
 

 

Hantek DSO5062B 250MHz input stage mod 
tatus1969, Rev.1, 2016-07-08 

 

It started with the desperate need of a digital storage scope. Wait - I’m 46 now, how did I manage to 

have lived up to this point with just a 2ch 10MHz analog cathode ray scope? … It was time but not 

money, so I decided to go cheap and see what I can do to make this one better. 

 

 

After applying the 200MHz mod to the firmware of this scope 

(http://www.eevblog.com/forum/testgear/hantek-tekway-dso-hack-get-200mhz-bw-for-free/), I 

discovered that the analog stage would be far from perfect. As I want to use the scope to be able to 

observe slope and overshoot of signals from circuits like switch-mode power supplies or motor 

drivers, I need a scope that does not “add” anything to my signal - except bandwith limitation. 

However, after feeding in my first digital signal, it became clear to me that I should not stop at 

renaming some files... 

 

(ehm, sorry, this is not from my scope but from eevblog.org. Didn’t take a “before” picture…) 

 

Second (main?) reason for continuing was, could I make even better, and what can I learn here? 

While playing around with the scope, I quickly realized that it applies digital post-filtering to the 

signal before that appears on the screen. The chosen filter (sin{x} / x) naturally introduces visible pre-

ringing that doesn’t come from my signal source. Okay, I thought let’s put it into dot display mode, 

then it will stop doing that. Well, it does not. 

Luckily, they have also implemented “equivalent time” sampling mode for repetitive signals, which 

samples the signal many times and overlays all the results. This results in a cloud of samples with 

irregular time spacing between them. But the most important thing is: they finally do not post-filter 

this cloud but just show it on the screen. I found that additionally choosing “dot” display mode looks 



 

 

best here. The left picture below has been taken with “real time” sampling mode, you see ringing 

before and after the transitions. The right picture was taken from the exact same signal, but using 

equivalent-time and dot modes. Compare and decide :-) 

        

Knowing this and choosing “equ-time” mode from now on, I can be sure that when I see a signal with 

ringing, it would be either my signal source, or the analog part of the scope. 

The next task was to create a pulse signal generator, which would deliver me a slope that would be 

as fast and ideal as possible. Fast means a lot less than the scope’s original rise time of ~1.8ns, and 

ideal means no overshoot as far as possible, and as flat as possible after the transition. I thought of 

building an avalanche pulser like http://www.siliconvalleygarage.com/projects/picosecond-

pulser.html, but decided against it, since they seem to be less accurate when it comes to overshoot 

and flatness. They’re basically ridiculously fast. Well, and I don’t have one. 

When browsing my “stuff I bought for some project and then forgot about” places, I found an NGX 

LPC4330 Xplorer board. The datasheet of that micro says that it has some high-speed GPIOs that are 

specified with 500ps rise time with an output impedance supposedly around 50 ohms. Great! Next, 

added the following to the output (K6 / SD_SCK): 

 

         

 

  



 

 

A measurement with {LeCroy 104Xs with a 1.5GHz + 0.9pF active probe} showed this result (left - 

direct 50 ohm feed; right - taken with active probe, of course still with terminated cable end): 

         

So, with light capacitive load (active probe) it apparently does a hefty 345ps. It can almost compete 

with the picosecond pulser (~200ps), and this is just a microcontroller’s GPIO pin. Thanks for that, 

NXP :-) 

But it looks as if the termination on scope side isn’t correct? Am I wrong with my assumption of the 

GPIO port output impedance (the datasheet states a high-level output voltage of VDD-0.4V at 8mA, 

which would just be equivalent to 50 ohms)? Or is that happening between the GPIO pin and my 

cable feed network (there’s about 20mm of PCB track inbetween)? Maybe it is just the behavior of 

that GPIO itself. Anyway, I decided to use 50 ohm feed because that ringing looks better and 479ps 

rise time is still quite nice. 

Now I could start digging into the input stage, up to the point where the signal is fed into the ADCs. 

The reverse-engineered schematic http://elinux.org/images/c/c6/Das_oszi_schematic.pdf helped a 

lot here. 

My scope came shipped with the following component values (I only list the designators for channel 

A here and in the following for simplicity): 

R01_2  = 30R 

Q01_1  = MMBF4392 

Q01_2   = MMBTH10LT1 

RX1_1..4 = 280R 

RA01_1/2 = 22R 

U01_3  = LMH6522 

I did some measurements and simulations, and after some experimenting I came to the following set 

of modifications. In some cases they contradict tinhead’s approach in 

http://www.mikrocontroller.net/attachment/173049/mod_input_circuit.pdf, and in each case I’ll 

explain why. 

1. R01_2 

The first part of the input stage – from the BNC connector to the JFET – actually took me the 

most time to solve. The situation at the beginning was that, even though my test signal would be 

perfectly fed in at 50 ohms without distortion - when it arrived at the JFET it already had 

significant ringing. The problem with this part is that the signal runs through quite long PCB 

traces (creating inductance), including two (non-RF rated) mechanical relay contacts. They could 

have done a lot better here, but I also didn’t want to sacrifice functionality like 1:10 attenuation 

by just creating a minimal-length bypass. With the help of a minivan I could measure 14pF 



 

 

capacitance (final circuit with MMBJF309) and 48nH inductance. This value is surprisingly high, I 

guess the relay accounts for a great deal of that. I used LTSpice then to find the correct 

compensation with maximally flat response and at the same time minimal bandwidth reduction. 

The result is shown here (R01_2, Cac, Rac): 

 
Besides changing to R01_2=10R, I added a Cac=22pF capacitor in series with a Rac=82R resistor. 

The one end goes to the C01_5 (signal “Tp101”), the other to the closest available GND. Here’s a 

picture of that mod: 

 
 

2. Q01_1 

Not too bad, but this is not a dedicated low-capacitance RF JFET. Replaced with 

Q01_1=MMBFJ309 (Ciss ~ 8pF). Thanks to Fixup for that tip. 

 

3. Q01_3, Q01_4 

These ones form current sources for the amplifiers. The better the responses of them, the more 

constant the currents are, and the more linear the amplifiers will be. BC846B’s are very cheap, 

but simply not RF. Replaced both by Q01_3=Q01_4=MMBTH10LT1. 

P.S. I also tried a MMBFJ309 based current source. That was a bit faster, but didn’t justify the 

additional effort - that JFET cannot directly go on the BC846B land’s, it requires some nasty “free-

air” “single-leg” soldering magic. 



 

 

 

4. R01_25 

I completely fail on this one. Does anybody know why they could have introduced this resistor? Is 

that an attempt for Vbe temperature compensation (what about hfe variation then)? Did they 

want to couple both current sources to improve transient behavior? Changed to R01_25=0R. 

 

5. R01_26 

The new MMBFJ309 JFET has a zero-gate drain current of >=12mA. We must not exceed that 

value, or the gate will eventually become forward biased – and conductive. For 10.8mA nominal 

current, R01_26=120R. 

By the way, R01_27 / R01_29 are fine as they are in my opinion. Of course they limit the 

amplifier’s dynamic range, but they also help the current sources maintain their set points. In no 

way they affect the input stage’s frequency response. 

 

6. R01_27 / R01_29 

Gave it a try and changed to R01_27=R01_29=0R. But can someone help me understanding why 

this is increasing bandwidth (not much, but noticeable)? With the 250R’s still in, the only 

difference should be a different DC operating point for the current source transistors. The 

currents should be even more stable… 

 

7. D01_2 

After my first tests and measurements, I removed it out of suspicion. I will put that back in to see 

if it limits BW where it should not, but properly driven it should not. Listed here for 

completeness: D01_2=dnp. 

 

8. RX1_1..4 

When looking into the LMH6552’s datasheet, I noticed that that amp would produce quite some 

ringing depending on the chosen feedback network (page 10, fig.9). The amp has 1.5GHz 

bandwidth, so there should still be plenty of headroom even when made slower by increasing 

these resistor values. For the following step I also needed to raise its gain from 1 to 2, so 

RX1_3=RX1_4=390R, and RX1_1=RX1_2=180R. Should be 0.1% tolerated parts according to 

LMH6552 datasheet. 

 

9. RA01_1/2 

On its way from the LMH6552 to the ADCs, the signal runs through differential transmission lines. 

But as they are not terminated at the receivers, we can expect reflections going back. This is 

worst for channel B, because the PCB tracks are longer here. 

Even if RA01_1/2 had been chosen to match the transmission line’s wave impedance (which they 

weren’t) and could perfectly dissipate the reflected wave, the LMH6552 would still need to 

provide the current pulses required for that. Yes, it is fast, but it cannot be as fast as a resistor. 

I chose to try it the “right” way and actually terminate all ends. I realized that I cannot actually 

terminate right at the ADC’s inputs, because the scope parallels all four ADCs when it needs 

1Gsps for a single channel, and this would also parallel my terminating resistors. The closest 

possible location is underneath the two relays doing that multiplexing (RL04_1/2). I had to 

carefully scratch off solder resist from the corresponding vias at the board’s underside, and 

solder the resistors right across them. The result looks like this (input stage is to the right): 



 

 

 
 

Finding the correct value that matches the line’s wave impedance was done using 

potentiometers. It came out with something around 65 to 70 ohms. So my choice was 

Rterm1..4=68R, and RA01_1/2=33R. Of course this also introduces 1:2 attenuation, which is why 

I had to raise the LMH6552’s gain in the previous step. All parts should again be 0.1% if possible, 

as that helps in keeping their attenuation closely matched. In 1Gsps mode we need to make sure 

that all ADCs see exactly the same signal. 

 

As the trigger stage also receives a copy of the signal, we need to terminate them with 

Rterm5/6=68R (0.1%) as well. This mod is fortunately much easier as shown here: 

 
 

Remaining work: 

- need to adjust compensation of internal 1:10 input attenuator 

 

The reward of all this hassle is a USD300 budget scope with 1.5ns rise time and 250MHz analog 

bandwidth, and - for me even more important - with close-to-Gaussian response: seeing overshoot 

only if that is in the signal. 

 

I hope you enjoy the following series of pictures, taken with this device and my 500ps pulse 

generator.  

 



 

 

Direct connection with termination at scope input (BNC-t + 50 ohm stub): 

     
 

Tektronix P6205 active probe (750MHz / 2pF) (used @ ebay ~ 50USD), 50 ohm termination at scope 

input (BNC-t + 50 ohm stub): 

     

Not 100% flat, but the test signal isn’t either. It actually looks pretty similar to what the LeCroy sees. 

By the way, I did pay attention to use low-impedance probe grounding, similar to what is shown 

here. Otherwise the result would have been waaaay worse. 

 

 

  



 

 

Last but not least, I used the miniVNA to make a frequency response measurement. The problem 

with that device is that its output stage is not very stable in amplitude, nor in impedance. But I think 

it is enough to judge the achieved bandwith of this mod; I made reference measurements with the 

LeCroy to at least compensate for the amplitude error. The next picture shows two measurements 

from the Hantek: one with realtime acquisition mode (“RT”), the other with equivalent time (“ET”). 

The bandwidth limitation effect caused by the post-filter can easily be seen. 
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