

APPLICATION NOTE

Atmel AVR918: Using the Atmel Tiny Programming
Interface (TPI)

8-bit Atmel Microcontrollers

Features

• TPI driver for devices with TPI support

• Programming example for:
• NVM read and write
• Lock-byte read and write
• Fuse-byte read and write
• Calibration byte read
• Device ID read
• Chip erase

• Compatible with AVROSP (Atmel AVR911)

Introduction

The Atmel® Tiny Programming Interface (TPI) is featured on selected low-end Atmel
AVR® microcontrollers, and allows external programmers to access the nonvolatile
memory (NVM) of the device. The interface provides access to device lock bits, the
program flash memory, and the signature, configuration, and calibration sections.

The TPI can be accessed via three pins:

RESET: TPI enable input

TPICLK: TPI clock input

TPIDATA: TPI data input/output

Figure 1. The Atmel Tiny Programmer Interface for external programmers.

ATtiny4/5/9/10

TPIDATA/PB0

GND

TPICLK/PB1

PB3/RESET

VCC

PB2

TPI
CONN

APPLICATION

+5V

8373B−AVR−10/2012

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

2

Refer to the corresponding device datasheet for more details on the TPI protocol.

This application note describes how to use an Atmel AVR microcontroller to access a
device with TPI. The design uses the AVR open source programmer (AVROSP), as
described in the Atmel AVR911: AVR Open Source Programmer, application note.

http://www.atmel.com/images/doc2568.pdf�

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

3

Table of Contents

1. Nonvolatile memories .. 4
1.1 Nonvolatile memory lock bits .. 4
1.2 Flash memory ... 4

1.2.1 Code (program memory) section .. 4
1.2.2 Configuration section .. 4
1.2.3 Signature section .. 4
1.2.4 Calibration section .. 5

2. TPI target implementation .. 6
2.1 TPI frame .. 6
2.2 TPI physical layer .. 6

2.2.1 Serial data reception ... 6
2.2.2 Serial data transmission .. 6
2.2.3 Direction change ... 7

2.3 TPI access layer .. 7

3. External programmer implementation .. 8
3.1 Device selection .. 8
3.2 Target interface ... 8

3.2.1 TPI enabling .. 8
3.2.2 TPI instruction set ... 9
3.2.3 Entering external programming mode ... 9
3.2.4 Exiting external programming mode ... 9
3.2.5 Accessing the NVM... 10

3.2.5.1 NVM commands ... 10
3.2.5.2 Addressing the flash ... 10
3.2.5.3 Reading the flash .. 10
3.2.5.4 Programming the flash .. 11
3.2.5.5 Chip erase ... 11
3.2.5.6 Erase section .. 11

4. User interface implementation ... 12
4.1 Universal command .. 13
4.2 Example: Command line syntax for the Atmel ATtiny10 13

5. Quick start guide .. 14

6. Revision history .. 15

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

4

1. Nonvolatile memories
This section describes the nonvolatile memory (NVM) sections that can be accessed via the Atmel Tiny Programming
Interface (TPI). Access methods described in this section are specific to devices with TPI, and may not apply to other
Atmel AVR microcontrollers.

The embedded NVM has:

• Nonvolatile memory lock bits

• Flash memory with four sections

1.1 Nonvolatile memory lock bits
Lock bits provide additional security for the device, when programmed. Lock bits can only be erased by a chip erase;
hence, it is required to program them after the other NVM sections are programmed. By default, lock bits are un-
programmed (set to 1).

1.2 Flash memory
The embedded flash memory has four sections:

• Code (program memory)

• Configuration

• Signature

• Calibration

1.2.1 Code (program memory) section
As the program memory cannot be accessed directly, it has been mapped to the data memory. The mapped program
memory begins at byte address 0x4000 in data memory (see device datasheets for further information). This means
that programs in program memory are executed starting from address 0x0000, but the same memory area is addressed
starting from 0x4000 when accessed via the data memory.

Internal write operations to flash program memory have been disabled, and program memory, therefore, appears to
firmware as read-only. Flash memory can only be written to by an external programmer.

1.2.2 Configuration section
The configuration byte resides in the configuration section. The following functions can be configured by writing
appropriate values to the configuration byte:

• Brown-out detection level

• System clock output on port pin

• Watchdog timer on

• External reset disable

Changes to the configuration bit values will take effect after the device leaves programming mode.

Please consult individual device datasheets for further details on available functions.

1.2.3 Signature section
The signature section is used to store information such as the device signature. Typically, the device signature consists
of three bytes.

Consult individual device datasheets for signature values.

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

5

1.2.4 Calibration section
The calibration section typically contains one calibration byte for the internal oscillator. This byte contains the calibration
value, which is stored at device production. The calibration section is read-only.

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

6

2. TPI target implementation
The Atmel Tiny Programming Interface (TPI) consists of two layers, the access layer and the physical layer. The TPI
physical layer supports two modes of operation, transmit and receive. By default, the physical layer is in receiving
mode, and waiting for a start bit. The TPI access layer controls the mode of operation.

2.1 TPI frame
The TPI physical layer supports a fixed frame format. A frame consists of one character, eight bits in length, one start
bit, an even parity bit, and two stop bits. Data is transferred with the least-significant bit first. A break character of a 12-
bit-long low level is supported; this can be extended beyond 12 bits, also.

Figure 2-1. Serial frame format.

TPIDATA

TPICLK

SP1ST SP2 IDLE/STIDLE PD1D0 D7

Symbols used in Figure 2-1:

ST: Start bit (always low)

D0-D7: Data bits (least-significant bit sent first)

P: Parity bit (using even parity)

SP1: Stop bit 1 (always high)

SP2: Stop bit 2 (always high)

2.2 TPI physical layer
The TPI physical layer handles the basic low-level serial communication. The physical layer uses a bidirectional, half-
duplex, serial receiver and transmitter. It includes serial-to-parallel and parallel-to-serial data conversion, start-of-frame
detection, frame-error detection, parity-error detection, parity generation, and collision detection.

The TPI physical layer operates synchronously on the TPICLK signal provided by the external programmer. Data is
changed at falling edges, and sampled at rising edges.

2.2.1 Serial data reception
In receive mode, data reception is started as soon as a start bit has been detected. When the complete frame is present
in the shift register, the received data will be available for the TPI access layer.

There are three possible exceptions in the receive mode: frame error, parity error and break detection. All these
exceptions are signaled to the TPI access layer, which then enters the error state, and puts the TPI physical layer into
receive mode, waiting for a break character.

2.2.2 Serial data transmission
Transmission is initiated by loading the shift register with the data to be transmitted. When the shift register has been
loaded with new data, the transmitter shifts one complete frame out on the TPIDATA line at the transfer rate given by
TPICLK.

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

7

If a collision is detected during transmission, the output driver is disabled. The TPI access layer enters the error state,
and the TPI physical layer is put into receive mode, waiting for a break character.

2.2.3 Direction change
A guard-time mechanism is implemented in the physical layer to ensure correct timing during direction change. When
the TPI physical layer changes from receive to transmit mode, a configurable number of additional idle bits are inserted
before the start bit is transmitted. The default guard time is 128 bits. The minimum transition time between receive and
transmit mode is two idle bits. The total idle time is the specified guard time plus two idle bits.

When the external programmer changes from receive mode to transmit, a minimum of one idle bit should be inserted
before the start bit is transmitted.

2.3 TPI access layer
The TPI access layer controls the character transfer direction on the TPI physical layer. It also handles the recovery
from the error state after an exception. TPI access layer handles the communication in message format. Each message
consists of a byte-sized instruction followed by operands. The instructions are always sent from the programmer, while
the operands can be from either the programmer or the device, depending on the type of the instruction.

The control and status space (CSS) of the Atmel Tiny Programming Interface is allocated for control and status
registers in the TPI access layer. The access layer can also access the data space, either directly or indirectly, using
the pointer register (PR) as the address pointer.

Consult the individual device datasheet for further information on exception handling.

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

8

3. External programmer implementation
The programmer described in this application note uses a USART to implement the TPI. The USART is used in
synchronous mode, and XCK is used for TPICLK. The AVROSP, described in the Atmel AVR911: AVR Open Source
Programmer, application note, is used as the user interface, and the programmer implements the AVROSP protocol via
another USART.

3.1 Device selection
The implementation is tested with the Atmel ATmega324P, though any Atmel AVR device with two onboard USARTs
can be used with minimal changes to the implementation. The device used in the external programming requires two
USARTs, one for implementing TPI and another for AVROSP communication.

The device is driven by an external 11.059MHz crystal.

3.2 Target interface
The XCK pin is used as TPICLK, and RXD and TXD have been connected to TPIDATA via two 220Ω resistors, as
shown in Figure 3-1.

Figure 3-1. TPI target interface.

3.2.1 TPI enabling
The following sequence enables the TPI (see Figure 3-2 for guidance):

• Apply 5V between VCC and GND

• Wait tTOUT and then set the RESET pin low. This will reset the device and enable the TPI physical layer. The
RESET pin must then be kept low for the entire programming session

• Wait tRST

• Keep the TPIDATA pin high for 16 TPICLK cycles

Note: Consult individual device datasheet for tTOUT and tRST values.

http://www.atmel.com/images/doc2568.pdf�
http://www.atmel.com/images/doc2568.pdf�

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

9

Figure 3-2. TPI enable sequence.

RESET

t RST

TPIDATA

TPICLK

16 x TPICLK CYCLES

3.2.2 TPI instruction set
TPI has a compact instruction set, as shown in Table 3-1. These instructions can be used to access the NVM control
status space and the data space. The external programmer can access the NVM controller and the NVM memories by
using these instructions. All the instructions are one byte. Except for the SKEY instruction, all other instructions require
one byte of operand to follow. SKEY requires eight bytes to follow.

Table 3-1. TPI instruction set.

Mnemonic Operand Description Operation

SLD data, PR Serial LoaD from data space using indirect addressing data ← DS[PR]

SLD data, PR+ Serial LoaD from data space using indirect addressing and post-increment data ← DS[PR]

SST PR, data Serial STore to data space using indirect addressing DS[PR] ← data

SST PR+, data Serial STore to data space using indirect addressing and post-increment DS[PR] ← data

SSTPR PR, a Serial STore to Pointer Register using direct addressing PR[a] ← data

SIN data, a Serial IN from data space data ← I/O[a]
SIN data

SOUT a, data Serial OUT to data space I/O[a] ← data

SLDCS data, a Serial LoaD from Control and Status space using direct addressing data ← CSS[a]

SSTCS a, data Serial STore to Control and Status space using direct addressing CSS[a] ← data

SKEY Key, {8{data}} Serial KEY Key ← {8{data}}

3.2.3 Entering external programming mode
In order to enter the programming mode, it is required to enable the TPI communication by following the procedure
described in Section 3.2.1, TPI enabling, on page 8. After enabling the TPI:

• Send an SKEY instruction via the TPI

• Send the NVM program enable data (0x1289AB45CDD888FF) byte by byte via the TPI

• Poll the status of the NVMEN bit in TPISR until it has been set

3.2.4 Exiting external programming mode
In order to exit the programming mode, the following procedure must be followed:

• Clear the NVM enable bit in TPISR

• Release RESET

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

10

3.2.5 Accessing the NVM
NVM is mapped to the data memory, and, hence, can be accessed via those mapped locations in the data memory.

The programming task is started after loading the appropriate NVM command (Table 3-2) to the nonvolatile memory
command register (NVMCMD). The NVMBUSY flag bit in the nonvolatile memory control and status register (NVMCSR)
will be set when the NVM controller is performing the instructed operation. The NVM command register is blocked for
write access as long as the NVMBUSY flag is active. This is to ensure that the current command is fully executed
before starting a new command.

3.2.5.1 NVM commands
NVM commands can be classified into general, section, and word operations, depending on the operation. In total, there
are four commands for accessing NVM, as described in Table 3-2.

Table 3-2. NVM commands.

Operation type NVMCMD Mnemonic Description

General 0x00 NO_OPERATION No operation

General 0x10 CHIP_ERASE Chip erase

Section 0x14 SECTION_ERASE Section erase

Word (1) 0x1D WORD_WRITE Word write

Double word (2) 0x1D DWORD_WRITE Write double word

Flash words (3) 0x1D CODE_WRITE Write flash words

Notes: 1. Atmel ATtiny4/5/9/10
 2. Atmel ATtiny20
 3. Atmel ATtiny40

3.2.5.2 Addressing the flash
The data space uses byte accessing, but because the flash sections are accessed as words and organized in pages,
the byte address of the data space must be converted to the word address of the flash section. The page address and
the word address together form the absolute address of a word in flash. The most-significant bits of the data space
address select the NVM lock bits or the flash section mapped to the data memory. The least-significant bit of the flash
section address is used to select the low or high byte of the word.

During programming, the data space location is pointed to by the pointer register (PR), where the address must be
stored before data is accessed. The sequence to store an address in the pointer register is as follows:

• Send a SSTPR instruction with the LSB set to 0

• Send the low byte of the address

• Send a SSTPR instruction with the LSB set to 1

• Send the high byte of the address

3.2.5.3 Reading the flash
The flash can be read from the data memory mapped locations one byte at a time. For read operations, the least-
significant bit (bit 0) is used to select the low or high byte in the word address. If this bit is zero, the low byte is read, and
if it is one, the high byte is read. The sequence to read a data byte from NVM is as follows:

• Send a SLD_POSTINC instruction

• Wait for an idle time of two clock cycles plus the guard time set in TPIPCR for reception

• Receive the data byte

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

11

3.2.5.4 Programming the flash
The flash can be written word-by-word or using multiple words (two or four) at a time, depending on the device used.
The target location must be erased before a write operation. Otherwise, the flash word will corrupt its content. The erase
operation can only be performed for the entire section; hence, it is required to erase the flash section before starting a
write.

The low bytes must be written to the temporary buffer first, and then writing the high bytes will trigger the flash write
operation.

During a multiple-word write, the low bytes and high bytes of all the words should be written in correct order to start the
flash write operation.

The sequence to write flash words is as follows:

• Send the corresponding memory write command

• Send a SST_POSTINC instruction

• Send the low byte of the data to be written

• Send a SST_POSTINC instruction

• Send the high byte of the data to be written

• If the device supports programming more than one word at a time, send one idle character, and repeat the
write sequence above for the required number of words (two or four) to be written

• Wait for the NVMBUSY bit to be cleared

While programming the configuration section on devices that support programming multiple words, dummy bytes have
to be written to the configuration section after writing the actual data.

3.2.5.5 Chip erase
The chip erase command will erase the entire code section of the flash memory and the NVM lock bits. The NVM lock
bits are not reset before the code section has been completely erased. Please note that the configuration, signature,
and calibration sections are not affected by a chip erase. The sequence for performing a chip erase is as follows:

• Send a CHIP_ERASE command

• Set the address to a location inside code

• Write a dummy byte to the high byte of the location addressed

• Wait for the NVMBUSY bit to be cleared

3.2.5.6 Erase section
The section erase command will erase the selected NVM section. Code section, NVM lock bits, and configuration
sections can be erased. The calibration section is read only, hence erase or write operations cannot be performed on it.

• Send a SECTION_ERASE command

• Set the address to a location inside selected section

• Write a dummy byte to the high byte of the location addressed

• Wait for the NVMBUSY bit to be cleared

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

12

4. User interface implementation
The Atmel TPI programmer described in this application note supports the Atmel AVR open source programmer
(AVROSP). AVROSP is an Atmel AVR programmer application equivalent to the Atmel AVRProg tool included with
Atmel AVR Studio®. It is a command-line tool, using the same syntax as the other command-line tools in AVR Studio.
For more information on how the user interface works, please refer to the Atmel AVR911: AVR Open Source
Programmer, application note.

The only requirement is to have the avrosp.exe file available. The communication port settings (baud rate, parity, etc.)
must be set manually before using the AVROSP. For example, to set COM1 for 115200bps, no parity, and eight data
bits, runs the following DOS command:

mode com1 baud=115200 parity=n data=8

The supported AVROSP commands are as described in Table 4-1.

Table 4-1. Supported AVROSP commands and actions.

AVROSP command Action Return

‘T’ Do a dummy read for the AVROSP support ‘\r’

‘P’ Enable TPI ‘\r’

‘L’ Disable TPI ‘\r’

‘a’ Auto increment supported ‘\r’

‘A’ Get NVM word address ‘\r’

‘c’ Get low byte of data to be written ‘\r’

‘C’ Get high byte of data to be written, and start the NVM write ‘\r’

‘m’ Finished writing one page, for AVR911 support ‘\r’

‘R’ Read one word from the NVM, and return data to the AVROSP Data high byte and data low byte

‘e’ Do chip erase ‘\r’

‘.’ Read four bytes of universal command ‘\r’

‘N’ Read high fuse byte, do a dummy write support for the AVROSP Dummy byte (0xFF)

‘S’ Programmer identification Send “AVR ISP”

‘s’ Read device ID Return three bytes of device ID,
high byte first

‘Y’ Calibrates the internal RC oscillator (1) OSCCAL value

Note: 1. Refer application note AVR057: Internal RC oscillator calibration for the Atmel ATtiny4/5/9/10/20/40.

http://www.atmel.com/images/doc2568.pdf�
http://www.atmel.com/images/doc2568.pdf�

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

13

4.1 Universal command
The universal command sent by the AVROSP starts with a period (.), followed by four bytes of command. See the
details in Table 4-2.

Table 4-2. Supported four-byte commands and actions.

Four-byte command Action

0x38 0x00 0xXX 0X00 Read OSCCAL

0xac 0xe0 0x00 data Write lock byte

0x58 0x00 0x00 0x00 Read lock byte

0xac 0xa0 0x00 data Write fuse low

0xac 0xa8 0x00 data Write fuse high

0x50 0x00 0x00 0x00 Read fuse low

0x58 0x08 0x00 0x00 Read fuse high

4.2 Example: Command line syntax for the Atmel ATtiny10

Table 4-3. Command line syntax example for ATtiny10.

Operation Command line syntax

Read signature avrosp.exe -dattiny10 -s

Read fuse byte avrosp.exe -dattiny10 –q

Read lock byte avrosp.exe -dattiny10 –y

Write fuse byte avrosp.exe -dattiny10 –f<fuse bytes>

Write lock byte avrosp.exe -dattiny10 –l<lockbyte>

Chip erase avrosp.exe -dattiny10 –e

Read OSCCAL avrosp.exe -dattiny10 –O

Read flash to <filename.hex> avrosp.exe -dattiny10 -rf –of<filename.hex>

Program flash from <filename.hex> avrosp.exe -dattiny10 -g -e -pf –if<filename.hex>

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

14

5. Quick start guide
The following is intended as a step-by-step guide on how to get started:

• Follow the hardware settings as described in Chapter 3, External programmer implementation, on page 8

• Download and unzip the source code for the Atmel AVR918

• Open \avr918\AVR918.atsln

• Open Project -> AVR918 properties -> Toolchain -> AVR/GNU C Compiler -> Symbols -> Double click on
‘ATTINY10’ and modify the symbol if ATtiny20 or ATtiny40 is used as target

• Save all, clean (using Build -> Clean Solution), rebuild (using Build -> Rebuild Solution)

• Program the Atmel ATmega324P

• Run command prompt, go to the avr918 directory

• Type any of the command line syntaxes mentioned in Section 4.2, Example: Command line syntax for the
Atmel ATtiny10, on page 13

Atmel AVR918: Using the Atmel Tiny Programming Interface (TPI) [APPLICATION NOTE]
8373B−AVR−10/2012

15

6. Revision history
Doc. Rev. Date Comments

8373B 10/2012 New template. Table 4-1: New AVROSP command added (‘Y’). Chapter 5: The quick
start guide is corrected

8373A 02/2011 Initial document release

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Building
1-6-4 Osaki
Shinagawa-ku, Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: 8373B−AVR−10/2012

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio®, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Nonvolatile memories
	1.1 Nonvolatile memory lock bits
	1.2 Flash memory
	1.2.1 Code (program memory) section
	1.2.2 Configuration section
	1.2.3 Signature section
	1.2.4 Calibration section

	2. TPI target implementation
	2.1 TPI frame
	2.2 TPI physical layer
	2.2.1 Serial data reception
	2.2.2 Serial data transmission
	2.2.3 Direction change

	2.3 TPI access layer

	3. External programmer implementation
	3.1 Device selection
	3.2 Target interface
	3.2.1 TPI enabling
	3.2.2 TPI instruction set
	3.2.3 Entering external programming mode
	3.2.4 Exiting external programming mode
	3.2.5 Accessing the NVM

	4. User interface implementation
	4.1 Universal command
	4.2 Example: Command line syntax for the Atmel ATtiny10

	5. Quick start guide
	6. Revision history

