Usi ng CORDI C net hods for conputation in micro-controllers

I nt roducti on

Many times in designing software for a mcro-controller system it is necessary
to make cal cul ations that involve elenentary functions such as Sin(x), Cos(x)
or Logio(x). For exanple, nmany tenperature sensors are logarithnmic in nature
That is the sensor output voltage may increase by x volts each time the
tenperature doubles. In this case converting the sensor voltage to a |inear

tenperature scale requires the cal culation of 2%

Cal cul ation of an elenmentary function is often tinmes done by using a | ook-up
table. Look-up tables are by far the fastest way to make the conputation,
however the precision of the result is directly related to size of the | ook-up
table. Hi gh precision |ook-up tables require a |arge amount of non-volatile
menory to store the table. If the table size is reduced to save nenory,

precision will also be reduced.

Power series may al so be used to cal culate these sanme functions with out using
| ook-up tables, however these cal cul ati ons have the di sadvantage of being sl ow
to converge to a desired precision. In effect, the | ook-up table size is being

traded at the expense of conputation tine.

CORDI C net hods of conputation represent a conprom se between the two net hods
descri bed above. The CORDI C techni que uses a one-bit-at-a-tinme approach to nake
conputations to an arbitrary precision. In the process, relatively small | ook-
up tables are used for constants necessary for the algorithm Typically these
tables require only one to two entries per bit of precision. CORD C al gorithms

al so use only right shifts and additions, mninizing the conputation tine.
Fundanental s of CORDI C al gorithms

All CORDIC algorithnms are based on the fact that any nunber nay be represented
by an appropriate alternating series. For exanple an approxi mate value for e

may be represented as foll ows:

e=3-03+0.02- 0.002 + 0.0003 = 2.7183

Notice that in this case each digit gives an additional power of ten resolution
to the approxination of the value for e. Also if the series is truncated to a
certain nunber of terms, the resulting value will be the sane as the val ue
obt ai ned by rounding the true value of e to that nunber of digits. In genera

the series obtained for a value by this nethod does not always alternate

regularly. The series for mis an exanpl e:
m=3+ 0.1+ 0.04 + 0.002 - 0.0004 -0.00001 = 3.14159

It may al so be shown that the series for e is also irregular if the expansion

is continued for a few additional terms.

The CORDIC techni que uses a sinmlar nethod of conputation. A value to be
conmput ed, such as SIN(x) or Logio(x), is considered to be a truncated series in

the foll ow ng format
B .
z = Logi(x) = =§:&[Iﬂ
i=1

In this case the values for a are either 0 or 1 and represent bits in the

bi nary representation of z. The value for z is deternined one bit at a tine by
| ooki ng at the previously calculated value for z, which is correct to i-1 bits.
If this estimate of z is too low, we correct the current estimate by adding a
correction factor, obtained froma |ook-up table, to the current value of z. If
the current estimate of z is too high, we subtract a correction factor, also
fromthe | ook-up table. Depending on whether we add or subtract fromthe
current value of z, the i'" bit will be set to the correct value of 0 or 1. The
less significant bits fromi+1l to B may change during this process because the

estimate for z is only accurate to i bits.

Because of the trigononetric relationship between the SIN(x) and COS(x)
functions, it is often possible to calculate both of these val ues

simul taneously. If the COS(x) is considered as a projection onto the x axis and
SIN(x) as a projection onto the y axis, it is seen that the iteration process
amounts to the rotation of an initial vector. It is fromthis vector rotation
that the CORDIC algorithmderives its nane: COordinate Rotation Digita

Conmput er.

Al gorithns for Miultiplication and Division

A CORDI C algorithmfor Miltiplication may be derived by using a series
representation for x as foll ows:

z=x*y

= yDZB:ai 2"

i=1

=ZB:y*ai*2_i
=

=Y 8% (y*2")

Fromthis it is seen that z is conposed of shifted versions of y. The unknown
coefficients, a, nay be found by driving x to zero one bit at atine. If the
it"h bit of x is non-zero, y; is right shifted by i bits and added to the current
value of z. The i'" bit is then removed fromx by subtracting 27" fromx. If x is
negative, the i'" bit in the twos conplenent format woul d be renoved by adding
27", In either case, when x has been driven to zero all bits have been exam ned

and z contains the signed product of x and y correct to B bits.

This algorithmis simlar to the standard shift and add nultiplication

al gorithm except for two inportant features. First, arithnmetic right shifts are
used instead of left shifts, allow ng signed nunbers to be used. Secondly,
conputing the product to B bits with the CORDIC algorithmis equivalent to
roundi ng the result of the standard algorithmto the nost significant B bits.

The final algorithmis as follows:

mul tiply(x,y){
for (i=1; i=<R; i++){
if (x >0)

X =X - 2("-1)

Z =z + y*27(-i)
el se
X =X + 2("-1)

Z =z - y*27(-i)

return(z)

This cal cul ation assumes that both x and y are fractional ranging from-1 to 1.
The algorithmis valid for other ranges as long as the decimal point is allowed
to float. Wth a few extensions, this algorithmwould work well with floating
poi nt dat a.

A CORDIC division algorithmis based on re-witing the equation z = x/y into
the formx - y*z = 0. If z is expanded into its series representation, The

second version of the equation takes the followi ng form

x—yDZB:ai @27 =0

i=1

Wi ch, after some manipul ation, yields:

X_ZB:ai *(y*27)=0

i=1

This final formof the equation shows that the quotient z nay be estimated one
bit at a time by driving x to zero using right shifted versions of y. If the
current residual is positive, the it" bit in z is set. Likewise if the residual
is negative the i'" bit in z is cleared.

di vide(x, y){
for (i=1; i=<R i++){
if (x >0)
X =X - y*2("-i);
zZ =z + 2MN(-i);
el se
X = X + y*2(™-i);

z =z - 2M(-i);
}

return(z)

The convergence of this division algorithmis a bit trickier than the
nmultiplication algorithm Wile x may be either positive or negative, the value
for y is assumed to be positive. As a result, the division algorithmis only
valid in two quadrants. Also, if the initial value for y is less than the
initial value for x it will be inpossible to drive the residual to zero. This
means that initial y value nust always be greater than x, resulting in donain
of 0 <z < 1. The algorithmmay be nodified as follows for four quadrant
division with -1 <z <1

di vide_4q(x,y){
for (i=1;, i=<R i++){
if (x > 0)
if (y >0)
X = X - y*2(™-i);
z + 27(-1);

N
1

X = X + y*2("-i);

z =z - 2M(-i);
el se
if (y >0)
X = X + y*2(™-i);
z =z - 2M(-i);
el se
X =X - y*2("-i);
zZ =z + 2MN(-i);
}
return(z)

As with all division algorithns, the case where y is zero should be trapped as
an exception. Once again, a few extensions would allow this algorithmto work

well with floating point data.

Al gorithnms for Logix) and 10*

To calculate the base 10 I ogarithmof a value x, it is convient to use the

followi ng identity:

B B
Log,, (x* rl b,) = Log,,(X) +Z Log,, (b))
1= i=1

If the b; are chosen such that x*b;*b,*b;...*bg = 1, we see that the |left hand
side reduces to Logi (1) which is 0. Wth these choices for b;, we are left with

the follow ng equation for Logio(X):

Log,, (X) = _z Log,, (b;)

i=1

Since quantities for Logio(b;) may be stored in a | ook-up table, the base 10

| ogarithm of x may be cal cul ated by suming selected entries fromthe table.

The trick nowis to choose the correct b; such that we drive the product of x
and all of the b; to 1. This may be acconplished by exami ning the current
product. |If the current product is less than 1, we choose co-efficient b; such
that b; is greater than 1. On the other hand, if the current product is greater
than 1 the coefficient should be chosen such that its value is |ess than one.
An additional constraint is that the b; should be chosen such that

mul tiplication by any of the b; is acconplished by a shift and add operati on.
Two coefficients which have the desired properties are:

bi 1+2_i if X*bl*bz...bi_l <1

and
bi = 1'2_i if X*bl*bZ---bi»l > 1
In choosing these values for the b;, it is seen that the limt as i approaches

infinity of the product of x and the b;'s will be 1 as long as x is in the

range:

(ﬂ 1+27)" <x< (” a-2")"

This represents the range of convergence for this al gorithmwhich nay be

cal cul ated as approxi mately:
0.4194 < x < 3.4627
If it is wished to calculate logarithns outside of this range, the input nust

be either pre-scaled or the range of the i val ues nust be changed. The fina

al gori t hm becones:

| 0g10(x){
z = 0;
for (i=1;i=<B;i++){
if (x > 1)

X = X - X*27N(-i);

z =z - 10gl0(1-27(-i));

el se
X = X + X*27(-i);
z =z - 1oglo(1+27(-i));
}
return(z)

To calculate the inverse of this algorithm or 10% it is only necessary to
nodi fy the existing algorithmsuch that x is driven to zero while z is
multiplied by the successive coefficients, b;. This follows fromthe fact that
if z = 10" then:

7= bi * 1 Q(*~L0d10 (B1))

As the exponent is driven to zero, z is seen to approach the product of all the

B
successive coefficients, r] b,. The final algorithm becones:
=

10_to_power (x){

z =1,
for (i=1;i=<B; i++){
if (x >0)
X =X - loglo(1+2~(-i));
Z =z + z*¥27(-i);
el se
X =X - logl0o(1-27(-i));
Z =z - z*¥27N(-1);
}
return(z)

The range of convergence for this algorithmis determined by the range for
which x can be driven to zero. By inspection of the algorithmthis is

determ ned to be:

B B
D Log,(1-27) <x<) Log,(1+27)

i=1 i=1

or x islimted to the range —0.5393< x < 0.3772. As in the previous al gorithm
the range nmy be extended by scaling the initial value of z by (1+2') or (1-2').

The Circular Functions SIN(x) and COS(x)

It is well known that the rotation matrix

R(a) = {

cosa -sSna
sina cosa

X
. 0
will rotate a vector, { }, counter-clockwi se by a radians in two di nensi ona
0

space. If this rotation matrix is applied to the initial vector {0} the result

Cosa
will be a vector with co-ordi nates of {_ }. It is easily seen that the CORDIC
Sina

nmet hod coul d be applied to calculate the functions Sin(x) and Cos(x) by
appl yi ng successive rotations to the initial vector {0} and gradual ly driving

the angle a to zero.

A problem arises when an attenpt is made to set up the rotation matrix such

that all rotations are acconplished by right shifts. Notice that if a is chosen
such that cos(a;) = 2!, the sin(a;) is not necessarily a power of 2. It is not
possi bl e to choose the successive angle rotations, a, such that both the
cos(a;) and sin(a;) anpbunt to right shifts.

In working around this problem it is possible to nodify the rotation matrix by

bringing a cos(a) termout of the matrix. Then

R(@,) = cos(a)*{ 1 tnts)}

tan(a,) 1

Now the rotation angles a; may be chosen such that tan(a) = 2" or rather a =

tan'}(2'). The result is the final increnental rotation matrix:

R@,) = cos(a,)* Ll_i 2 }

Wher e:
a = tan'}(2)

Wth these choices for the a;, rotation is acconplished using only right shifts.
If the cos(a;) termis neglected in order to avoid the nmultiplication
operations, the length of the initial vector is increased each tine it is
rotated by using right shifts only. This increase may be conpensated for by
decreasing the Iength of the vector prior to rotation. Since the algorithmwl|I

use B successive rotations, all rotations nmay be conpensated for initially

usi ng one col lective length correction factor

grouping all of the a; terns together as foll ows:

C= (rBJ cos(tan (27)™

C. The value of Cis found by

For B = 16 bits, C may be cal cul ated as approximately 0.6072. The fina

algorithms follow Notice that x and y represent vector coordinates,

now t he angl e register

sin(z){
X = 1.6468
y =0;
for (i=0;
if (z >
X =
y =
z =
el se
X =
y =
z =
}
return(y)
}
cos(z){
x = 1.6468
y = 0;
for (i=0;
if (z >
X =
y =
z =
el se
X =

i =<R; i ++){

0)
X -
y +
z -

y*2("-i)
X*2("-1)
arctan(27(-i))

X + y*2("-1)
y - x*27(-i)

+ arctan(2”(-i))
i =<R; i++){

0)

X - y*2("-i)
y o+ x2(nei)

- arctan(2”(-i))
X + y*2("-1)
y - x*27(-i)

while z is

z =z + arctan(2”(-i))

}

return(x)

It nay be determined that the previous two algorithnms will converge as |ong as:
B) B .
- tan(27)<z<) tan(27)
i=0 i=0

or
-1.7433 <z < 1.7433

Since the regi on of convergence includes both the first and third quadrants,

the algorithms will converge for any z such that -W2 < z < W 2.

Mappi ng the CORDIC algorithms to Mcro-Controllers.

The previously discussed al gorithnms show that CORDI C based conputati on nethods

require mnimal hardware features to inplenent. These are:

1) Three registers of length B bits

2) One, two or three Adders/Subtractors
3) Several snall ROM based | ook-up tables
4) One, two or three shift registers

When i npl enmenting CORDIC algorithms on mcro-controllers, itemfour will have
the greatest effect on the overall throughput of the system Miltiplication by
2" requires that the shift register be capable of performing a right shift by i
bits. Most microcontrollers are only capable of right shifting by 1 bit at a
time. Shifting by i bits requires a software loop to repeat this task i tines,
greatly increasing the conputation time. The 8051, 6805, and 68HCl11 are typical
exanpl es of micro controllers which will require software |oops to inplenent
the shifter.

O her mcro-controllers such as the 68HC332, as well as nobst Digital Signa
Processors, will have a feature known as a barrel shifter. This type of shifter
will right shift by i bits in one operation. Typically the shift is also

acconplished in 1 clock cycle.

Anot her possibility for inplenmenting a barrel shifter is to use a multiply

i nstruction that has been optim zed for speed. An exanple of this is the
68HC12, which has a 16 by 16 bit signed nultiply, EMILS, that produces a 32 bit
result in 3 clock cycles. Aright shift by i bits could be acconplished by

mul tiplying by 2" and discarding the lower 16 bits of the result. One

di sadvantage of this schene is that the data is restricted to 16 bits. O her

word | engths woul d require additional cycles.

Once the processor and shift register style is chosen, the next choice to be
made invol ves the data format. Since standard C does not provide a fixed-point
data type, the designer has a |ot of freedomin choosing the fornat of the
data. It is a good idea, however, to choose a format that fits into 16 or 32
bit words. Even though nbst CORDIC routines are witten in assenbly | anguage
for speed, 16 or 32 bit words allow data to be passed as either "int' or 'long
int' data types within higher level C subroutines. The format used in the

foll owi ng exanples uses a 16 bit format with 4 bits to the left of the deci mal

point and 12 fractional bits to the right, which is often referred to as 4.12

format. This allows constants such as 1 e, and \ﬁito be easily represented
wi t hout a noving decinal point. The 12 bits of fractional data amount to
approximately 3.5 digits of decimal accuracy. The range of this format is
calculated as -8 < x < 7.9997.

The constants used are found by nultiplying by 2 (4096), rounding, and

converting to hexadeci mal. Take the constant e for exanple:
4096*e = 11134.08 ~ 11134 = 0x267e

Al of the data tables necessary for CORDIC conmputing may be built up this way

using a cal cul ator.

Finally with the data fornmat and constant tables established, coding of the
al gorithnms proceeds in a straightforward manner. The fol |l owi ng exanpl es
denonstrate CORDI C al gorithms inplenented on the 8051, 68HCI I and 68332 mi cro-

controllers. These code fragnents were assenbled with the I NTEL MCS-51 Macr o-
Assenbl er and Motorol a Freeware Assenbl ers and tested on hardware devel oprment

syst ens.

Concl usi on

CORDI C al gorithnms have been around for sone tine. Volder’s original paper
descri bing the CORDIC technique for calculating trigonometric functions
appeared in the 1959 | RE transactions. However, the reasons for using CORDIC

al gorithnms have not changed. The algorithns are efficient in terns of both
conputation tine and hardware resources. In nost mcro-controller systens,
especially those perform ng control functions, these resources are nornmally
already at a premium Using CORDIC algorithns nay all ow a single chip solution
where al gorithms using the | ook-up table method may require a | arge ROM size or
where power series calculations require a separate co-processor because of the
conputation time required.

The al gorithms presented have been selected to represent a small core of
functions commonly required in mcro-controller systens which could be

di scussed in detail. For each algorithmin this core, three areas have been
covered: theory of operation, determ ning the range of convergence for the
algorithmand finally inplenentation of the algorithmon a typical mcro-
controller. Using these selected algorithns as a starting point, it is possible
to develop libraries containing nany simlar elenentary functions. Anong those

possible with only minor nodifications to the algorithns presented are: |nx, e*

tan1x, 1/X24-y2, and € ®. Anong the references, Jarvis gives an excellent table

of the functions possible using CORDI C routines.

Listing 1 — 10 to the power x algorithminplenented on the 8051

; Power 10x. a51 ;

; Cal culation of 10 to the power of x for the 8051 using CORD C nethods. ;
; on entry x1 contains the high byte of the 16 bit input and x0 contains ;
; the I ow byte. On exit z1:z0 contains z = 10"x. Al data is in 4.12 ;
; format . ;

; Aut hor: M ke Pashea 3-13-2000
Conmment: This routine requires approxinmately 1.2n5 using a 12Whz

crystal (1161 clock cycles). It will converge for
; -0.5393 < x < 0.3772.

x1 dat a 10h ; X data register
x0 dat a 11h
z1 dat a 12h ; z data register
z0 dat a 13h
zsl dat a 14h ; z shift register
zs0 dat a 15h
power 10x: nov z1, #10h ; [2] z =1.0
nov z0, #00 ;o [2]
nov ro, #1 ;[1]
nov dptr, #pow 10t ab ;o [2]
power 10x1: nov zsl,z1 ; [2] Put z in the shift register.
nov zs0, z0 v [2]
nov a, ro ; [1] Initialize the | oop counter
nov ri,a ;[1]
power 10x2: nov a, zsl ; [1] High byte in the accunul ator.
nov c,acc.7 ; [1] Move sign bit into carry and
rrc a ; [1] arithnetically shift right.
nov zsl, a ; [1] Update the high byte.
nov a, zs0 ; [1] Low byte in the accunul ator.
rrc a ; [1] Now shift the | ow byte right
nov zs0, a ; [1] and update.
dj nz ri, power 10x2 ; [2] Loop for the correct nunber
nov a, x1 ; [1] is x >0 7?
ib acc. 7, power 10x3 ;o [2]
DV X a, @lpt r i [2] yes, x = x - log(1+27(-i))
i nc dptr v [1]
add a, x0 v [1]
nov x0, a ;[1]
novx a, @ptr ; [2]
i nc dptr v [1]
addc a, x1 v [1]
nov x1, a ;[1]
nov a, z0 [z =z * (1 + 27 (-1))
add a, zs0 ;[1]
nov z0, a v [1]
nov a, z1 ; [1]
addc a, zsl ;[1]
nov z1,a ; (1]
i nc dptr v [1]
i nc dptr v [1]
sj nmp power 10x4 7 [2]
power 10x3: i nc dptr 7 [1] no, x = x - log(l - 27(-i))
i nc dptr ;[1]
NoV X a, @lptr 7 [2]
inc dptr v [1]

add a, x0 v [1]

mov x0, a v [1]

NoV X a, @lptr ;o [2]
inc dptr v [1]
addc a, x1 v [1]
nov x1, a ;[1]
clr c ;[1]
nov a, z0 v [1] z =z * (1 - 27 (-1))
subb a, zs0 v [1]
nov z0, a v [1]
nov a, z1 ;[1]
subb a, zsl ;[1]
nov z1,a ; [1]
power 10x4: inc ro ; [1] increnment |oop counter
cj ne ro, #13, power 10x1 ; [2] have we finished 12 bits?
ret ; [2] yes, return z

; The Romtable for -l1ogl0O(1+2~(-i)) and -log(1+2”(-i)). The val ues are ;
; interlaced and stored with the lower byte first. This format speeds up ;
; the algorithmfor the 8051 processor. ;

db 073h, Ofeh, 000h, 002h
db 02eh, Offh, Oeeh, 000h
db 094h, Offh, 073h, 000h
db 0c9h, Offh, 038h, 000h
db Oe4h, Offh, 0lch, 000h
db 0f 2h, Offh, 00eh, 000h
db 0f 9h, Offh, 007h, 000h
db Of ch, Offh, 004h, 000h
db Of eh, Offh, 002h, 000h
db offh, Offh, 001h, 000h
db 000h, 000h, 000h, 000h
end

Listing 2 — Base 10 Logarithm I nplemented on the 68HCl1

L R R R I I I R I I R I R I I R

LOGL0. ASM

Cal cul ation of 10gl0(x) for the 68HClL1 using CORDI C nmet hods. On entry

X is on the top of the stack. On exit z = 10gl0(x) is at the top of the
stack. All data is 16 bits long using 4.12 fornat.

The stack frame is used as foll ows:

==> | - shift register counter
==> | - outer |oop counter

L S S T S
L S R T S R

01
1

X
X

==> z - output

==> Xxs - X shift register
==> return address

==> Xx - input

X X X X

oo~ N

*
*
*
*
*
Comment: This routine is neant to reflect the structure of the algorithm *
wi t hout being optimzed for speed. As witten the algorithm *

requires a maxi num of 2836 cl ock cycles or approximately 1.4nS. *

The execution tine could be greatly inproved by using internal *

menory to hold vari abl es. *

*

*

*

*

E O T S I T T I R

Aut hor: M ke Pashea 3-11-2000

*
khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhkhhhhhhhhhhhhhkhhhkhhhkhhhhhhhhhhhhhkhhhkhkhdkhkhdhkrkkhkrkk rkx*x*

| 0g10 | dy #l 0g10_rom ; Yy points to the ROM table
I dx #0 ;
pshx ; local space for xs
pshx ; local space for z
pshx ; local space for i and j
t sx ; X points to the top of the stack
| daa #1 ; initialize the | oop counter
st aa 1, x ;
l 0og10_1 | dd 8, X ; load the shift register with x
std 4, x ;
| daa 1, x ;
st aa 0, x ; shift counter equal to | oop counter
| 0g10_2 asr 4, X ; performone arithmetic shift right
ror 5, X ;
dec 0, x ;
bne | 0g10_2 ; repeat until all shifts are conplete
| 0g10_3 | dd 8, X ; 1s x greater than 1 ?
subd #4096 ;
bl e | og10_4 ; no, x should be increased
| dd 8, X ; yes, x should be decreased
subd 4, X ;X = X - X*F2M(-0)
std 8, X ;
| dd 2, X 7 Z =z + -10gl0(1-27(-i))
addd 0,y ;
std 2, x ;
bra | 0g10_5 ;
| 0og10_4 | dd 8, X ;X = X o+ XF2M(-0)
addd 4, X ;
std 8, x ;
| dd 2, X ;o Z =2z - log(1l+2n(-1))
subd 2,y ;
std 2, X ;
| 0g10_5 i ny ; increment the ROM pointer so that it
i ny ; points to the next set of entries in
i ny ; the ROM table.
iny ;
i nc 1, x ;
| da #12 ; increment | oop counter
cnpa 1, x ; have we cal cul ated each bit?
bge l 0ogl0_1 ; no, loop until we are done
| dd 2, X ; yes, replace x with z
std 8, X ;

pul x ; remove | ocal variables from stack

pul x
pul x
rts

; return z =

| 0g10(x)

L R R R O I R I I I I R R

* X F

*

EE R R I R R I R I S I R I S I I I R I R I S O I R

 0g10_rom

The ROM tabl e for

[0g10(1-27(-i)) and log(1+27(-i)).

The val ues are

interlaced and only the magnitude is stored. The software either will
add the positive values and subtract the negative ones.

fdb
fdb
fdb
fdb
fdb
fdb
fdb
fdb
fdb
fdb
fdb
fdb

$04d1, $02d1
$0200, $018d
$00ee, $00d2
$0073, $006¢C
$0038, $0037
$001c, $001c
$000e, $000e
$0007, $0007
$0004, $0004
$0002, $0002
$0001, $0001
$0000, $00000J

Listing 3 — Sin(z) and Cos(z) algorithns inplenmented on a 68000 or 68332

EE R R R I I R I I I R I R I S I I R I R I S O R I

the COS(x)
All

Conput ation of SIN(z) and COS(z) using CORDI C nethods for the
On entry the angle z,

in radi ans
is at the top

data in this exanple

LR R R R R R I R I R R I I I R R I I S O I R R I I S S R

points to the ROMtabl e

cont ai ns
contai ns x
contains y

the angle, z

cont ai ns

t he | oop index

*

* S| NCCS. S -

* 68000 or 68HC332 processors.

* is on the top of the stack. On exit,

* of the stack followed by SIN(x).

* uses 32 bit words in 8.24 fornmat.

*

* Author: M ke Pashea 3-14-200
equ 10187768

si ncos nove. | #at ant ab, a0 ;. A0
nove. | 4(sp), d4 ; D4
nove. | #C, dO ; DO
nove. | #0, d2 ;. D2
nove. b #0, d5 ; D5

si ncos1 nove. | do, d1 D1
nove. | d2, d3 D3
asr. | d5, d1 xsh
asr. | d5, d3 ysh
cnpi . | #0, d4 i f
bl e si ncos?2
sub. | d3, do X
add. | di, d2 y
sub. | (a0), d4 z
bra si ncos3 els

is the x shift register
is the y shift register
ift = x >>i

ift =y >>i

(z > 0)

= Xx - yshift

=y + xshift

=2z - ai

e

*
*
*
*
*
*

L S S T S

si ncos?2

si ncos3

add. |
sub. |
add. |
addg.

addg. b
cnpi. b

bl e
nove.
nove.
nove.
nove.
rts

d3, do
di, d2
(a0), d4
#4, a0
#1, d5
#24, d5
si ncosl
(sp)+,dl
d2, (sp)
do, - (sp)
di, - (sp)

X = X + yshift
y =y - xshift
z =2z + ai

i ncrenent ROM poi nter

i ncrenment i ndex

isi <=247

if not loop until finished
save the return address
put sin(z) on the stack
put cos(z) on the stack
restore the return address
and return

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhkhhhhhhkhdhhhhhhhhhkhhhhhhhhhhhhhhhhhhhkhkhhkhddkhrkhkrkk krkkx**x

*

* The ROM table for arctan(2”(-i)).

*

All

constants are in 8.24 formmt.

*

*

*

khkhkkhkhkhkhhhhkhhhkhhhhhhhhhhhhhhhhhdhhhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhkhrdkhkrkkhkrkk krk*x**x

at ant ab

dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |
dc. |

13176795
7778716
4110059
2086331
1047214

524117
262123
131069
65536
32768
16384
8192
4096
2048
1024
512
256
128

64

32

16

=N~

Ref er ences

1. Volder, Jack E., “The CORDI C Trignonmetric Conputing Techni que”, |IRE
Transactions El ectronic Computers, vol. EC-8, pp. 330-334, Septenber
1959.

2. Specker W H., “A dass of Algorithns for Ln x, Exp x, Sin x, Cos X,
Tan!x and Cot x”, |EEE Transactions El ectronic Conputers, vol. EC 14, pp.
85-86, 1965.

3. Walther, J. S, “AUnified AlgorithmFor Elenmentary Functions”, 1971
Proceedi ngs of the Joint Spring Conputer Conference, pp. 379-385, 1971.

4, Jarvis, Pitts, “Inplenenting CORDIC Al gorithms”, Dr. Dobb’s Journal,
#169°, pp. 152-156, Cctober 1990.

