, 45 20 11, 12
Factory Configuration Field Configuration Flammability Flight Deck Flight Deck Lid Flow Path Front Plate Front Plate Mounting Functionality G	28, 30 28, 31 46 2, 4, 5, 7, 8 4, 5, 8 4 2, 5 3, 6 19
Game Price Mode Glossary H Hinge Spring Host Intelligent Interface	29, 31, 33 2 5 13, 16, 17, 18
<u>-</u>	•

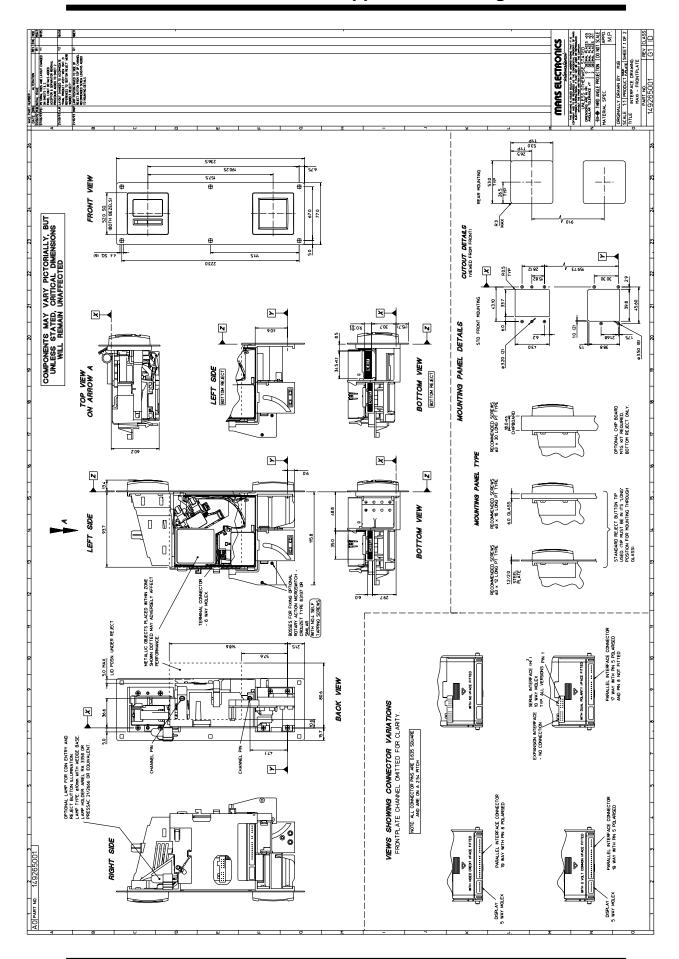
Humidity	43
Incrementing Games Inductive Sensors Inhibit Lines Inhibit Status Inhibit Teach Mode Inputs Interface Drawings Interface PCB	20 8 2 9 13, 31, 32 26 54 4, 8, 11, 12, 18, 31, 34
Lamp Flashing Lamp OFF Lamp ON Continuously LCD Display LEFT Left Key Lid Arm Liquids Local Expansion Interface	23 23 23 3 38 36 5 45 15, 19
Machine Interface Machine Interface PCB Man Machine Interface (MMI) Manual Credit Dispense MARS ELECTRONICS INTERNATIONAL Mars® Route Alpha 250 Terminal Masked Micro-Controller Maxi Front Plate Maximum Games Limit Mechanical Build Standard Mechanical Functions Mechanical Parts Midi Front Plate Mini Front Plate Mounting Multi Player Mode	2 18, 31 18, 28, 31, 32 19 48 28, 31, 35, 36, 37, 38 8 3, 11, 54 19 7 4 47 3, 6, 54 3, 6, 54 11, 12 19

N	
Non-Volatile Memory	8, 9
0	-, -
Operating Voltages	1, 3
Operational Functions	4, 9
Optical Coin Strobes	7
Optional Interface PCB	6
Output Signal	9
Outputs	24, 26
Overview	3
P	
Parallel Interface	2, 6
PCB Cover	4, 6, 34
Player Lamp	19
Player Lamp Output	18, 23
Player Outputs	23
Power Supply Input Protection	31
Power Supply Input Protection	47
Power Up Product Operation	31, 34 4
Product Variants	1 11, 12
Programmable Time Period	19
R	10
Reject Lever	5, 6, 9, 32
Reliability	10
Reset Key	36, 38
Right Key	36, 38
Robust Video Credit Interface	18, 19
S	
Safety	1, 32
Serial Interface	2, 8, 28
Single Player Mode	19
Snubber	2, 4
Solenoid Operated Gate	7
Specific Coinsets	30
Submissions and Safety	46
Support Tools	17
T	40
Temperature Range	43


Terminal Display	36, 37, 38
Test	34
Test Credit Mode	29, 31, 34
Time-Out	32
Tokens	9
Transportation	44
U	
Up Key	36, 38
V	
Vibration	44


APPENDIX


INTERFACE DRAWINGS


The following mechanical interface drawings are included in this section.

	Drawing Number
4" ACCEPTOR/CREDITOR	000491002
MINI FRONT PLATE	149278001
MIDI FRONT PLATE	149281001
MAXI FRONT PLATE	149265001

REPRESENTATIVE:

THE INTELLIGENT TRANSACTION

UNITED STATES

1301 Wilson Drive West Chester Pa 19380

Telephone: 610- 4302500 Facsimile: 610- 4302694

GREAT BRITAIN

Eskdale Road Winnersh Triangle Wokingham Berkshire, RG41 5AQ Telephone: 01734- 697700 Facsimile: 01734- 446412

SWITZERLAND

Ch. Pont-du-Centenaire 109 Plan-les-Ouates P.O. Box 2650 1211 Geneva 2

Telephone: 22- 8840505 Facsimile: 22- 8840504

FRANCE

Boulevard Des Chenats BP 7 45550 St. Denis de L'hotel

Telephone: 38 - 59 - 6534 Facsimile: 38 - 59 - 6172

GERMANY

Industriering 17 A 41751 Viersen

Telephone: 02162- 9560 Facsimile: 02162- 41544

<u>ITALY</u>

27011 Belgioioso (Pv) Viale Dante, 40 Telephone: 0382- 979313 Facsimile: 0382- 970790

SPAIN

M.^a De Molina, 40-3^a 28006 Madrid Telephone: 91- 3379182 Facsimile: 91- 5635517

<u>AUSTRALIA</u>

302 Parramatta Road Auburn

New South Wales, 2144 Telephone: 02- 737- 5390 Facsimile: 02- 737- 5399

<u>JAPAN</u>

Mars Electronics International 3f Masushi-kosugi Tower Place 403 Kosugimachi 1-chome Nakahara-ku Kawasaki-shi Kanagawa-ken 211

Telephone: 44 - 712 - 1315 Facsimile: 44 - 712 - 1439

CANADA

Mars Electronics International 37, Holland Drive Bolton

Ontario, L7E 5S4 Telephone: 416 239 2782 Facsimile: 416 239 3322