Basteltagebuch

Präzise Frequenzmessung mit dem VNWA

Allan-Varianz Frequenzmessung Darstellung der Messwerte

in Zusammenarbeit mit Kurt OZ7OU

Version 15c

Jörn Bartels 49088 Osnabrück <u>dk7jb@yahoo.de</u> bald: mail@dk7jb.de http://www.bartelsos.de/dk7jb.php

14. Dezember 2014

Inhaltsverzeichnis

1	V	'orwort	4
2	R	ichtige Beschaltung und Einstellungen	4
3	٨	loise Floor Test	5
4	A	uswertung der Messergebnisse	9
4	.1	Die Darstellung der Allan Deviation über Excel	9
4	.2 4.2.:	Auswertung der Ergebnisse mit dem Programm Plotter von Ulrich Bangert 1 Rechnet die VNWA-Software richtig?	10 11
4	.3	Rauschfloor Messung mit Sinus-Signalen Messungen an einem 10 MHz OCXO Morion MV89A	12
4	.4	Rauschfloor Messung bei 12 MHz Messung mit dem internen TCXO des VNWA	13
5	V	erschieden Messungen von Kurt Poulsen OZ7OU	14
5	.1	Kurt: Test setup for VNWA frequency meter performance	14
	5.1.3	1 Setup 1	16
	5.1.2	2 Setup 2	17
	5.1.3	3 Setup 3	18
	5.1.4	4 Setup 4	19
	5.1.	5 Setup 5	20
6	V	Veitere Hinweise	21
7	E	mailverkehr zwischen Thomas und mir	24
8	A	nhang	27
8	.1	Sinus-Rechteck-Wandler mit dem NB3H83905C – Wiederverwendung einer Oszillatorschaltung	27
8	.2	Sinus-Rechteck-Wandler mit dem NB3H83905C- eigener Entwurf	29

1 Vorwort

Mit dem VNWA kann man sehr genau Frequenzen vermessen, da extrem genau die Phase gemessen werden kann. Thomas Baier hat hierzu in der Zeitschrift FUNKAMATEUR 5/2013 p.506-508 einen interessanten Artikel beschrieben.

Es ist aber nicht ganz einfach das Optimum aus dem VNWA herauszuholen. Auf der Suche nach den besten Einstellungen haben Kurt Poulsen und ich viele Einstellungen ausprobiert.

Kurt und ich haben uns mit einem Gemisch von Englisch und Deutsch verständigt. Kurt hat auf Englisch geschrieben und ich auf Deutsch. Das hat erstaunlich gut geklappt. Aus diesem Grund findet ihr auch hier Abschnitte in beiden Sprachen. Ich bedanke mich für die gute Zusammenarbeit mit Kurt und Thomas. Solltet ihr irgendwelche Fehler finden, entstammen sie meiner eigenen Feder ;-).

Die Gliederung entnehmt bitte dem Inhaltsverzeichnis. Der Schwerpunkt liegt auf der Noise Floor Messung. Nur wenn dieser Test sehr gute Ergebnisse liefert, sind rauscharme und präzise Messungen möglich. Wenn man aber wirklich an der Grasnarbe messen möchte – also mit sehr hoher Auflösung, wird es schwierig. Wenn sehr genaue Frequenzmessungen durchgeführt werden sollen, muss nach einer Änderung im Hardware- oder Software-Setup ein Noise Floor Test durchgeführt werden um ein Gefühl für die Grenzen zu bekommen. Als Grundeinstellung empfehlen Kurt und ich euch die Werte, die wir in diesem Dokument vorstellen.

Alle Hinweise in dieser Baumappe sind sorgfältig zusammengetragen worden. Natürlich können sich trotzdem Fehler eingeschlichen haben und als kundige Bastler seid ihr selbstverständlich für euer Handeln selbst verantwortlich.

2 Richtige Beschaltung und Einstellungen

Für eine Frequenzmessung benötigt der VNWA3+ zwei Oszillatoren. Der Referenzoszillator wird am externen DDS-Taktsignal-Eingang des VNWA eingespeist. Der zu vermessende Oszillator wird am RX-Eingang des VNWA eingespeist.

Will man jedoch OCXOs vermessen, müssen die Pegel und die Signalformen stimmen. Dieses Dokument soll euch dabei helfen und mit vielen Beispielmessungen Hinweise auf zu erwartende Möglichkeiten und Grenzen liefern.

Das Referenzsignal am Clock-Eingang der DDS

Laut Thomas verträgt der VNWA am externen Clock-Eingang bis zu +30dBm (!) da das Signal über mehrere Kilo-Ohm Widerstände und einen 5pF Kondensator zum Takteingang des DDS geleitet wird. Sinnvoll ist ein Pegel im Bereich +6 dBm bis +10dBm. Für besonders genaue Messungen hat sich bei uns ein Pegel von +16 dBm bewährt.

Die Rauschgrenze des VNWA kann deutlich gesenkt werden, wenn ein Rechtecksignal verwendet wird. Weiter hinten in diesem Dokument wird eine einfache und sehr rauscharme Schaltung beschrieben.

Das Messsignal am RX-Port des VNWA

Der RX-Port des VNWA ist auf einen Maximalpegel von -17dBm ausgelegt. Für unsere Zwecke wird mit maximalem Pegel gearbeitet, der bis zu -16 dBm bis -13,5 dBm betragen kann, ohne dass sich Übersteuerungseffekt bemerkbar machen. Auch hier sollte für ein minimales Rauschen das Signal eine Rechteckform aufweisen. Am einfachsten lässt sich der richtige Pegel mit Dämpfungsgliedern einstellen. Testet den Maximalpegel für euer Gerät selbst aus. Wenn die Messwerte wieder schlechter werden, müsst ihr den Pegel wieder verringern. Eine sorgfältige Messung der Pegel ist Voraussetzung.

Noise Floor Test 3

In diesem Kapitel beschreiben wir, wie ein Noise Floor Test mit dem VNWA durchgeführt wird.

Wir benötigen einen VNWA3E mit der Softwareversion 36.4.6 (oder höher), einen 10 MHz OCXO Morion MV89A (min. 24h eingelaufen), einen Sinus-Rechteckwandler mit dem IC NB3H83905C (s. Anhang), ein T-Stück und Dämpfungsglieder. Als Kabel empfehle ich möglichst kurze Semirigid Kabel.

Das Sinus-Signal geht vom OCXO Morion MV89A (OCXO_out: 6,8 dBm) über ein 3dB-Pad zum Sinus-Rechteckwandler NB3H (Achtung: Am Eingang des NB3H wird nicht mit 50 Ohm abgeschlossen, damit wir höhere Pegel haben. Die Fehlanpassung spielt keine Rolle.)

Am Ausgang des NB3H wird an 50 Ohm ein Pegel von +16,3 dBm gemessen. Am Ausgang des NB3H ist kein 50 Ohm Widerstand in Reihe geschaltet. Auch hier wird diese Fehlanpassung toleriert. Mir ist ein höherer Pegel wichtiger.

Sinus NB3H83905C Rechteck T-Stück 30dB-Pad zum RX-Eingang des VNWA.

Über ein T-Stück geht es direkt zum VNWA DDS-Clock. Vom T-Stück geht es auch über ein 30 NOV 2014 Bernsteinzimmer von Eric und Joern

> 6.79 dBr 20dBe

> > -20dBi

MKR 10.05 MHz

OCXO-out:

Nur zur Dokumentation habe ich den Ausgang des OCXO vermessen. An 50 Ohm habe ich einen Pegel von 6,8 dBm vermessen.

Wenn man den ganzen Ausbau durchrechnet, kommt man am RX-Eingang des VNWA auf einen leicht abweichenden Pegel. Als Grund vermute ich die Fehlanpassung des Sinus/Rechteckwandlers, die hier aber keine Rolle spielt.

NB3H-Ausgang:

RES BM 300 kHz

2**0:**52:46

PEAK LOG 10 dB/

SC FC

CORF

START 4.00 MHZ

REF 20.0 dBr

MARKER

10.05 MHz 6.79 dBm

AT 30 dE

drub h

Hier wird am Ausgang des NB3H83905C gemessen. Dieser Pegel kann nur erreicht werden, da kein 50 Ohm

And

UBM 100 kHz

had als Ante

STOP 30.00 MH

SWP 20.0 Msec

Hier wird direkt nach den Dämpfungsgliedern direkt am RX-Eingang des VNWA gemessen.

Für einen ersten Test wählt bitte die von mir gewählten Einstellungen! Andere Einstellungen könnt ihr später immer noch wählen ;-)

PC and Instrument Handy	uara Balatad Eatur		~
USB Settings Audio Settings	Audio Level LAux Audio Level Linetra	ment Settings Miss. Settings	
150 Settings Produce countings	Addio Level Adx. Addio Level Insid	inenciseangs Misc. Seangs	
Audio Capture Device	Ţ	Misc Audio Settings Audio Buffer Length in Samples	3000
	ADC Resolution C 8 Bit C 16 Bit C 24 Bit	Samples / IF Period 10 × # Presamples 3 # Bastemples 3	4 => IF = 1200.15 Hz => Minimum Sampling Time = 0.96 ms
Test Audio	48000 Hz	Calibrate Sample Rate	
Max=	Min=	Measd. Sample Rate = 48006.1	ignore overload
Auxiliary Audio Capture Dev	ice available	Reference = Left Channel	restart on no sync 💌
Auxiliary Audio Capture Device		Auxiliary Audio Settings	
Mikrofon (11- USB Audio CODE	EC) 🔽	Aux. Audio Channels measu	re THRU
	ADC Resolution	Main Audio Channels measure R	EFLECT
	 16 Bit 24 Bit 	Measd. Sample Rate = 48006.1	
Min=	Max=	Aux. Reference = Right Channel	_
al Sampling Rate = 48006.1 sa	mples/sec		
PC and Instrument USB Settings Audio Set	Hardware Related Setup tings Audio Level Aux. Aud n File Name	io Level 🏾 Instrument Setting	s Misc. Settings
VNWA_Mastercal_001fr	requenz.cal		Browse
Data Logging and User F	Postprocessing Options		
data logging OFF 💽	s*p ▼ Save t	•	
postprocessing OFF	User D	u[
Special Settings		Debug Setti	ngs
🔲 don't autosave instru	ment state on entering setup	🗖 write au	dio data to file
update traces at end	f of sweep only (save CPU ti	me) 🔲 🗖 do not r	ormalize to reference channel
Extend synchronization p	period by 0 secs (default) -	🗌 🗖 deactiva	ate RF DDS
show s	ween statistics	🗖 deactiva	ate LO DDS

Hier wird an den Grundeinstellungen nichts geändert.

Auch hier wird nichts geändert.

Sollte bei sehr vielen Messpunkten der Rechner stark verlangsamt reagieren, sollte folgendes angeklickt werden: "update traces at end of sweep only" Probiert es aber erst ohne diese Spezialeinstellung (Notlösung).

PC and Instrument Hardware Related Setup	<u>×</u>
USB Settings Audio Settings Audio Level Aux. Audio Level Instru	iment Settings Misc. Settings
VNWA Type: S-Parameter Test Set:	S11 = low save profile
VNWA 3	load profile
RFDDS	LO DDS
AD 9859, AD 9951	AD 9859, AD 9951
Clock = 10 x 16 v MHz x external v	Clock = 10 x 16 T MHz external
	=> Clock = 160.00 MHz

Einstellen:

- a) Frequenz vom externen Takt 10MHz
- b) Faktor der DDS-PLL. Bei 10 MHz hat sich der Faktor 16 bewährt. Es muss ein durch 2 teilbarer Takt sein.

slow down LPT (LPT mode only!)

- c) Im VNWA ist ein TCXO verbaut, der normalerweise verdreifacht wird. Hier kann dieser Faktor eingestellt werden. Da wir mit einem externen Takt arbeiten, muss "extern" eingestellt werden. Vergisst man diese, geht nichts kaputt nur der VNWA funktioniert nicht.
- d) Bei der Frequenzmessung spielt der LO-DDS eigentlich keine Rolle. Experimente haben aber gezeigt, dass es doch sinnvoll ist, ihn auf den gleichen Wert zustellen wie beim RD-DDS.
- → Für einen ersten Test bitte diese Einstellungen wählen!

Fil

Unter "Sweep Settings" stellt bitte für den ersten Versuch 1000 Datenpunkte ein. Es können bis zu 65000 Datenpunkte aufgenommen werden. Eine große Anzahl an Punkten ist notwendig, wenn man über einen größeren Zeitraum hinweg messen möchte. Die Warnmeldung, dass die maximale Sweep-Zeit überschritten wird, muss nicht beachtet werden.

	GODAQ -	VECTOR	CLWOIK	Analyze		. e	Joernabarters licenseu to Joerna	Darters	
File	Measure	Settings	Tools	Options	Help				
100µH	Iz/ Precis	ion Freque	ncy Met	Opera	ation Mode	•	 VNWA VNWA, external Bridge 	Ctrl+V Ctrl+E	Ν
100µŀ	Iz/ dl	F =	-	Scree	nsaver	•	VNWA, internal + external Bridge VNWA, RF-IV	Ctrl+R	V
	Source	e = S21	. M	Clear		►	Spectrum Analyzer	Ctrl+A	Г
							Signal Generator	Ctrl+G	
					_	≻	✓ Frequency Meter	Ctrl+M	

Jun kann der Modus "Frequency Meter" aktiviert verden.

Dann müsstet ihr eigentlich dieses Fenster sehen.

Input: Trace 1	×
μHz/Div 💌	Y-Range = 1000 μHz
Reference Level	Reference Position
10000000(µHz 💌	5 Divs
# Y-Divisions	Ref.Line Positions
10	8 Divs
	5 Divs

Wählt bitte die Einstellungen, wie ihr sie auf dem Bild sehen könnt: Center: 10000000 Hz mit Span: 0 Hz

Und für die S21 Kurve muss "Freq" eingestellt werden.

Die Kurven sind auf 1000000000000 uHz (=10MHz) einzustellen mit 100 oder 1000 uHz/Div.

Überprüft nun, ob alle Verbindungen wirklich fest sitzen und startet eine Messung. Den Rechner solltet ihr für die Zeit der Messung für nichts anderes nutzen – sonst kann es Messfehler geben. Solltet ihr irgendwelche Spikes feststellen, habt ihr den Rechner in der Zwischenzeit für andere Sachen genutzt oder die OCXOs hatten nicht genügend Zeit zum Einlaufen. Bei einem meiner OCXOs musste ich sogar 2 Tage warten, bis alle Spikes verschwunden sind.

Startet nun die Messung mit einem "Single Sweep". Die Auswertung wird im folgenden Kapitel beschrieben.

Hier nun nochmals eine Zusammenfassung vom Messsetup

10 MHz Morion wird als Takt und als zu vermessendes Objekt verwendet.

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
data	0.1sec	1000	NB3H	-15dBm	30dB	2x16	extern	
			+16dBm	(über 30dB)				

Bei der Berechnung der Messwerte geht rund die Hälfte der Messdaten "verloren". Aus diesem Grund lohnt es sich immer doppelt so lange zu messen, wie später das Diagramm anzeigen soll.

4 Auswertung der Messergebnisse

In diesem Kapitel möchte ich die verschiedenen Möglichkeiten der Auswertung und Speicherung der Messdaten vorstellen.

Hier nun eine Einstellung, die ihr NICHT vornehmen solltet: Mit der rechten Mausraste kann auf dem angezeigten Feld die Clock-Frequenz nachgestellt werden. Bei einer Präzisionsmessung führt hier eine Änderung der Einstellung zu deutlich höherem Grundrauschen.

4.1 Die Darstellung der Allan Deviation über Excel

Die einfachste Auswertung erfolgt über Excel, da die VNWA-Software die Allan Deviation direkt berechnen aber nicht graphisch darstellen kann. Klickt mit der rechten Maustaste auf die angezeigte Stelle. Durch Anwählen von "Calculate Alla Deviation" wird die Berechnung durchgeführt und die fertige Berechnung/Kurve als *.dat-File abgespeichert. Mit Excel könne diese Werte direkt graphisch

dargestellt werden. Es muss nur auf Dezimalpunkt und Dezimalkomma geachtet werden. Als Trennzeichen ist "Leerzeichen" auszuwählen. Üblicherweise werden bei der Allan Deviatation beide Achsen logarithmisch dargestellt.

Zu diesem Dokument gehört ein ZIP-File, in dem sich die Datei mit den zu diesem Basteltagebuch zugehörigen Messdaten befindet: "Beispiel 01 10MHz 1000pkt allan deviation.dat". So könnt ihr die Darstellung mit Excel ausprobieren.

Beispiel 01 10MHz 1000pkt allan	deviation.dat
1.00000000000000E-0001	3.53030713196880E-0012
2.0000000000000E-0001	2.21023248665703E-0012
3.0000000000000E-0001	1.66025297317582E-0012
4.0000000000000E-0001	1.35926957934666E-0012
5.0000000000000E-0001	1.15614024880471E-0012
6.0000000000000E-0001	9.85165379474026E-0013
7.0000000000000E-0001	8.66632018995044E-0013
8.0000000000000E-0001	7.65586979916569E-0013
9.0000000000000E-0001	6.90642234884567E-0013
1.0000000000000E+0000	6.34379796352532E-0013
1.1000000000000E+0000	5.84612335969468E-0013
1.2000000000000E+0000	5.54487705735154E-0013
1.3000000000000E+0000	5.31133276531943E-0013
Zeit in Sekunden	Wert der Allan Deviatatio

4.2 Auswertung der Ergebnisse mit dem Programm Plotter von Ulrich Bangert

Der verstorbene OM Ulrich Bangert DJ6JB hat ein sehr gutes Programm mit dem Namen "DJ6JB's Plotter 20100308" geschrieben. Mit diesem Programm lassen sich die Messwerte schneller als mit Excel und ansprechender darstellen.

Das Programm findet ihr hier unter "DJ6JB's Plotter 2010-03-08": http://www.bartelsos.de/dk7jb.php/timenuts-genaue-frequenzmessung

DF6JB's Plotter

Bei der Verwendung des Plotter-Programms müssen die Messwerte anders abgespeichert werden!

Als zweiter Graph muss "S21 dF" ausgewählt werden, damit die Messdaten mit der notwendigen Messgenauigkeit gespeichert werden können. Die normale Darstellung "S21 Freq" reicht für eine Berechnung der Allan Deviation nicht aus. Mit "S21 dF" werden nur die Änderungen dargestellt und können im nächsten Schritt gespeichert werden. Wenn man, wie mit dem Pfeil angedeutet, mit der rechten Maustaste "dF" anklickt eröffnet sich das dargestellte Pulldown-Menü. Nun kann mit "Save Display Data to File" der Datensatz als *.dat gespeichert werden.

Die Datei findet ihr untern dem Namen: "Beispiel 02 10MHz 1000pkt dF Display Data.dat"

Nun zu der graphischen
 Darstellung über das
 Plotter-Programm.

Mit "Chart Editor" müssen nur noch beide Achsen auf logarithmisch gestellt werden.

Nun haben wir eine erste Vorstellung vom Rauschgrund des VNWA. Ein Wert für die Allan Deviation von 7*10⁻¹³ bei 1 Sekunde ist ein super Wert. Wer nochmals etwas über die Allan Deviation nachlesen möchte, sollten sich den Artikel von Ulrich Bangert vornehmen: <u>http://www.bartelsos.de/dk7jb.php/timenuts-genaue-frequenzmessung</u>

4.2.1 Rechnet die VNWA-Software richtig?

Um zu überprüfen, ob die ganzen Auswertungen von mir richtig durchgeführt worden sind, habe ich die Berechnungen des VNWA mit den Ergebnissen des Plotter-Programms von Ulrich Bangert graphisch überlagert. Die Kurven liegen deckungsgleich übereinander. Es ist deutlich zu sehen, dass Thomas im VNWA eine "Overlapping Allan Deviation" berechnen lässt. Dass ist sehr gut, da mehr Messwerte für die Berechnung herangezogen werden und die Kurve so aussagekräftiger ist.

4.3 Rauschfloor Messung mit Sinus-Signalen Messungen an einem 10 MHz OCXO Morion MV89A

Erster Test: Morion soll gegen sich selbst gemessen werden um den Rauschfloor des VNWA zu testen.

Der 10MHz Morion MV89A hat einen Pegel von ca. +8 dBm (gemessen an 50 Ohm, Sinus). Über ein T-Stück gehe ich direkt auf den Clock-Eingang des VNWA. Vom T-Stück geht es auch über ein 15dB Dämpfungsglied direkt an den RX-Eingang des VNWA. Der OCXO muss etwas einlaufen, damit er stabil läuft. Am besten mehr als 24h.

PC and Instrument Hardware Related Setup	×
USB Settings Audio Settings Audio Level Aux. Audio Level Instru	iment Settings Misc. Settings
VNWA Type: S-Parameter Test Set:	S11 = low save profile
VNWA 3 💌 none 💌	load profile
RF DDS	LO DDS
AD9859, AD9951 💽 🚽	AD9859, AD9951
Clock = 0.0000000000 x 20 V MHz x external V	Clock = 10.0000000000 x 20 MHz external
=> Clock = 200.00 MHz 10.00000000000	=> Clock = 200.00 MHz

Die roten Pfeile zeigen auf die richtigen Einstellungen:

External: Die interne Clock wird deaktiviert und ein DDS-Takt muss extern angelegt werden.

*20: Das ist der interne DDS-Vervielfacher.

Hier nun die Darstellung der Allan Deviation:

Das Ergebnis ist um Faktor 10 schlechter als die Ergebnisse von Thomas.

Was ist der Grund?

- kein Rechtecksignal
- PLL Vervielfachungsfaktoren

4.4 Rauschfloor Messung bei 12 MHz Messung mit dem internen TCXO des VNWA

Hier nun ein zweiter Test bei 12 MHz Messung, bei der mit dem internen TCXO gearbeitet wird.

VNWA Setup: RF-DDS 12*16*2 und LO-DDS 12*18*2

Das sind sehr sehr gute Ergebnisse

Natürlich darf man diese Messung nicht überbewerten, da die Temperaturreglung des VNWA-TCXOs viel größere Frequenzsprünge macht. Hierzu findet ihr im Help-File und in der Veröffentlichung zur Frequenzmessung von Thomas weitere Informationen.

Bei dieser 12 MHz Rauschfloor Messung wird mit dem intern TCXO gearbeitet. Mit einem externem Takt habe ich diese super guten Ergebnisse leider nicht erzielen können. Wir suchen noch nach den Gründen (Phase, Pegel, ...)

Vielleicht liegt es daran, dass mit internem TCXO Referenz- und Messsignal aus demselben DDS Generator entnommen werden. Damit fällt das Rauschen des Generators heraus (Taktvervielfachung). Beim externen Takt geht das Messsignal nicht durch die DDS, sondern direkt auf den RX Port, also ohne die DDS Frequenzvervielfachung. In den nächsten Wochen werden wir versuchen einen Blick in die Glaskugel zu werfen ;-)

5 Verschieden Messungen von Kurt Poulsen OZ7OU

In diesem Kapitel findet ihr Messungen, die Kurt Poulsen OZ7OU durchgeführt hat. Die dänisch /deutsche Zusammenarbeit hat sehr gut funktioniert. Er hat mir immer auf Englisch geschrieben und ich ihm auf Deutsch geantwortet ;-). Aus diesem Grund ist dieser Teil in englischer Sprache geschrieben.

5.1 Kurt: Test setup for VNWA frequency meter performance

Following equipment's used: HP58503B GPS 10MHz Time frequency receiver with roof mount Trimble active antenna 24dB gain and 12m cable.

HP5571A Frequency and Time Interval Analyzer used for converting sinusoidal to squarewave of the HP58503B output.

EFRATOM LPro-101 Rubidium 10MHz signal source.

VNWA3E and WNWA software version 3.4.0 (3.4.4 exist but PC not yet updated to this version) Signal levels are measured and inserted in table below for the various tests performed

Setup1:

Setup 4:

Setup 5:

Kommentare zu den Messungen findet ihr in den kommenden Unterkapiteln.

5.1.1 Setup 1

Setup1:

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
Data	0.1sec	50000	+9.3dbm	-20.2dBm	30dB	2x16	external	Bild6

5.1.2 Setup 2

Setup2:

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
Data	0.1sec	50000	8dBm	-22.2dBm	30dB	2x16	External	Bild4

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
Data	0.1sec	2000	8dBm	-22.2dBm	30dB	2x16	External	Bild5

5.1.3 Setup 3

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
Data	0.1sec	65000	7dBm	-23dBm	30dB	2x16	External	Bild7

5.1.4 Setup 4

Setup 4:

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
Data	0.1sec	65000	na	na	na	2x16	2	Bild2


```
5.1.5 Setup 5
Setup 5:
```


No input to <u>Ext.input</u> TX port connected to RX Port with cable

Number of Datapoints = 65000	Source	S21 Measurement Tin	e = 6500 : Range = +/- 4 Hz	TX Offset = 0 mHz
Measurement Time:				
Time per sweep = 6500.00 secs				
Time per data point = 100.00 ms				
Sweep Progress Display				

panel Source selected to S21

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
data	0.1sec	65000	na	-17dBm	na	2x16	2	Bild3

Parameter	Time per	Number	Input to	Input to	Attenuator	Multiplier	Pre	Allan
	point	of points	Ext. Input	RX Port	at RX input	Settings	multiplier	Deviation
data	0.1sec	65000	na	-17dBm	0dB	2x20	2	Bild1

Kurt Poulsen Dec 1 2014

100µHz/

100µHz.

Precision Frequency Me

Source = S21 💌

= -

dF

TX Att. = 0 dB S21 ▼ => Mem 1 ▼

Other

Export Trace to s1p Import s1p Clear Trace Add Trace Off

NWA USB Mode started.

S21

In diesem Kapitel findet ihr nun weitere Hinweise, Einstellmöglichkeiten, mögliche Fehler, Auszüge aus unserem Emailverkehr und vieles mehr. Zu einem späteren Zeitpunkt wird dieses Kapitel überarbeitet und neu strukturiert.

Im Modus "Frequency Meter" gibt es oben links im Programmfenster eine Frequenzanzeige, die einen gemittelten Wert aus der gesamten Messdauer anzeigt. Die drei möglichen Anzeigemöglichkeiten sind im Bild dargestellt.

> Wie in diesem Bild dargestellt, kann dieser gemittelte Wert auch über einen sehr langen Zeitraum automatisch mitgeschrieben werden. Man wähle wieder den Maus-Rechts Klick, auf die angezeigte Stelle. Bei dieser Einstellung wird alle 100s ein gemittelter Wert gespeichert. Eine Solche Messung muss natürlich mit "Continous"-sweep gestartet werden.

Im Bild wird eine weitere Möglichkeit dargestellt mit der rechten Maustaste ein Sub-Menü zu öffnen. Zeigt der Mauszeiger beim Klicken auf "S21", erscheint ein anderes Menü, als wenn der Zeiger auf "dF" zeigt. Probiert es mal aus und spielt etwas mit dem Programm ;-).

15-stellig Anzeige der Frequenz mit Speichermöglichkeit.

Weiter vorne im Dokument hatte ich geschrieben, dass das Abspeichern der einzelnen Frequenzmesswerte nicht genügend Genauigkeit aufweist um eine Allan Deviation des Grundrauschens des VNWA richtig darstellen zu können. Aus diesem Grund hatten wir bisher nur Frequenzunterschiede gespeichert. Hier findet ihr nun eine Speicherung der echten Frequenzwerte. Wenn euch diese Genauigkeit reicht, ist die hier vorgestellte Darstellung zu empfehlen.

📗 Beispiel 03 🛛 10MHz 1000pkt F 🛙)isplay Data.dat - Editor
Datei Bearbeiten Format Ansicht	?
0.0000000000000E+0000	9.9999999998638E+0006
1.00000000000000E-0001	1.0000000000290E+0007
2.0000000000000E-0001	9.99999999999445E+0006
3.0000000000000E-0001	9.99999999996027E+0006
4.00000000000000E-0001	9.9999999999328E+0006
5.0000000000000E-0001	1.0000000000349E+0007
6.0000000000000E-0001	1.0000000000028E+0007
7.0000000000000E-0001	1.0000000000047E+0007
8.00000000000000E-0001	1.0000000000551E+0007
9.0000000000000E-0001	1.0000000000122E+0007
1.00000000000000E+0000	9.9999999993340E+0006
1.10000000000000E+0000	9.99999999997689E+0006
1.2000000000000E+0000	9.99999999997129E+0006
1.30000000000000E+0000	1.0000000000317E+0007
1.4000000000000E+0000	9.99999999996418E+0006
1.5000000000000E+0000	1.0000000000499E+0007
1.6000000000000F+0000	9,99999999999184F+0006

Für die allermeisten Messungen sollte eine 15-stellige Auflösung ausreichen.

Problem: Messungen bei 5 MHz

Anmerkung von Thomas: Das Hauptproblem sind m.e. die DDS Taktmultiplier PLLs, die bei so niedrigen Frequenzen nicht mehr richtig funktionieren. Du könntest z.B. mit x1 arbeiten und auf den RX ein frequenzgeteiltes Signal geben. Oder Du multiplizierst den Takt extern, z.B. auf 100MHz mit der 100MHz VCXO-PLL von Bernd und benutzt das 100MHz Signal als Takt. Um zu sehen, was optimal möglich ist, kannst Du mit dem internen Takt den TX Ausgang vermessen (Verbindung TX-RX). Vorteil: da der nachgeführt wird, kannst Du bei jeder Frequenz testen. Z.B. bei mir

Welche Frequenzmessgenauigkeit ist zu erwarten?

Sehr konservativ geschätzt führt ein Phasenfehler von 360° bei 1s Messdauer zu 1Hz Frequenzfehler. Der VNWA misst Phasen mit ca. 0.1° Genauigkeit.

Die Frequenzgenauigkeit ist ca. 0.1°/360°*1Hz=300uHz bei 1s Messdauer bzw. 30uHz bei 10s Messdauer.

Offene Frage: Wie erreicht Thomas eine Genauigkeit von 2E-12 bei 1s Messdauer?

-> Dies ist eine sehr konservative Schätzung. Ich gehe davon aus, dass die Phase genauer gemessen werden kann.

DDS-Vervielfacher

Was soll man im Setup einstellen, Soll ich bei RX und bei TX den Faktor 20 Einstellen oder muss es unterschiedlich sein?

>> die Multiplier müssen groß genug sein, damit die PLLs noch arbeiten. X20 bei beiden ist gut. Für diese Anwendung müssen sie nicht verschieden sein. Es gibt ja nur ein Signal.

Calibrate System Clock to measured vs. nominal Frequency

Wofür brauche ich die Funktion "Calibrate System Clock to measured vs. nominal Frequency"?

>> Um im Setup den Taktfrequenzwert auf einen bekannten Takt am RX-Eingang zu kalibrieren, siehe Hilfekapitel "Calibrating VNWA System Clock using Frequency Meter"

Smoothing

Bei Smoothing habe ich es nicht geschafft einen festen Wert von 10 einzugeben (entspricht 1s). Geht das vielleicht über das INI-File? Der VNWA hat immer feste Werte vorgegeben. Hat das was mit dem Rundungs-Algorithmus zu tun?

>> Das geht nicht. Der Schieber ist nichtlinear programmiert. Exakte Werte sind nicht vorgesehen.

Über die Anzahl der Messwerte kann aber oft auch eine Möglichkeit gefunden werden, bei der eine Mittelung durch 10 Werte möglich ist.

Fehler die auftreten können

Die Ausreißer bei den Messwerten treten auf, wenn:

- Ein schlechtes Netzteil verwendet wird.

Die OCXOs keine Zeit zum Einlaufen hatten.
 Bei manchen OCXOs sind mehr als 48h
 notwendig

 Diese Fehler treten auch auf, wenn während der Messung der Computer für andere Aufgaben verwendet wird.

Gemessen wird alle 0,1s und dann ein gleitender Mittelwert über 10 Werte gebildet. Im Bild ist nur der Mittelwerte dargestellt, was einer Messung pro Sekunde entspricht. Die beiden OCXOs hatten nur eine Stunde Zeit Vorlaufzeit.

Die Ausreißer sind vermutlich durch eine erhöhte Rechnerauslastung während der Messung zu erklären.

7 Emailverkehr zwischen Thomas und mir

Hallo Thomas,

nun versuchen Kurt und ich möglichst gute Frequenzmessungen zu erzielen. Wir fragen uns, welche Rolle der TX-Offset spielt. Die bisherigen Messungen zeigen, dass der TX-Offset bei 0 mHz liegen sollte.

Wenn ich den internen TCXO bei 12MHz gegen sich selbst vermesse (RX-Port mit TX-Port verbunden), erhalte ich für unterschiedliche Einstellungen der Vervielfacher einen TX-Offset von 0mHz. Die Messergebisse unterscheiden sich dann aber doch sehr. Mal erhalte ich bei der Allan Deviation bei 1s einen Wert von etwas 1,5E-11 und mit einer anderen Einstellung 1,5E-13.

Kann es sein, dass für sehr genaue Messungen der TX-Offset besser als 0mH sein muss - ich meine besser als die Anzeige (Rundungen und so...)?

Kurt hat auch bei sich festgestellt, dass man besser SemiRigid Kabel verwenden sollte, da das Biegen der Kabel auch solchen zu Effekten kommt.

Wenn ich einen externen 10MHz OCXO vermesse, komme ich im besten Fall bei 1s auf 1,3E-11Hz.

Fällt dir noch ein, welche Tricks du angewendet hast um bei deinen Oszillatoren damals auf 2E-12Hz zu kommen? Wenn der Knackpunkt beim TX-Offset zu suchen sein sollte, hätte ich eine Bitte an dich. Könnten wir vielleicht eine VNWA-Softwareversion bekommen, bei der der TX-Offset mit einer besseren Auflösung angegeben wird? Grüße Jörn

Hallo Jörn,

der TX Offset hat mit der Allan-Varianz überhaupt nichts zu tun. Im TX Offset spiegelt sich lediglich die Tatsache wieder, dass mit dem vorgegebenen DDS-Kanalraster bei vorgegebenen Takten die nominale ZF u.U. nicht exakt erzeugbar ist. Die Referenz ist immer die TX DDS. Der TX Offset sagt also lediglich, wie weit die TX DDS neben der nominalen Frequenz liegt. Bei einer Frequenzmessung muss das Messergebnis also um diesen Betrag korrigiert werden. Es werden lediglich alle Frequenzwerte um diesen konstanten Betrag verschoben. Bei der Berechnung von Frequenzstreuungen, also Differenzen, fällt diese Verschiebung wieder heraus.

Das trickreiche an dem TX Offset ist übrigens, dass der PC den gar nicht berechnen kann, weil er auch durch Rundungsfehler im AVR bestimmt wird. Ich lese den TX Offset also aus der VNWA-Hardware aus. Nur so bin ich mir sicher, dass ich die exakten DDS-Frequenzen kenne. Durch Rundungsfehler können die durchaus mal um einen Kanal (<1Hz) neben dem vom PC erwarteten Wert liegen.

Ich habe Dir mal zum Vergleich meine Messung (s1p-Datei, S21) angehängt, bei der ich bei 1s auf knapp über 10^-12 kam. Im Kopf der Datei stehen meine Messparameter. Ich hatte damals 10MHz aus dem FA-SY auf den Takteingang und gleichzeitig auf den RX Eingang gegeben. Die gewählte ZF steht leider nicht drin, ich arbeite aber fast immer mit 12kHz.

Viele Grüße, Thomas

Hallo Thomas,

auch wenn du schreibst, dass der TX-Offset keine Rolle spielt, verstehe ich nicht, dass ich immer bessere Werte erhalte, wenn der TX-Offset=o ist. Welche Faktoren die Genauigkeit beeinflussen, verstehe ich auch noch nicht. Kann es sein, dass es günstig ist, wenn das Signal eine Rechteckform aufweist. Je nach Ausführung geben manche FA-SY Rechtecksignale ab.

Grüße Jörn

Hallo Jörn,klar ist ein Rechteck besser. Die DDSe müssen ja triggern-Viele Grüße,

Thomas

Hallo Thomas,

vielleicht ist das die Lösung des Rätsels. Nun muss ich nur noch sehen, was mein schnellster Schmitt-Trigger ist, der bei mir vorrätig ist.

Wie erzeugst du Rechteck-Schwingungen aus einem Sinus?

Vermutlich ist es am schnellsten einen meiner NB3H83905C-Oszillatoren mal so umzubauen, dass ich einen Sinus einspeisen kann. Heraus kommen dann ca. +9dBm Rechteck an 50 Ohm.

Grüße Jörn

Anmerkungen von Jörn

Mögliche Squarer (aus Sinus mach Rechteck)

74ACT132D: Keine Ahnung, ob diese einfache Lösung gut genug ist.

NB3H83905C: Hiermit habe ich schon sehr phasenrauscharme Oszillatoren gebaut. Mit diesem IC werde ich mal einen Versuch unternehmen.

LMK00105: Besser als der NB3H83905C. Leider ist das Gehäuse sehr schwer zu verarbeiten.

Hallo Jörn,

> Wie erzeugst du Rechteck-Schwingungen aus einem Sinus?

Gar nicht. Wie Du richtig erkannt hast, produziert der FA-SY von sich aus ein Rechteck.

Viele Grüße, Thomas

Hallo Thomas,

oh da habe ich mich missverständlich ausgedrückt. Ich wollte eigentlich fragen, wie man am besten (z.B. bei einem OCXO) aus einem Sinus ein Rechteck macht. Gedacht habe ich da an 10MHz

Diese Lösungen sehe ich momentan:

74ACT132D: Keine Ahnung, ob diese einfache Lösung gut genug ist.

NB3H83905C: Hiermit habe ich schon sehr phasenrauscharme Oszillatoren gebaut. Mit diesem IC werde ich mal einen Versuch unternehmen.

LMK00105: Besser als der NB3H83905C. Leider ist das Gehäuse sehr schwer zu verarbeiten. Daher momentan nicht zu realisieren.

Dann hätte ich noch eine Frage zu Vervielfachern,

Wie ändern sich eigentlich die Messergebnisse, wenn die Signal der Oszillatoren (der Oszillator am DDS-Takt und der am VNWA-RX) extern vervielfacht werden (*4 oder *8 oder*10)? Oder anders gefragt, wie muss das Ergebnisse der Allan Deviation korrigiert werden?

Du hast in einer der vorherigen Emails erwähnt, dass bei Messungen an 5MHz Oszillatoren die Taktfrequenz doch schon recht niedrig für den DDS sind.

Du hast mal geschrieben: ... oder du multiplizierst den Takt extern, z.B. auf 100MHz mit der 100MHz VCXO-PLL von Bernd und benutzt das 100MHz Signal als Takt. Welche PLL hast du von Bernd gemeint? Grüße Jörn

Hallo Jörn,

ich habe keine Erfahrung, was besonders rauscharm bei der Wandlung von Sinus nach Rechteck ist. Bedenke, dass die internen Taktvervielfacher in den DDSen schon ziemlich rauschen. Um meine alte Messung einordnen zu können, habe ich nochmal zwei Versuche gemacht. Dabei habe ich mit denselben Einstellungen wie damals das VNWA TX Signal vermessen:

Bei 12MHz laufen die DDSe als Integer-Teiler, bei 13MHz als fraktionale. Das macht offenbar einen Unterschied beim Rauschen (Grenzzyklen...). Bei der FA-SY Messung kommt ggü der grünen Kurve das Rauschen eines DDS-Taktvervielfachers dazu, weil nur die Referenz aus dem TX DDS stammt. Der FA-SY

ist besser als die TX DDS.

> Wie ändern sich eigentlich die Messergebnisse, wenn die Signal der Oszillatoren (der Oszillator am DDS-Takt und der am VNWA-RX) extern vervielfacht werden (*4 oder *8 oder*10)? Oder anders gefragt, wie muss das Ergebnisse der Allan Deviation korrigiert werden?

Gar nicht. Die Allan Abweichung ist ja ein auf die Frequenz normierter Wert. Doppelte Frequenz => doppelte Abweichung pro Frequenz ist konstant.

> Welche PLL hast du von Bernd gemeint?

Ich habe hier ein VCXO-Board von ihm, wo auch ein ADF4007 drauf ist. Das soll als Taktsäuberer arbeiten, d.h. z.B. aus einem stabilen aber mit Phasenrauschen behafteten Signal (z.B. aus einem Rb Standard) ein stabiles und phasenrauscharmes Signal machen.

Viele Grüße,

Thomas

8 Anhang

8.1 Sinus-Rechteck-Wandler mit dem NB3H83905C – Wiederverwendung einer Oszillatorschaltung

Bei vielen Messungen in dieser Baumappe habe ich das Sinussignal in ein Rechtecksignal mit einem NB3H83905C gewandelt. Hierfür wurde eine Oszillatorschaltung reaktiviert, die sich bei meinem Phasenrauschmessplatz sehr bewährt hatte. Da nur ein Teil aufgebaut worden ist, habe ich einen neuen Entwurf anfertigt, den ihr im nächsten

Unterkapitel findet.

Die ganze Oszillator-Schaltung wird nicht bestückt. Das Signal wird über C10 eingespeist. Statt des R1 wird direkt über 100nF ausgekoppelt. Der Filter wird nicht bestückt.

WA: An	hang			Dateiname: Frequenzmessung mit dem Jörn Bartels; dk7
	•	RIG	<u>א</u>	NOVA SIZE SEA

дŊ

۲

•

•

Ο

Ο

ñ

О

•³⁰

•

۰

0

200

0

0

0\$1 2005

0

0

\$

٠

۲

8

•

B

•

0

• 1051\\20 051\\20

Я,

•

2

٠

R14

٠

•

2g

£

D1 BBY51

UNSO 1 •

0º

29 0

С

7

C16

6

۰

m

C

0 0 0

m

m

۲

Ou Tanta

ğ

٠

20 10 27

иести21

٠

0

•

0

9,80

•

82

돈면

0

0

С

Я₫

•1

JēO

8.2 Sinus-Rechteck-Wandler mit dem NB3H83905C- eigener Entwurf

Ende der Bearbeitung