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1. Introduction

HERE are some situations where a selec-
tive circuit that is equivalent to an in-
verse arm, i.e. a constant-K-configura-

tion filter, is to be designed, and the unloaded Q
of the elements to be used is sufficiently high for
them to be considered ‘‘nondissipative.” This paper
presents two equations that for the nondissipa-
tive case, specify the exact element values
required for the filter to produce that attenuation
shape having the highest possible rate of cutoff,
i.e., the Chebishev attenuation shape.

2. Examples of Nondissipative Equivalent
Inverse-Arm Filters and theiThree Cir-
cuit Constants That Must Be Correctly
Adjusted

Because so many of the selective circuits now
being used, or designed, seem physically so dif-
ferent from the basic inverse-arm configurations,
many engineers new to the field do not realize
that the design equations for the constant-X con-
figuration can be applied.

It thus seems worthwhile calling attention to a
few of these equivalent inverse-arm filters to
stress the wide applicability of the two design
equations to be presented.

It will be noticed that with one exception, the
‘band-pass examples are from the ultra-high-fre-
quency and microwave regions, because it is
mainly in these regions that the ratio of unloaded
Q to fractional midfrequency Qo/[fo/(BW)] is
high enough for the elements to be considered
nondissipative.

Figure 1A shows a common direct-coupled
waveguide band-pass filter using four resonators;
in another language it would be called a quad-
ruple-tuned band-pass filter. The equivalence of
this to the fundamental constant-X configuration

* A condensed version of this paper appeared in Conven-
tion Record of the 1953 I.R E. National Convention, Part 5—
Circuit Theory, pages 44—47. This is the full version of
the paper as presented at the National Convention of the

Institute of Radio Engineers in New York, New York,
on March 23, 1953.

(either band-pass or low-pass) has beén excél-
lently described in W. W. Mumford’s paper.!

Figure 1—Three ways of arranging 4 waveguide resona-
tors to produce a quadruple-tuned band-pass filter. When
small-percentage bandwidths are used, these filters can be
designed from the equations for the simple constant-k-
configuration low-pass filter of Figure S.

In the “language’ used in this present paper,
the design information that the engineer must
possess (and which is required for all equivalent
constant-K-configuration filters) is:

A. The required coefficient of coupling X,(¢;+1) be-
tween adjacent resonators. This fixes the size of the
opening that must be made in the wall between
adjacent resonators, and as is well known, this
opening can take the form of a slot parallel to the
electric-field vector, which will give the equivalent of
mutual-inductance coupling between resonators; a
slot perpendicular to the electric-field vector, which
will give the equivalent of ‘‘low-side” capacitive
coupling between resonators; a post parallel to the
electric-field vector, which will give the equivalent
of self-inductance coupling between resoanators; or,
in general, any kind of opening that will allow some
of the electric and/or magnetic field of one resonator
to enter the adjacent resonator.

B. The required resonant frequency (fo) of each
resonator. This fixes the distance between the walls
of each resonator. As is well known, the coefficient-
of-coupling mechanism must be correctly considered .
a part of each resonator to which it is connected;

1'W. W. Mumford, “Maximally-flat Filters in Wave-

guide,” Bell System Technical Journal, volume 27, pages
684-713; October, 1948.
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otherwise the pass-band midfrequency will not coin-
cide with the resonant frequency.

C. The required singly loaded @ (Q:) of the first
resonator (produced by correctly coupling the gen-
erator to this first resonator) ; and the required singly )
loaded Q (Q,) of the last resonator (produced by
cortrectly coupling the load to this last resonator).
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Figure 2—Two of the many ways of using coaxial reso-
nators to produce a small-percentage-band-pass filter.
Here, also, the low-pass-design information is applicable.

If a terminated waveguide is used on each side of the
filter, this then fixes the size of the opening in the
first and last wall of the structure of Figure 1A; or,
if desired, these first and last walls can be completely
closed off and, as Figure 1A attempts to show, the
generator and load can be capacitively coupled to
the first and last resonators by probes (or magneti-
cally coupled by loops). Whatever the method used,
this generator and load coupling must be adjusted
until the first and last resonators, respectively, have
the required singly loaded Q; and Q..

The above three well-known circuit constants
have been discussed in a previous paper,? and
methods of measuring and adjusting them have
also been presented.? -

Continuing with some other examples of equiv-
alent constant-X structures, Figures 1B and 1C
show that by discarding the waveguide concept
in favor of the coupled-resonator concept, addi-
tional useful, and different-looking, filters can be
built with the same four resonators. Figure 1B
shows the four resonators of Figure 1A rotated by

T M. .Dishal,'"Design of Dissipative Band-Pass Filters
Producing Desired Exact Amplitude—Frequency Charac-
teristics,” Electrical Communication, volume 27, pages 56—
81; March, 1950: also, Proceedings of the I.R.E., volume 37,
pages 1050—-1069 ; September, 1949,

*M. Dishal, “Alignment and Adjustment of S?'nchro-
nously Tuned Multiple-Resonant-Circuit Filters,” Elec-
irical Communication, volume 29, pages 154-164; June
1952: Addendum, volume 29, page 292; December, 1952:

also, Proceedings of the I.R.E., volume 39 1448-
1455; November, 1951, i ume 39, pages
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90 degrees and placed together in such a way that
the openings between adjacent resonators pro-
duce the equivalent of ‘‘high-side” capacitive
coupling. Figure 1C shows the same four resona-
tors arranged in yet another physical configu-
ration that will still produce the same small-
percentage bandwidth filtering action: there is
equivalent ‘“high-side’’ capacitive coupling be-
tween resonators I and 2, mutual-inductance
coupling (due to a vertical slot) between resona-
tors 2 and 3, high-side capacitive between reso-
nators 3 and 4; the generator sets Q) by inductive
coupling to the first resonator and the load sets
Q. by inductive coupling to the last resonator.
Figure 2 is included to stress the fact that the
“different-looking’’ filters produced by using coax-
ial resonators are also equivalent to constant-KX-
configuration filters insofar as band-pass response
and required circuit constants are concerned.
Figure 3 shows a triple-tuned band-pass filter
that, while in no way physically resembling the
classical inverse-arm structure, is still described

Figure 3—A 3-mode single-cavity microwave filter.
While bearing no physical resemblance whatsoever to the
classical inverse-arm filter, the low-pass-design information
is also applicable to this structure, when small-percentage
bandwidths are required.

by exactly the same design constants as the
inverse-arm structure. It is the spherical reso-
nator that is so designed that three of its resonant

modes occur at the same frequency, i.e., are

degenerate. The two screws shown project into
the cavity and correctly adjust K;; (the coeffi-
cient of coupling between the first resonance and
the second resonance), and K,; (the coefficient of
coupling between the second resonance and the
third resonance). The opening on the left is of the
proper size to allow the terminated waveguide
shown to load properly the first resonance, i.e.,
to set Q,; and the opening on the right allows the
terminated waveguide shown there to load



properly the last resonance, i.e., to set Q5. Finallv,
Figure 4 shows a three-resonator filter using
mechanical resonators for the filter elements.
Here, the coefficient of couplings K1, and Ka;
are set by the material, diameter, and ‘“‘tap”
point used for the quarter-wavelength-long (ap-
proximately) thin rods that connect two adjacent
resonators. (), of the first resonator is correctly
set by the thin low-Q resonant rod connected to
the first resonator, and the last resonator is simi-
larly correctly loaded by the low-Q rod connected
to it. The coils, by magnetostrictive action, con-

Figure 4—A triple-tuned mechanical filter made with
half-wave slugs and quarter-wave coupling necks. The
low-pass-design equations apply here also.

vert the electric energy to mechanical energy and
then vice versa; because of the unfortunately
poor coupling produced by this phenomenon,
there is usually negligible electrical loading cou-
pled into the first and last resonators.

There are many other examples of filters that
at first glance do not resemble the basic inverse-
arm configuration, but that actually are equiva-
lent to it; and in all of these many filters, the
design engineer must know the required numer-
ical value for all the coefficients of couplings in
the structure; the required numerical value of
the singly loaded Q of the first resonator and that
of the last resonator; and the proper element
values or physical lengths to produce the proper
midfrequency (or design information exactly
equivalent to these three quantities).

3. “Incorrect” Coefficients of Coupling and
End Q’s Called for by Classical Filter
Theory

It will now be assumed that the reader realizes
that, within the small-percentage-band-pass ap-
proximation, the transfer equation for the cir-
cuits of Figures 1 to 4 in terms of the frequency

variable
(£-%) - G2 - (%)

is identical in form to that of the low-pass ladder
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of Figure 5, when the frequency variable for the
latter is radian frequency w.

To clarify the meaning of coefficients of cog-
pling and end Q's as applied to the low-pass
inverse-arm ladder, classical filter theory will be
applied to the ladder of Figure § to obtain thé
design values called for by this theory. It will
be recalled that the two basic facts of this theory
are as given in (1) and (2).

The full series-arm reactance and the full
shunt-arm reactance must be so related that (1)
is true at the desired cutoff frequency w..

Zaeries

4Zshunt

=~ 1. (1)
The impedance Z,, which must be used to

terminate the ladder and which unfortunatelv

cannot be physically realized, is given by (2).

Ly = (ZseriesZshun‘.)%(l + Zseries,/4zahunt)%. (2)

Figure 5—The inverse-arm low-pass ladder whose design
equations apply to the small-percentage band-pass filters
of Figures 1 to 4. The unloaded Q's of the elements are
infinite.

From (1), we obtain (1A),

1/(LCinternal)% = O.SOw,,
1 1o t(1A)
(LiC)*  (CopL)® 0.707w.,
and from (2), we obtain
2]k
ZO/Ll.n — [1 _ <£>] . (Z‘A)
We W,

The required resonant radian frequencies given
by (1A) for the adjacent arms of the low-pass
ladder of Figure § are exactly equivalent to the

:well-known coefficients of coupling of the small-
*percentage-band-pass networks of Figures 1 to 4,
when the frequency variable w and BW/f, are
used, respectively. Thus by (1A), classical filter
theory requires that all the internal coefficients
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of coupling be made equal to 0.50 times the
“cutoff’’ frequency variable, and that the coefhi-
cient of coupling between the first and second
elements and between the next to the last and
last elements be made 0.707 times the cutoff-
frequency variable. Simultaneously, (2A) must
be satisfied, and this is unfortunately impossible
for it demands that at zero frequency Ro/L; .
—which is exactly equivalent to the well-known
decrement (1/Q) of the small-percentage-band-
width networks—must equal 1.0 times the cutoff-

(%)
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X
v
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C

Figure 6—A shows the physically unrealizable attenua-
tion shape of a Ze,terminated constant-k filter. (V,/V)
= exp (n — 1) cosh™ (w/wc). When physical resistors are
used instead of the unrealizable Z,, the attenuation shape
of B is obtained. C shows the optimum Chebishev shape,
which can be obtained when the element values are
correctly modified from the constant-k values.

[ Ve/ V|2 = 1 4 [(V,p/Vs)t—1] cosh? [ cosh™ (w/w.)].
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frequency variable but then over the pass and
attenuation band, the termination must vary in
the way specified by the right-hand side of (2A);
this is impoessible to achieve.

If it were possible to obtain this termination
and the above values of coefficient of coupling
were used, then the response obtained would be
that shown in Figure 6A.

The procedure usually resorted to is to ap-
proximate Zo by a resistance equal to the zero-
frequency value of Z,, and thus the classical
filter is terminated in a fixed resistance of value
R/Lya = 1.0w,, i.e. an input and output decre-
ment of 1.0 times the frequency variable is used.
The coefficients of coupling between all internal
elements are still maintained equal to 0.50 times
the frequency wvariable, and the coefhicients of
coupling between the first and second elements
and next to last and last elements are kept at
0.707 times the frequency variable. When this
design is used, it is now well known that the type
of response obtained is that* shown in Figure 6B.
The increasing peak-to-valley ratio in the pass-
band makes this type of response objectionable
if it 1s necessary to use a large number of elements
to obtain a high rate of cutoff.

4. Optimum Constant-K-Configuration At-
tenuation Shape of Modern Filter
Theory

When there are stringent requirements on the
pass-band tolerance and rate of cutoff of a filter,
the approximate design procedure of image-
parameter theory is usually discarded and the
much-more-exact insertion-loss design procedure
is used. It is interesting to note that although
this procedure was originated more than 15
yvears ago,®~7 most practicing engineers are still
not familiar with it. ‘

By a series of steps, the history of which is not
very clear, it was realized that the nonoptimum

+G. L. Ragan, “Microwave Transmission Circuits,”
McGraw-Hill Book Company, New York, New York;
1948 chagter 9 by R. M. Fano and A. W. Lawson; pages
576 and 577.

*E. L. Norton, “Constant Resistance Networks with
Applications to Filter Groups,” Bell System Technical
Journal, volume 16, pages 178-193; April, 1937.

¢S. Darlington, “Svnthesis of Reactance 4-Poles,”
Journal of Mathematics and Physics, volume 18, pages
257-353; September, 1939,

19;;3. L. Norton, United States Patent 1 788 538; January,
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response of Figure 6B could be modified so that
the ripples in the pass band were all of equal
level. The obvious application of the known
method of approximating a constant by means of
Chebishev polynomials then led to the following
basically important equation for the optimum
response shown in Figure 6C. For the band-pass
case, BW/f, would simplv be used instead of w.

b 2
Ve V' _ 1] cosh? <n cosh—1 £ )
We
(3)

|4 v,

Where amplitude filtering only is concerned,
i.e. no phase- or time-response considerations are
involved, the attenuation shape of Figure 6C is
optimum in the sense that for a given allowable
ripple in the pass band, (3) produces the maxi-
mum possible rate of cutoff for a given number
of elements.

In (3), n is the number of arms in the ladder
of Figure 5 and w, is the radian frequency at
that point on the skirt where the attenuation is
the same as the peak-to-valley ratio.

When the ripple in the pass band is made to
become zero decibels, then by correctly approach-
ing this limit, (3) becomes (4).

V’2=1+(-‘-“-—)2", (4)

W3db

2

s

vV

where wiap is the radian frequency at that point
on the skirt that is 3 decibels down from the
peak response.

The problem now is to apply the procedures
of modern network theory to the attenuation
shapes (3) and (4) and to svnthesize the network
and element values that will produce this opti-
mum filtering shape.

5. Two Basic Synthesis Procedures of Mod-
ern Network Theory

Given the equation for a desired attenuation
shape (it must be a rational function, of course),
there are at least two basic procedures for syn-
thesizing a corresponding network. For want of a
better name, the first procedure will be called the
direct method and as far as this writer is aware,
Norton was the first to describe this method.”
The second method is properly called the Darling-
ton method and is basically described in refer-
ence 6.
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5.1 Direct METHOD

Step 1. Pick a network configuration that is
known (somehow) to be capable of producing the
desired attenuation shape.

Step 2. By means of Kirchhoff's laws, write the
complex equation for the network response to be
synthesized. For the low-pass ladder, this equa-
tion will be in the form of the ratio of two poly-
nomials in jw of highest power #, and with con-
stant coefficients made up of complicated com-
binations of the L, C, and R elements of the arms
of the network.

Step 3. Solve the desired attenuation-shape equa-
tion (e.g. (3) or (4)) for its 2n complex zeros;
multiply these w zeros by j to make them func-
tions of jw, and then combine the » left-half-
plane zeros to obtain the complex-numerator
polynomial in jw of exactly the same form as that
obtained in Step 2 but with numerical coefh-
cients. Next, solve for the jw attenuation in-
finities and use them to form the denominator
polynomial.

Step 4. Compare the equations of Step 2 and Step
3 and equate the coefhicients of identical powers
of jw. This will result in # simultaneous equations
that must be simultaneously solved for the =n
unknown element values.

Note: This method was described in detail in
reference 1 at a time when the author did not
know of the existence of references 5 and 7.

5.2 DARLINGTON METHOD FOR A UNIFORMLY
DissiPATIVE FILTER

Step 1. Solve the desired attenuation-shape equa-
tion ((3) or (4)) for its 2n complex zeros. Multi-
plv these w/w, zeros by j so that they are func-
tions of j{w/w,).

Step 2. Pick the n left-half-plane zeros and reduce
the magnitude of the real component of these
zeros by an amount equal to the normalized
decrement of each arm, i.e. by an amount
(R/L)/w, = (G/C)/w, for the low-pass ladder.

Step 3. Use these modified # left-half-plane zeros
to form a complex-numerator polynomial in
j(w/w,) having numerical coefficients.
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Solve the desired attenuation-shape equation for its j(w/w,) infinities and use these infinities to

form a denominator polynomial in j{w/w,).

Our modified complex-shape equation will now be in the form of (3).

n n— n—2
. <j£’:>+Un-l(j§:> + Un_s (1—) +..

+ U

Vs
.V B lAimin

Lw \? Wel
—_— te
[(J w,) ‘ ( Wy

with |Almin, which is the square root of the
minimum magnitude of the bracketed poly-
nomial, as vet undetermined.

Step 4. Take the sum of the squares of the real
and imaginary parts of the bracketed poly-
nomials to form the magnitude and by differen-
tiation, or plotting versus the frequency variable,
find the minimum numerical value of this mag-
nitude. This minimum value is |A|%qin.

Step 5. The modified magnitude equation | V,/V|,*
is now equal to the magnitude polynomial
formed in Step 4 divided by the numerical value

l Alzmin‘

Step 6. Subtract from the modified magnitude
equation of Step 5 the numerical value P,/P.
This quantity is the ratio of the power delivered
to the load at the peak response frequency to the

2

I/?

JILes) =)l |

(5)

maximum power available from the resistive
generator. For a resistive generator and a re-
sistive load, an impedance-matched output is
usually desired, so for this case P,/Pn is usually
set equal to 1.0; however P,/P, may be set
equal to any numerical value from 1.0 down to
zero. Absorb this numerical value in the modified
magnitude equation of Step 5 to form a new
numerator polynomial. (The denominator poly-
nomial will remain unchanged.)

Step 7. Solve the numerator polynomial obtained
in Step 6 for its 2n complex zeros. Multiply
these w/w, zeros by j to make them functions
of j(w/w,).

Step 8. Use the n left-half-plane zeros to form a
complex numerator polynomial in j{w/w,) having
numerical coefficients. This complex polynomial
is the numerator of (6).

+ Vo

{

Lw \" . Cw \1 Cw \ "2
Pl W [Almin -

(GE) = S L)+ (@)1

- (6)
|

Step 9. From the numerator polvnomial formed in Step 3 and that formed in Step &, form the

function

2(ji>"+(U_2+ V-g)(j£>"_2+... 1

n—1 n—3
(Unis + Vi) (;f) + Uy + Vo) (;wﬂ) + .. J

(M

Step 10. The function formed in Step 9 is any one of the following four input immittances of
the required lossless network: when 7 is odd, it is Zine/Rs and Yino/Ge: when n is even, it is
Vinee/Ga and Zin oo/ Ra; where R, is the resistive termination on the left side of the network. Know-
ing the locations of the real frequency infinities as given in the denominator of (5), expand the
function in continued-fraction form to obtain the network and element values in terms of R.,.
When performing the expansion, it is necessary to know all the frequencies of infinite attenuation.
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Step 11. When the right-half-plane zeros of Step 7

are used to form the polynomial of Step &, then

the 2nd, 4th, 6th, et cetera, terms will be negative. If we use this polynomial to form the input im-

mittance function, we obtain

2(GE) 4 Wt ad (G2)

n—1 n—3
(U = Vo) (12) 7 4 Grs = Ve (5 2)7 4

Step 12. This function gives the expansion of the
network in Step J0 from the other end, i.e. for »
odd, this function is Zige/Rs and YVinoo/Gs, re-
spectively, and for # even, this function is
Zinoe/Ry and Yi, /Gy, respectively. Assigning
the infinite attenuation frequencies to the same
network elements as in Step 10, expand this
function in continued-fraction form to obtain the
same network as that in Step 10 but with ele-
ment values given in terms of R;, the termination
on the right side of the network.

Step 13. Equating the two expressions for the
same element, i.e. one in terms of R, and the
other in terms of Ry, will give the required ratio
of Ry/R,; all the reactive-element values and the
terminations have now been synthesized. When
the uniform loss used in Step 2 is now added to
this network, it will produce the desired attenua-
tion shape that was used in Step 1.

Jote: If the normalized decrement of Step 2 is
very much smaller than the smallest real coordi-
nate obtained in Step I, i.e. if the network ele-
ments to be used are essentially lossless as is the
case in this paper, then Steps 2, 4, and 5 can be
omitted, which materially reduces the amount of
numerical work that must be done.

It should also be noted that when = is larger
than 5 or 6, a large number of significant figures
must be maintained in the simple partial-
fraction expansion of Step 10 and Step 12. For
the cases of large n, the procedure outlined in
Table 1 on page 298 of Dr. Darlington’s paper®
should be used.

6. Need for Closed-Form Design Equations

The procedures outlined in Sections 5.1 and
5.2 enable the engineer to synthesize a filter of

(8)

14

any number of arms n if the numerical values
contain sufficient significant figures; practically,
this requires the use of a calculating machine and
the time necessary to do the routine work.

The need for a large number of significant
figures for all numerical values is particularly
annoying and so it would be of real service to the
practicing engineer if it were possible to obtain
from the procedures of Sections 5.1 and 5.2
closed-form general solutions for the required
element values.

These closed-form solutions would be obtained
by using the general expressions for the roots in
Step 3 of both procedures so that general expres-
sions are obtained for the coefficients in the poly-
nomials of (5) and (6), then, when the concluding
steps are performed, it may be possible to recog-
nize a law of formation for the required element-
value equations.

7. Element Values Required to Produce the
Butterworth Attenuation Shape of (4)

In January of 1931, E. L. Norton of the Bell
Telephone Laboratories was granted a patent’
showing that he had accomplished this general
solution discussed in Section 6 for the attenua-
tion shape of (4), when the low-pass network of
Figure 5 has a resistance on one side only, the
other side of the network being open-circuited if
it ends in a capacitance or short-circuited if it
ends in an inductance. He used the procedure of
Section 5.1, and for the band-pass case his solu-
tion is as given in (9),

&1 ~
BWoul7a = sn (90%7m) Geen =0 0ON)
( Kr(f-H) )z — cos’ [r(90°/n)] . (9B)
BW.an/ fo [sin (2r — 1)(90°/n)][sin (2r + 1)(90°/n)]
ELECTRICAL COMMUNICATION ¢ December 1953



Then in March of 1932, W. R. Bennett also of
Bell Telephone Laboratories was granted a
patent® showing that he had accomplished the
general solution for the attenuation shape of (4),
when the network has equal resistances on both
sides. He also used the procedure of Section 5.1

and for the band-pass case his solution is as given
in (10).

d!.n _ 1
(B\R’gdb/fo) ~ 2sin (90%/m)°

Using the procedure of Section 5.1 and keeping
the expressions for the polynomial coefficients as
general as possible, the writer was not able to
recognize the law of formation for the coefficient-
of-coupling values. However, using the procedure
of Section 5.1 as described in detail in reference
1 and using numerical values for all the angle
functions, it was very simple to obtain the rela-

(172..(,,_1) = 0, (10}\)

1

( Kr(r-rl) >2
B\\IMl),/fO

8. Element Values Required to Produce
Chebishev Attenuation Shape of (3)

In the two decades that have passed since
Norton and Bennett achieved their closed-form
solutions for the Butterworth response shape, no
one accomplished—or at an rate no one pub-
lished—the closed-form solution for the more-
general Chebishev response shape of which the
Butterworth shape is the limiting case.

In a series of letter discussions with Mr. V. D.
Landon of Radio Corporation of America during
the summer of 1952, this problem was considered
and the general solution for the Chebishev at-
tenuation shape was obtained by the following
means.

#W. R. Bennett, United States Patent 1 849656;
March, 1932,

TABLE 1

CoerFICIENTS OF COUPLING FOR THE
REeacTtIivE-Loap Case

= 4[sin (2r — 1)(90°/n) ] sin (2r '+ 1)(90°/n) ]

(10B)

tions, given in Tables 1 and 2, between the
coefficients of coupling required for the Butter-
worth shape and those required for the Chebishev
shape.

The relations in Table 1 are obtained by first
solving the “Design Equations—Group 3" of
reference 1 for the coupling values required for
the Butterworth attenuation shape with the
3-decibel-down bandwidth as the reference band-
width and with d: to d,, inclusive, set equal to
zero. Then the “Design Equations—Group 5" in
reference 1 were solved for the coupling values
required for the Chebishev attenuation shape—
also with d, to d,, inclusive, set equal to zero.
Here, it should be noted the reference bandwidth
is the “valley-decibel-down” bandwidth, not the
3-decibel-down bandwidth.

TABLE 2

"~ CoEFFICIENTS OF COUPLING FOR THE RESsISTIVE-
LoAD RESISTIVE-GENERATOR CASE

"o % = 54t cost (90°/2) n=2 —-——(g\::j:dzg = 5 + 1.000

"ol T%=S‘!+O'ZSOO n=3 %=S;+o.7soo

"ot fgﬁ%ﬁ =S¢ 01404 n=4 % = S + 0.500
% = 54+ 08535 % =S¢+ 0.500
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The relations in Table 2 are obtained by first
solving the ‘‘Design Equations—Group 3" of
reference 1 for the coupling values required for
the Butterworth attenuation shape with the
3-decibel-down bandwidth as the reference band-
width and with d; to d..,, inclusive, set equal to
zero. Next the “Design Equations—Group 5"
for the Chebishev shape were solved with the
“‘valley-decibel-down" bandwidth as the refer-
ence bandwidth, and d; to d,_; set equal to zero.

With the above relations established and real-
izing that the numerical values in the relations
are formed from combinations of the sin and cos
of multiples of (90°/n), it was a relatively simple

Actually, due to the hint given by the doubl..
tuned-circuit relation, the angle function first -
obtained was cos? (n — r) (90°/n); it was thep
realized that this was identical to the function
given in (11).

For the resistive-load resistive-generator case,
it was immediately noted that the numbers 4n
Table 2 were the squares of 1.0, 0.866, and 0.707,
which in conjunction with the hint given by the
form of the solution for the double-tuned circuit
led to the realization that all the ratios in Table 2
were given by the simple function (12).

(Krirany/ Fo)%
(Krit1y/ Fsan)s

Q

= S, + sin? <2r2%-

) @

%

TO OBTAIN THE SHAPE <‘_"e)2=1+[<

v,

V.

BW }

> — 1] cosh~{n cosh™! BW.

Qi.n _2sind
fo/BW, S,

Kr(r+1)

RESISTIVE GENERATOR AND RESISTIVE LOAD

Qzan—1y=

[Sa2+sin? 276

[BW./fJ 4

sin (27 —1)8} {sin (2r+1)6}

Ql _Siﬂ 0
fo/BW, S,

REsISTIVE GENERATOR AND REACTIVE LoAD (OR VICE VERSA)

Qz-oﬂ= o

[S.2+sin? 78]

[ Kr(r+l)

BW./fo] " sec? (r8) {sin (2r —1)8} {sin (2r+1)6}

_90°
- n

6

Sa =sinh{—71; sinh™![(V,/V,)? _13—%}

Figure 7—The new design equations for nondissipative inverse-arm filters.

matter to discover that function of (90°/n) that
produced the numerical values in the two tables.

For the reactive-load case, the relation for the
double-tuned circuit, i.e. n=2, could actually be
made in closed form as given in Table 1, and
using this as the starting point it required a rela-
tively small amount of work to see that all the
ratios in Table 1 were given by the simple
function of (11).

o

(Keray/F2  _ os : 2( 90°
(Kewsn/Frav)t Se o st L

). an

Actually, due to the form of the double-tuned-
circuit solution, the angle function first obtained
was cos? (n — 2r) (90°/n); it was then realized
that this was identical to the function given in
(12). '

Since Norton and Bennett had obtained the
,solutions for (K,¢+1/Fan)s as given in Section
»7, the relations of (11) and (12) now give us
immediately the desired solutions for the co-
efficients of coupling required for the general
Chebishev attenuation shape.
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For the required input and output decrement
values, the same procedure used to obtain the
values given in Tables 1 and 2 showed immedi-
ately that for both the reactive-load case and the
resistive-load resistive-generator case the relation
between the decrement required for the Chebi-
shev shape and that required for the Butterworth
shape is as given in (13).

(“—“((z%f)\c‘ = S (13)

Equations (11), (12), and (13) combined with
the solutions of Section 7 are the desired design
equations, and they have been combined to form
Figure 7; they are the two new sets of equations
for the design of the constant-k-configuration
filters that are referred to in the title of this
paper.

As indicated at the top of the figure, the atten-
uation shape that will be obtained will be the
optimum Chebishev attenuation shown in Figure
6C. It is important to realize that the design
equations of Figure 7 are given in terms of the
‘“valley bandwidth"” (BW,) which is the band-
width between the points on the skirt that are
down by the same number of decibels as the
peak-to-valley ratio V,/V,. The quantity S,-is a
function of the number of resonators n used and
the peak-to-valley ratio desired, and the reader
should note that as V,/V, approaches unity, S.
becomes very large and therefore the required
K's will be a large number of times the fractional
valley bandwidth. However, a required bandwidth
at some other decibels down rather than at the
valley-decibels down is very often specified, and
it is therefore necessary to get the numerical

\J BW,=BW, k/ \-j BW,,=BW, \-

relation between the valley-decibels-down band-
width and the specified-decibels-down bandwidth

by using the shape equation at the top of Figure
7.

9. Application of Design Equations to the
Low-Pass Ladder

As previously indicated, if one writes the trans-
fer-impedance equations for the low-pass ladder,
compares them to those obtained for the band-
pass case, and uses a suitable normalizing pro-
cedure, it is found that in the low-pass case the
frequency variable « (i.e., 27 f) is exactly equiva-
lent to the band-pass-case frequency variable

(- 2) 2BY

o w o fo '
and in the low-pass case the quantity

1/(Laeriea ahunt) ¥

isexactly equivalent to the well-known coefiicient
of coupling of band-pass-coupled-circuit theory;
and the quantity L/R in a series arm and RC
for a shunt arm are exactly equivalent to the
well-known resonant-frequency Q of band-pass
circuit theory. Thus to apply the equations of
Figure 7 to a low-pass ladder, we do the following :

In place of BW,/f, use w,.
In place of Q; use L;/R; or R,C,.
In place of K, (41 use

1/(LrCria)*

or

1/(G L)%,

Vp
-v- T —
h
BW, =BW, BW,
: Vv
Ve BW, P
Vy e Va
A " B c

Figure 8—The optimum eliiptic-function response shapes for m-derived-configuration filters. See Section 10.
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10. Corresponding Problem for m-Derived
Configurations

Exactly equivalent to the optimum attenua-
tion shape of (3) for constant-k-configuration
filters, there is an optimum attenuation shape for
m-derived-configuration filters. This shape 1s
shown in Figure 8 and is optimum in the sense
that for a given allowable ripple in the accept
band, a given minimum attenuation in the reject
band (for a width equal to 10 accept bandwidths),
and a given number of arms, it produces the
sharpest possible rate of cutoff between the
accept and reject bands.

Still to be discovered are the general design
equations equivalent to those of Figure 7, which
give the element values required to produce the
optimum shapes to be described below. Just as
the Chebishev shape of (3) changes in form for
the limiting case of 0-decibel ripples and becomes
(4), so does the optimum m-derived-shape equa-
tion change in form. Section 10.1 will consider
the general equation and Section 10.2 will con-
sider the limiting case of 0-decibel ripples in the
pass band.

10.1 OpTIMUM ATTENUATION SHAPE FOR m-
DEerRIVED-CONFIGURATION FILTERS

All the following discussion will relate to the
band-pass case and it will be assumed that the
reader realizes it is immediately applicable to the
low-pass case when the frequency variable w is
used in place of BW/f,. As evolved by Norton
and Darlington, plus a simple modification, the
optimum shape is given by (14).

cn

).

(5), sw
dn )y

BW,
(V,,/V,)2 — 1]}6
(Vo/ V)2 — 1

V.

pz
7, "1)(

"%
n

K,
0=

f=

LA

} , (14A)
where

(13)

BW, " (16)

For a given number of arms 7, in (14), vand f
cannot be picked independently but must always

satisfy the relation between the three quantities
given by (17).

(17
where ¢ is the so-called modular constant of the
modulus given by the subscript. The function
log g« is tabulated on pages 49-51 of the 194§
edition of Jahnke and Emde; and the Smith-
sonian Elliptic Function Tables compiled by
S. W. and R. M. Spenceley contains a very useful
short appendix dealing with the numerical com-
putation of the various elliptic functions. (It will
be noted that for modulus values & less than 0.1
(say), the corresponding modular constant is
simply g = (k/4)%) In (14), the symbol cn/dn
stands for the ratio of the two elliptic functions
cn over dn, where the subscript v or f is the
modulus of the function; and K, and K are the
complete elliptic integrals of the first kind, evalu-
ated for the modulus value given by the subscript.

It is evident from Figure 8 that the modulus »
in (15) is immediately set by fwo voltage ratios,
i.e. the maximum allowable ripple in the pass
band V,/V, and the minimum required attenua-
tion in the reject band V,/V,. Similarly, the
modulus fin (16) is immediately set by the ratio
of fwo bandwidths, i.e. the valley bandwidth
BW, and the “hill” bandwidth BW,, which are
the two bandwidths on the attenuation skirts
where the attenuation is equal to the peak-to-
valley ratio V,/V, and peak-to-hill-ratio V,/V,,
respectively.

Equation (14A) takes on two different forms
depending on the part of the attenuation charac-
teristic in which one is interested. From the
middle of the pass band out to the valley band-
width, i.e. when BW/BW, is less than unity,
(14A) stays as given. In the cutoff region between
the edge of the valley bandwidth and the edge of
the hill bandwidth, i.e. where BW/BW, varies
between unity and 1/f, (14A) turns into (14B).

log gy = n log ¢4,

Y_pz
V

(Vyo/ Vo)t = 1
[n(K./K Ydn~(BW./BW)]
(148)

=1+dn,

i

The prlme indicates the complimentary modu-
lus,ie.v' = (1 —e)¥and f/ = (1 — ). (Note
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also the inversion of the bandwidth ratio in the
bracketed expression.)

Finally outside the hill bandwidth, i.e. where
BW/BW, is greater than 1/f, (14A) turns
into (14C). '

Vol?

7| =1

+ (Vo/ Vi) =1
(en/dn).* n(K./Ky)(en/dn)~ (BW,/BW)]’
(14C)

and of course the relations of (15), (16), and (17)
apply to (14A), (14B), and (14C).

In the above equations, the writer has used
the (cn/dn) elliptic function rather than the (sn)
elliptic function because with the former a single
equation (14) can be written that holds for both
n odd and n even. Similarly, the important zero-
and pole-location equations that follow will apply
to both 7 odd and » even. Insofar as numerical
work is concerned, the fact that (cn/dn)u
= sn (K — u) enables the ¢n/dn values to be
obtained from the more-common sz tables.

It should be mentioned that when an even
number of arms 7 is to be used, (14) calls for a
finite attenuation at infinite frequency. To pro-
duce this phenomenon, it is necessary to make
the numeric P,/P, in Step 6 of the Darlington
procedure equal to zero; this will then produce
a short-circuited termination for a network end-
ing in a series arm, or an open-circuited termina-
tion for a network ending in a shunt arm, which
will in turn produce finite attenuation at infinite
frequency.

For both the direct procedure and the Darling-
ton procedure, it is necessary to solve (14) for
its j(BW/BW,) zeros; the left-half-plane zeros
are given in (18), (184), and (18B).

FBWo/BW ) = — 1, &= jim®  (18A)

. _[(snfen)p B3 f"*(sn/dn) 1 Am] (18B)
™ T T+ PLGn/on) 2B T (on/dn) F 4]

[(dn/cn?)p B JL(en/dmdn'] (150

" = TF P (n/en), BT (cnfdn) P Am Y
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where the angles 4,.° and Bc are given by (19).

Ant = 2m — 1)(K,;/n) (19A)

O (AR

It should be realized that, for modulus values
as close to unity as is ¢’ in practical cases, one
can use the approximation (sn/cn)~! = sinh™1.

Thus for lossless elements, the numerator poly-
nomial of (5) required by Step 3 of both the
direct and Darlington procedures is obtained by

multiplying together a total of # factors each of
the form

L(BW/BW,) ~ (= 7m® % jin)],

where r,° and 7.° are given by (18) and (19).
This procedure will now give us the U coefficients
of (3).

Next needed for the Darlington procedure are
the zeros of the equation formed when the nu-
meric P,/P, is subtracted from (14); the two
most-common cases are considered in the next
two paragraphs.

For resistive loading in both sides, impedance-
matched output is usually desired at the peaks,
and for this case P,/P,, = 1.0. The j(BW/BW,)
zeros required in Step 7 of the Darlington pro-
cedure are then for this impedance-matched case
given by (20).

BW,\ . [ cn K,

Thus the numerator polynomial of (6) required
by Step & of the procedure is obtained by multi-

plying together a total of n factors each of
the form

Li(BW/BW.) — (% 74)],

where 1 is value of the j term in (20). This pro-
cedure will now give us the V coefficients of (6).
The input-immittance equations (7) and (8)
can now be formed. _
For a reactive load on one side of the network,
P,/Pyn = 0, and so the zeros of Step 7 will be
identical to those used for Step 3, and thus the V
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coefhicients of (6) will be identical to the U coeffi-
cients of (5). Thus for this case as soon as the U’s
are obtained, (7) can be formed.

In the continued-fraction expansion procedure,
it is necessary to know the frequencies of infinite
attenuation and to assign these frequencies to
specific arms of the network ; the infinite-attenua-
tion frequencies of (14) are given by (21).

BW.\ .1
(J BW, >,,, =0+ I Flenjdn), A e (21)

It has not yet been possible to recognize the
law of formation that would give a closed-form
solution for the network values.

10.2 Limiting Case or No RIPPLES IN THE
Pass BAND OF m-DERIVED-CONFIGURATION
FiLTERS

When the peak-to-valley ratio V,/ V. in (14B)
is made to approach 0 decibels and the equation
is expressed in terms of the hill bandwidth BW),
instead of valley bandwidth, then in the limit
the response equation becomes (22) and the
shape is that of Figure 8C.

A (Vo /Var—1
Vi cosh? [ cosh™ (BW,/BW) ]

(22)

It 1s of interest to note that if one applies (22)
to two points on the skirt and allows the V,/V;
ratio to become infinite, then the Butterworth
equation (4) results. Similarly, (14) would turn
into the Chebishev equation (3) if the V,/V,
ratio is correctly made to approach infinity.

Paralleling the paragraphs of Section 10.1 to
obtain the required element values, we must
solve (22) for its j(BW/BW,) zeros; the n left-
half-plane zeros are given by (23), (23A),
and (23B).

FBWy/BW,) = — r.b =+ jib (23)
where
» . sinh B¥sin 4,
Tm SmhI B® & cost A0 (23A)
and
b b
cosh B? cos 4, (23B)

.
I = —
i sinh? B? 4 cos? 4,
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where the angles An* and B® are given by (24),

A4, = (2m - 1)(90°/n) } (20)
B = (1/n) sinh™ [(V,/V3)? — 1%, .

Thus the numerator polynomial of (5) required
by Step 3 of both the direct and Darlington pro- .
cedures is obtained for lossless elements by multi-
plyving together a total of n {actors of the form

D(B\N’/B\‘Vh) - ("’ rmb =+ jimb)]:

where r,b ahd ¢.* are given by (23). This pro-
cedure will now give us the required U coeffi-
cients of (5). ‘

Next needed are the zeros of the equation
formed when the numeric P,/P,, is subtracted
from (22).

For the impedance-matched case where P,/P.,
= 1.0, the j7(BW/BW,) zeros of Step 7 are all
zero, so that the numerator polynomial (6) of
Step § is simply the one term j(BW/BW;)" and
all the V coeficients are zero. Thus for this
attenuation shape and for the impedance-
matched case, the input-immittance equations
(7) and (8) can be formed as soon as the U’s are
obtained.

For the reactive-load case, P,/P,, = 0 and so
the V coefficients of (6) are identical to the U7
coefficients of (5), and as soon as the U’s are ob-
tained the input immittance (7) can be written.

As in Section 10.1, it is necessary to know the
frequencies of infinite attenuation and to assign
these frequencies to specific arms of the network.
These infinite-attenuation frequencies of (22) are
given by (23).

Peman
[ 2]
(1]
p——

BW.Y . 1
(J BW, ),n =0+ 5dm

It has not vet been possible to recognize the
law of formation that would give a closed-form
solution for the network values.

11. Postscript—Recent Publications on this
Subject

'In Section 8§, it was mentioned that in the 20
years that have passed since Norton and Bennett
obtained their solutions, no one published the
more-complicated Chebishev solutions. The at-
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tention of the writer has been directed to the
following three papers whose existence empha-
sizes the often-repeated phenomenon that when
the time is ripe, a problem is usually solved
almost simultaneously in many parts of the
world.

Ernest Green has apparently accomplished
the most, for in his paper,? equations (2), (3),
(5), and (6) give the general solutions for the
Butterworth and Chebishev responses for any
ratio of terminations instead of merely for equal

loading on both sides or for loading on one side

only.
The first paper to be published with the general
*E. Green, “Exact AmBIitude Frequency Character-

istics of Ladder Networks,” Marconi Review, volume 16,
number 108, pages 25-68; 1953.

solution for the case of equal loading on both
sides is that of Vitold Belevitch.?®

Finally, H. J. Orchard" using an “intuitive”’
process that was probably similar to that used
in Section 8 of this paper, obtained the solution
for the case of loading on one side only.
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. X_ o 2
sinh(x) = ez—ex tanh(x)= gzi—+1
cosh(x) = # coth(x) = gg—ﬂ

cosh’(x) - sinh’(x) = 1
arsinh(x) = In(x +}>x3+1)

artanh(x) = JIn(1:%)
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arcosh(x)=In(x +}x?-1)

arcoth(x) = In(Xx1)
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