

 PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Document Number: 001-96130 Rev. *C Revised December 17, 2015

Features

 CAN2.0A and CAN2.0B protocol implementation, ISO 11898-1
compliant

 Supports standard 11-bit and extended 29-bit identifiers

 Programmable bit rate up to 1 Mbps

 Up to 16 receive mailboxes with hardware message filtering

 Up to 8 transmit message mailboxes with programmable transmit priority: Round Robin
and Fixed

 Two-wire or three-wire interface to external transceiver (tx, rx, and tx enable)

 Supports listen-only mode of operation

 Supports single shot transmission, as well as internal and external loopback modes [1]

General Description

The Controller Area Network (CAN) controller implements the CAN2.0A and CAN2.0B
specifications as defined in the Bosch specification and conforms to the ISO-11898-1 standard.

The CAN component is certified by the C&S group GmbH based on the standard protocol and
data link layer conformance tests. A complete certification report can be made available on
request.

When to Use a CAN

CAN was defined by Bosch and is widely used in Industrial and Automotive applications for high
reliability systems. In the Automotive market, it is used in engine control units, sensors, safety
systems, etc. and is used as a network connection bus for vehicle body electronics (lamp
clusters, electric windows etc.).

The component can be used for setting up the CAN communications in order to transmit and/or
receive messages over CAN network.

1 Not available for PSoC 3/PSoC 5LP device families

Controller Area Network (CAN)
3.0

https://secure.cypress.com/myaccount/index.cfm?id=25&createCase=CustomerMarketing

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 2 of 52 Document Number: 001-96130 Rev. *C

Input/Output Connections

This section describes the various input and output connections for the CAN Component. An
asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

rx – Input

CAN bus receive signal (connected to CAN Rx bus of external transceiver).

tx– Output

CAN bus transmit signal, (connected to CAN Tx bus of external transceiver).

tx_en – Output *

External transceiver enable signal. This output displays when the Add transceiver enable
signal option is selected in the Configure dialog.

interrupt – Output *

External interrupt signal. This output displays when the Enable external interrupt line option is
selected in the Configure dialog.

Schematic Macro Information

The Component Catalog provides a schematic macro for the CAN component with rx and tx
terminals connected to Input and Output Pin components respectively. The schematic macro has
the default configuration settings for the CAN and cy_pins components.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 3 of 52

Component Parameters

Drag a CAN component onto your design and double-click it to open the Configure dialog. This
dialog has several tabs to guide you through the process of setting up the CAN component.

Component Update Note

If updating the CAN component from a previous version, many of the parameters have been
given a new format and must be converted. To do so, open the Configure dialog, change at
least one parameter option, and click OK to save the change.

General Tab

The General tab contains the following settings:

Add transceiver enable signal

Enables or disables the use of the tx_en signal for the external CAN transceiver. Enabled by
default.

Note The interface between controller and transceiver chip is not standardized as per the CAN
specifications. The transceiver enable signal in the PSoC CAN component works well with NXP
TJA1050 transceiver logic, which is treated as an industry standard transceiver. If your
transceiver is not compliant to this logic, then disable the transceiver enable signal in the
component and use a firmware controlled Pin component to enable/disable the transceiver.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 4 of 52 Document Number: 001-96130 Rev. *C

Transmit buffer arbitration

Defines the message transmission arbitration scheme:

 Round Robin (default) – Mailboxes are served in a defined order: 0-1-2 ... 7-0-1. A
particular mailbox is only selected if its TX_REQ flag is set. This scheme guarantees that
all mailboxes receive the same probability to send a message.

 Fixed priority – Mailbox 0 has the highest priority. This way it is possible to designate
mailbox 0 as the mailbox for error messages and guarantee that they are sent first.

Bus-off restart

Used to configure the reset type:

 Manual (default) – After the bus is turned off, you must restart the CAN. This is the
recommended setting.

 Automatic – After the bus is turned off, the CAN controller restarts automatically after 128
groups of 11 recessive bits.

CAN bus synchronization logic

Used to configure edge synchronization:

 ‘R’ to ‘D’ (default) – Edge from ‘R’(recessive) to ‘D’(dominant) is used for synchronization

 Both edges – Both edges are used for synchronization

Data byte endianness

This option is not available for PSoC 3/PSoC 5LP device families. The byte position of the CAN
receive and transmit data field endianness can be modified using this setting

 Big endian (default) - CAN data byte endianness is not swapped.

 Little endian - CAN data byte endianness is swapped during transmission/reception.

A graphical representation of the order of transmitted bytes is provided in the component
customizer based on this setting.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 5 of 52

Timing Tab

The Timing tab contains the following settings:

Calculator

 Clock frequency (in kHz) – The system clock frequency equal to BUS_CLK (PSoC 3/
PSoC 5LP) or SYSCLK (PSoC 4200).

 Desired baud rate (in kbps) – Options are: 10, 20, 62.5, 125, 250, 500, 800, or 1000.

 Sample mode – Configuration of sampling mode. Options are: 1-Sample or 3-Sample.

Settings

 BRP – Bit Rate Prescaler value for generating the time quantum. The bit timing calculator
is used to calculate this value. 0 indicates 1 clock; 7FFFh indicates 32768 clock cycles, 15
bits.

 Tseg1 – Value of time segment 1.

 Tseg2 – Value of time segment 2. Values 0 and 1 are not allowed; Value 2 is only allowed
when Sample Mode is set to direct sampling (1-Sample).

 SJW – Configuration of synchronization jump width (2 bits). The value must be less than
or equal to Tseg1 and less than or equal to Tseg2. Options are: 1, 2, 3, or 4.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 6 of 52 Document Number: 001-96130 Rev. *C

The following shows the CAN bit timing representation:

Tseg1

prop_seg + phase_seg1

Tseg2

phase_seg2

Sample Point
Synchronization

Segment
1 or 3 Sample Mode

Nominal Bit Time = 8...25 TQ (Time Quanta)

SJW: 1...4TQ

Table

Bit timing is calculated as per the ISO specifications, and the proposed register settings for time
segments (BRP, Tseg1, Tseg2, and SJW) are displayed in the parameter table. You can select
the values to be loaded by double-clicking the appropriate row. Selected values are displayed in
the Settings input boxes.

You may also choose to manually enter values for Tseg1, Tseg2, SJW and BRP in the provided
input boxes. Incorrect bit timing settings might cause the CAN controller to remain in an error
state. So, if the values entered manually do not match any of the values given in the table, the
component displays a warning message: “An invalid set of BRP/Tseg1/Tseg2/SJW is entered.
Please select a valid set from the table."

In order for CAN component to operate properly, clock configuration should be set carefully. It is
suggested that clock frequency is set as a multiple of desired baud rate. Also, accuracy of clock
used (BUS_CLK for PSoC 3/PSoC 5LP or SYSCLK for PSoC 4200) must match the CAN clock
tolerance requirement which is:

 1.58% or better for 125kbps and slower bit-rates

 0.5% or better for bit-rates faster than 125kbps

Configurations that don’t fit within CAN clock tolerance range are removed from the table. In
case when there are no rows provided in the table, warning message is displayed by the
component and user might have to change the clock settings to get a valid configuration in the
table.

It is recommended to use an external XTAL or an external clock with higher accuracy as the
clock source for the chip, if the internal clock tolerance is less than the desired value.

For the PSoC 4200 device family, it is recommended to enable the WCO PLL lock to achieve the
desired clock tolerance for the CAN block. Clock settings can be configured in the PSoC Creator
Clock Editor (Clocks tab in the Design-Wide Resources (*.cydwr) file). For more information,
refer to PSoC Creator Help.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 7 of 52

The calculator computes the variance value for all bit timing configurations and displays it in the
Variance column (in percent). Variance indicates a deviation of actual baud rate from its nominal
value. This deviation is composed of clock accuracy range and rounding error for clock
frequency/baud rate ratio. Calculator table is sorted by Variance ascending, and then by Sample
point descending, so preferable configurations appear on the top of the table.

The table also displays the maximum allowed propagation delay for the each of the
configurations (Propagation Delay (ns) column). The worst case propagation delay estimated
for the CAN bus must be less than or equal to this value. The length of propagation delay
becomes more predominant at higher baud rates.

Bit Time Segments

The following diagram shows an example of how all timing is derived from the oscillator.

Oscillator

BRP (Baud Rate Prescaler)

User Definable

1 Bit Time

(10 Time Quanta)

CAN System

Clock

tCLK

Sync-Seg

1 Time Quanta

(fixed)

TSEG1 (prop_seg + phase_seg1)
(user definable)

5 Time Quanta 4 Time Quanta

TSEG2 (phase_seg2)
(user definable)

CAN Bit

Period

Sample Point(s)

SYNC SEG (Synchronization Segment)

This part of the bit time is used to synchronize the various nodes on the bus. An edge is
expected to lie within this segment.

PROP SEG (Propagation Time Segment)

This part of the bit time is used to compensate for the physical delay times within the network. It
is twice the sum of the signal's propagation time on the bus line, the input comparator delay, and
the output driver delay.

PHASE SEG1, PHASE SEG2 (Phase Buffer Segment1/2)

These phase-buffer segments are used to compensate for edge phase errors. These segments
can be lengthened or shortened by resynchronization.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 8 of 52 Document Number: 001-96130 Rev. *C

Sample Point

The sample point is the point in time at which the bus level is read and interpreted as the value
of that respective bit. It is located at the end of PHASE_SEG1.

Information Processing Time

The information processing time is the time segment starting with the sample point reserved for
calculating the subsequent bit level.

Time Quantum

The time quantum is a fixed unit of time derived from the oscillator period. There is a
programmable prescaler (BRP), with integral values, ranging from 1 to 32768. Starting with the
minimum time quantum, the time quantum can have a length of

TIME QUANTUM = m × MINIMUM TIME QUANTUM,

where m is the value of the prescaler.

Length of Time Segments

 SYNC_SEG is 1 time quantum long.

 PROP_SEG is programmable to be 1, 2, …, 8 time quanta long.

 PHASE_SEG1 is programmable to be 1, 2, ..., 8 time quanta long.

 PHASE_SEG2 is the maximum of PHASE_SEG1 and the information processing time

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 9 of 52

Interrupt Tab

The Basic interrupt configuration tab contains the following settings:

Enable interrupts

Enable or disable global interrupts from the CAN Controller. Enabled by default.

 Enabled – Global interrupts are enabled when the CAN component is started using
CAN_1_Start().

 Disabled – Global interrupts are not enabled when the CAN component is started using
CAN_1_Start(). The CAN ISR is not entered until the global interrupt enable bit is set. It is
your responsibility to enable or disable global interrupts in main code, using
CAN_1_GlobalIntEnable() or CAN_1_GlobalIntDisable().

When disabling the global interrupts, the CAN component displays the following message:

"Interrupts will not be generated by the CAN component if the Enable interrupts option is
unchecked. Do you want to disable all mailbox interrupts on Receive Buffers and Transmit
Buffers tabs (IRQ column)?"

□ Yes – Uncheck the Enable interrupts check box, and uncheck all individual
interrupts (IRQ) on the Transmit Buffers and Receive Buffers tabs. All the
interrupt options are grayed out as well.

□ No (default) – Uncheck the Enable interrupts check box and keep all individual
transmit and receive mailbox interrupts as they are.

□ Cancel – No changes are made.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 10 of 52 Document Number: 001-96130 Rev. *C

Message transmitted

Enable or disable message transmitted interrupts. Disabled by default. Indicates that a message
was sent. When disabling the Message transmitted interrupt, the CAN displays the following
message:

"Do you want to disable all mailbox interrupts on Transmit Buffers tab (IRQ column)?"

 Yes – Uncheck the Message transmitted check box, and uncheck all individual transmit
mailbox interrupts on the Transmit Buffers tab.

 No (default) – Uncheck the Message transmitted check box, and keep all individual
transmit mailbox interrupts on the Transmit Buffers tab as they are.

 Cancel – No changes are made.

Message received

Enable or disable message received interrupts. Enabled by default. Indicates that a message
was received. When disabling the Message received interrupt, the CAN displays the following
message:

"Do you want to disable all mailbox interrupts on Receive buffers tab (IRQ column)?"

 Yes (default) – Uncheck the Message Received check box, and uncheck all individual
receive mailbox interrupts on the Receive Buffers tab.

 No – Uncheck the Message Received check box, and keep all individual receive mailbox
interrupts on the Receive Buffers tab as they are.

 Cancel – No changes are made.

Receive buffer full

Enable or disable message lost interrupt. Indicates that a new message was received when the
previous message was not acknowledged. Disabled by default.

Bus off state

Enable or disable Bus off interrupt. Indicates that the CAN node has reached the Bus off state.
Enabled by default.

CRC error detected

Enable or disable CRC error interrupt. Indicates that a CAN CRC error was detected. Disabled
by default.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 11 of 52

Message format error detected

Enable or disable message format error interrupt. Indicates that a CAN message format error
was detected. Disabled by default.

Message acknowledge error detected

Enable or disable message acknowledge error interrupt. Indicates that a CAN message
acknowledge error was detected. Disabled by default.

Bit stuffing error detected

Enable or disable bit stuffing error interrupt. Indicates that a bit stuffing error was detected.
Disabled by default.

Bit error detected

Enable or disable bit error interrupt. Indicates that a bit error was detected. Disabled by default.

Overload frame received

Enable or disable overload interrupt. Indicates that an overload frame was received. Disabled by
default.

Arbitration lost detected

Enable or disable managing arbitration and cancellation of queued messages. Indicates that the
arbitration was lost while sending a message. Disabled by default.

Single shot transmission failure

Enable or disable interrupt for capturing errors during single shot transmission. Indicates that the
mailbox set for single shot transmission experienced an arbitration loss or a bus error during
transmission. This option is not available for PSoC 3/PSoC 5LP part families.

Stuck at zero

Enable or disable interrupts to capture errors stuck at dominant errors. Indicates if the rx input
remains stuck at 0 (dominant level) for more than 11 consecutive bit times. This option is not
available for PSoC 3/PSoC 5LP part families.

RTR automatic reply sent

Enable or disable interrupt to handle the automatic reply message transmission for an RTR
request. Indicates that a RTR auto-reply message was sent. This option is not available for
PSoC 3/PSoC 5LP part families.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 12 of 52 Document Number: 001-96130 Rev. *C

Advanced interrupt configuration

Enable advanced settings.

Enable external interrupt line

Enable external visibility and connectivity of the CAN block interrupt line. Default is cleared
(external interrupt line not visible in the CAN component symbol instance). In the PSoC 4200M
device family, the internal ISR is disabled automatically if the Enabled External Interrupt Line is
selected.

Disable internal ISR

Disable or bypass internal ISR component. If the internal ISR is disabled, the relevant CAN APIs
do not handle the ISR start/stop processes. Default is cleared (internal ISR is enabled).

The check box is available (not grayed out) only if Enable external interrupt Line is selected.
You can disable the internal ISR only if there is an alternate provision (external interrupt line) to
handle interrupts. For the PSoC 4200M device family, this option is selected automatically when
the Enable external interrupt line option is checked.

Full Custom Internal ISR

Enable the use of the internal ISR with fully custom code. When this option is selected, the
CAN_1_ISR contains no code. Put your custom code between the lines:

 /* Place your Interrupt code here. */

 /* `#START CAN_ISR` */

 /* `#END` */

Or use CAN_1_Isr_Callback() macro callback.

Default is unselected.

The check box is available (not grayed out) only if Disable Internal ISR is unchecked.

ISR Helper Function Call

If only basic interrupt settings are used, when an interrupt occurs, the CAN ISR calls relevant
user-customizable functions (ISR helpers) based on the enabled interrupts.

These options give you the opportunity to enable or disable ISR helper calls, so that custom
handling of specific interrupts can be implemented both in hardware and firmware.

Default is Enable.

These options are available (not grayed out) if the relevant interrupt event is enabled AND Full
custom internal ISR is not checked AND Disable internal ISR is not checked.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 13 of 52

Receive Buffers Tab

The Receive Buffers tab contains the following settings:

Mailbox

A receive mailbox is disabled until Full or Basic is selected. The IDE, ID, RTR, RTRreply and
IRQ fields are locked for all disabled mailboxes.

For Full mailboxes, the Mailbox field is editable to enter a unique message name. The API
provided for handling each mailbox will have the mailbox string appended. Accepted symbols
are: A–Z, a–z, 0–9, and _. If you enter an incorrect name, an error message displays and the
Mailbox field returns to the default value.

Full

When Full is selected, you can modify the Mailbox, IDE, ID, RTR, RTRreply, IRQ and Linking
fields. Default selections are placed with the following options:

 Mailbox = Mailbox number 0 to 15

 IDE = Cleared

 ID = 0x001

 RTR = Cleared

 RTRreply = Cleared and locked (only enable when RTR is selected)

 IRQ = Checked if Message received (Interrupt tab) interrupt is selected

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 14 of 52 Document Number: 001-96130 Rev. *C

 Linking = Cleared

Basic

If Basic is selected, the options IDE, ID, RTR, RTRreply are unavailable. Default selections are
placed with the following options:

 IDE = Cleared (unavailable)

 ID = <All> (unavailable)

 RTR = Cleared (unavailable)

 RTRreply = Cleared (unavailable)

 IRQ = Cleared

 Linking = Cleared

IDE

When the IDE box is cleared, the identifier is limited to 11 bits. When IDE is selected, the
identifier is limited to 29 bits.

ID

The message identifier. The 7 most significant bits of CAN message ID cannot be all recessive,
so its range is from 0x000 to 0x7EF for standard 11-bit identifier and to 0x1FBFFFFF for
extended 29-bit identifier (IDE).

RTR - Remote Transmission Request

When selected in Full CAN mode, it configures the acceptance filter settings to only allow receipt
of messages whose RTR bit is set.

It is not recommended to select this in Basic CAN mode as the receiving node will have to
process the message and prepare the response in software within the limited time frame.

RTRreply - Remote Transmission Request Auto Reply

Only available for mailboxes set up to receive Full CAN messages, with the RTR bit set. When
checked, it automatically replies to an RTR request with the content of the receive buffer.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 15 of 52

IRQ

When enabling the IRQ for a mailbox, if the Message received interrupt in the Interrupt tab is
cleared, the following message is displayed: Global “Message received” interrupt is disabled.
Do you wish to enable it?

 Yes (default) – Select the IRQ check box and select the Message received Interrupt
check box on the Interrupt tab.

 No – Select the IRQ check box and leave the Message received Interrupt check box in
the Interrupt tab as is.

 Cancel – No changes are made.

Linking

The Linking check box allows the linking of several sequential receive mailboxes to create an
array of receive mailboxes. This array acts like a receive FIFO. All mailboxes of the same array
must have the same message filter settings; that is, the acceptance mask register (AMR) and
acceptance code register (ACR) are identical.

 The last mailbox of an array may not have its linking flag set.

 The last mailbox 15 cannot have its linking flag set.

 All linked mailboxes are highlighted with the same color.

 Only the first mailbox in the linked array is editable. All parameters are automatically
applied to all linked mailboxes within the same array.

 One function is generated for all linked mailboxes.

Receive Message Functions

Every Full RX mailbox has a predefined API. The function list is available in the
CAN_1_TX_RX_func.c project file. These functions are conditionally compiled depending on the
receive mailbox setting. Only mailboxes defined as Full have their respective functions compiled.

The macro identifier CAN_1_RXx_FUNC_ENABLE defines whether a function is compiled.
Defines are listed in the CAN_1.h project file.

 When a message received interrupt occurs, the CAN_1_MsgRXIsr() function is called.
This function loops through all receive mailboxes and checks their respective “Message
Available Flag” (MsgAv – Read: 0 No new message available; 1 New message available)
and “Interrupt Enable” (Receive Interrupt Enable: 0 Interrupt generation is disabled, 1
Interrupt generation is enabled) for successful receipt of a CAN message.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 16 of 52 Document Number: 001-96130 Rev. *C

 If the Message receive interrupt is enabled, then when a message is received the
CAN_1_ReceiveMsgX() function is called, where X indicates the Full CAN mailbox
number or user-defined name.

 For all interrupt-based Basic CAN mailboxes, the CAN_1_ReceiveMsg(uint8 rxMailbox)
function is called, where the rxMailbox parameter indicates the number of the mailbox that
received the message.

Transmit Buffers Tab

The Transmit Buffers tab contains the following settings:

Mailbox

For Full mailboxes, the Mailbox field is editable and you can enter a unique name for a mailbox.
The function for handling this mailbox will also have a unique name. The accepted characters
are: A–Z, a–z, 0–9, and _. If you enter an incorrect name the Mailbox field, it reverts to the
default value.

Full

When Full is selected, you can modify the Mailbox, IDE, ID, RTR, RTRreply, IRQ, SST and
Linking fields. Default selections are placed with the following options:

 Mailbox = Number 0 to 7

 IDE = Cleared

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 17 of 52

 ID = 0x01

 RTR = Cleared

 DLC = 8

 IRQ = Cleared

 SST = Cleared

Basic

By default, the Basic check box is selected for all of the mailboxes. If Basic is selected, the
options ID, and DLC are unavailable. If Basic is selected, the required CAN message fields
should be entered using code. Default selections are placed with the following options:

 IDE = Cleared (unavailable)

 ID = Nothing (unavailable)

 RTR = Cleared

 DLC = 8 (unavailable)

 IRQ = Cleared

 SST = Cleared

IDE

When the IDE box is cleared, the identifier is limited to 11 bits. When IDE is selected, the
identifier is limited to 29 bits.

ID

The message identifier. The 7 most significant bits of CAN message ID cannot be all recessive,
so its range is from 0x000 to 0x7EF for standard 11-bit identifier and to 0x1FBFFFFF for
extended 29-bit identifier (IDE).

RTR

The message is a Return Transmission Request Message.

DLC

The number of bytes the message contains.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 18 of 52 Document Number: 001-96130 Rev. *C

IRQ

The IRQ bit depends on Message transmitted (Interrupt tab).

If the Message transmitted check box is cleared, when selecting the IRQ, the message
appears: Global “Message transmitted” interrupt is disabled. Do you wish to enable it?

 Yes (default) – Select IRQ and the Message transmitted interrupt check box in the
Interrupt tab.

 No – Select IRQ. The Message transmitted interrupt check box in the Interrupt tab
remains cleared.

 Cancel – No changes are made.

SST

Single Shot Transmission – if enabled retransmission of a CAN message due to an arbitration
loss or a bus error is prevented.

Default option is not selected. Option is not available for PSoC 3/PSoC 5LP.

This feature has to be enabled for all messages in a Time Triggered CAN system.

CAN TX Functions

Every Full TX mailbox has a predefined API. The function list is available in the
CAN_1_TX_RX_func.c project file. These functions are conditionally compiled depending on the
transmit mailbox setting. Only mailboxes defined as Full will have their respective functions
compiled.

The macro identifier CAN_1_TXx_FUNC_ENABLE defines whether a function is compiled.
Defines are listed in the CAN_1.h project file.

The CAN_1_SendMsgX() function is provided for all Tx Mailboxes configured as Full, where X
indicates the Full CAN mailbox number or user-defined name.

Transmit Buffers Configuration

The common function provided for all Basic Transmit mailboxes:

uint8 CAN_1_SendMsg(const CAN_1_TX_MSG *message)

A generic structure is defined for the application used to assemble the required data for a CAN
transmit message:

 ID – the restriction if the ID slot includes:

□ For a standard message (IDE = 0) identifier limited to 11 bits (0x000 to 0x7EF).

□ For an extended message (IDE = 1) identifier limited to 29 bits (0x00000000 to
0x1FBFFFFF)

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 19 of 52

 RTR (0 – Standard message, 1 – 0xFF: RTR bit set in the message)

 IDE (0 – Standard message, 1 – 0xFF: Extended message)

 DLC (Defines number of data bytes 0 to 8, 9 to 0xFF equal 8 data bytes)

 IRQ (0 – IRQ Disable, 1 – 0xFF: IRQ Enable)

 SST (0 – SST Disable, 1 – 0xFF: SST Enable). Not available for PSoC 3/PSoC 5LP
device families.

 DATA_BYTES (Pointer to structure of 8 bytes that represent transmit data)

When called, the CAN_1_SendMsg() function loops through the transmit message mailboxes
that are designated as Basic CAN mailboxes and looks for the first available mailbox:

 When a free Basic CAN mailbox is found, the data passed through the CAN_1_TX_MSG
structure is copied to the appropriate CAN transmit mailbox. When the message is put
into transmit queue, an indication of “SUCCESS” is returned to the application.

 When no free Basic mailbox is found, the function tries again for a limited number of
retries (up to three). When all retries fail, an indication of “FAIL” is returned to the
application.

The CAN_1_TX_MSG structure contains all information required to transmit a message:

The CAN_1_DATA_BYTES structure contains eight bytes of data in a message.

Clock Selection

The CAN component is connected to the BUS_CLK (PSoC 3/PSoC 5LP) or SYSCLK (PSoC
4200) clock signal. A minimum value of 10 MHz is required to support a maximum CAN baud
rate of 1 Mbps. A lower clock frequency can be used to support a lower data rate like 125 Kbps.

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.

By default, PSoC Creator assigns the instance name “CAN_1” to the first instance of a
component in a given design. You can rename the instance to any unique value that follows the
syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol. For readability, the instance name used in the following
table is “CAN.”

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 20 of 52 Document Number: 001-96130 Rev. *C

Functions

Function Description

CAN_Start() Sets the initVar variable, calls the CAN_Init() function, and then calls the
CAN_Enable() function.

CAN_Stop() Disables the CAN.

CAN_GlobalIntEnable() Enables global interrupts from CAN component.

CAN_GlobalIntDisable() Disables global interrupts from CAN component.

CAN_SetPreScaler() Sets prescaler for generation of the time quanta from the
BUS_CLK/SYSCLK.

CAN_SetArbiter() Sets arbitration type for transmit buffers.

CAN_SetTsegSample() Configures: Time segment 1, Time segment 2, Synchronization Jump
Width, and Sampling Mode.

CAN_SetRestartType() Sets reset type.

CAN_SetSwapDataEndianness()* Enables or disables the endian swapping of CAN data bytes.

CAN_SetEdgeMode() Sets Edge mode.

CAN_RXRegisterInit() Writes only receive CAN registers.

CAN_SetOpMode() Sets Operation mode.

CAN_SetErrorCaptureRegisterMode()* Sets the error capture register mode to free running or error capture
mode.

CAN_ReadErrorCaptureRegister()* This function returns the value of error capture register.

CAN_ArmErrorCaptureRegister()* This function arms the error capture register when the ECR is in error
capture mode.

CAN_GetTXErrorFlag() Returns the flag that indicates if the number of transmit errors equals or
exceeds 0x60.

CAN_GetRXErrorFlag() Returns the flag that indicates if the number of receive errors equals or
exceeds 0x60.

CAN_GetTXErrorCount() Returns the number of transmit errors.

CAN_GetRXErrorCount() Returns the number of receive errors.

CAN_GetErrorState() Returns error status of the CAN component.

CAN_SetIrqMask() Sets to enable or disable particular interrupt sources.

CAN_ArbLostIsr() Clears Arbitration Lost interrupt flag.

CAN_OvrLdErrorIsr() Clears Overload Error interrupt flag.

CAN_BitErrorIsr() Clears Bit Error interrupt flag.

CAN_BitStuffErrorIsr() Clears Bit Stuff Error interrupt flag.

CAN_AckErrorIsr() Clears Acknowledge Error interrupt flag.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 21 of 52

Function Description

CAN_MsgErrorIsr() Clears Form Error interrupt flag.

CAN_CrcErrorIsr() Clears CRC Error interrupt flag.

CAN_BusOffIsr() Clears Bus Off interrupt flag. Places CAN Component to Stop mode.

CAN_SSTErrorIsr()* Clears SST error flag and removes the failed message from the transmit
mailbox.

CAN_RtrAutoMsgSentIsr()* Clears RTR Auto Message sent flag.

CAN_StuckAtZeroIsr()* Clears StuckAtZeroFlag. Places CAN Component to Stop mode.

CAN_MsgLostIsr() Clears Message Lost interrupt flag.

CAN_MsgTXIsr() Clears Transmit Message interrupt flag.

CAN_MsgRXIsr() Clears Receive Message interrupt flag and call appropriate handlers for
Basic and Full interrupt based mailboxes.

CAN_RxBufConfig() Configures all receive registers for particular mailbox.

CAN_TxBufConfig() Configures all transmit registers for particular mailbox.

CAN_SendMsg() Sends an message from one of the Basic mailboxes.

CAN_SendMsg0-7() Checks if mailbox 0-7 has untransmitted messages waiting for
arbitration.

CAN_TxCancel() Cancels transmission of a message that has been queued for
transmission.

CAN_ReceiveMsg0-15() Acknowledges receipt of new message.

CAN_ReceiveMsg() Clears Receive particular Message interrupt flag.

CAN_Sleep() Prepares CAN component to go to sleep

CAN_Wakeup() Prepares CAN component to wake up

CAN_Init() Initializes or restores the CAN per the Configure dialog settings.

CAN_Enable() Enables the CAN.

CAN_SaveConfig() Saves the current configuration.

CAN_RestoreConfig() Restores the configuration.

* These functions are not available for PSoC 3/PSoC 5LP part families.

For functions that return indication of execution: 0 is “SUCCESS,” 1 is “FAIL,” and 2 is
“OUT_OF_RANGE.”

Note When you use functions that return indication of execution – verify return value, to be sure
that function call was successful.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 22 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_Start(void)

Description: Sets the initVar variable, calls the CAN_Init() function, and then calls the CAN_Enable()
function. This function sets the CAN component into run mode and starts the counter if
polling mailboxes available.

Parameters: None

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: If the initVar variable is already set, this function only calls the CAN_Enable() function.

uint8 CAN_Stop(void)

Description: This function sets the CAN component into Stop mode and stops the counter if polling
mailboxes available.

Parameters: None

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: Pending message in the Tx buffer of PSoC 3/PSoC 5LP will not be aborted on calling the
CAN_Stop() API. User has to abort all pending messages before calling the CAN_Stop()
function to make sure that the block stops all the message transmission immediately.

uint8 CAN_GlobalIntEnable(void)

Description: This function enables global interrupts from the CAN component.

Parameters: None

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 23 of 52

uint8 CAN_GlobalIntDisable(void)

Description: This function disables global interrupts from the CAN component.

Parameters: None

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

uint8 CAN_SetPreScaler(uint16 bitrate)

Description: This function sets the prescaler for generation of the time quanta from the
BUS_CLK/SYSCLK. Values between 0x0 and 0x7FFF are valid.

Parameters: uint16 bitrate: PreScaler value

Time Quantum = (bitrate + 1) clock cycles

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

CAN_OUT_OF_RANGE Function parameter is out of range

Side Effects: None

uint8 CAN_SetArbiter(uint8 arbiter)

Description: This function sets the arbitration type for transmit buffers. Types of arbiters are Round
Robin and Fixed priority.

Parameters: uint8 arbiter: Type of arbiter

Value Description

CAN_ROUND_ROBIN Round robin arbitration.

CAN_FIXED_PRIORITY Fixed priority arbitration.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 24 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_SetTsegSample(uint8 cfgTseg1, uint8 cfgTseg2, uint8 sjw, uint8 sm)

Description: This function configures: Time segment 1, Time segment 2, Synchronization Jump Width,
and Sampling Mode.

Parameters: uint8 cfgTseg1: Length of time segment 1, values between 0x2 and 0xF are valid

uint8 cfgTseg2: Length of time segment 2, values between 0x1 and 0x7 are valid

uint8 sjw: Synchronization Jump Width, values between 0x0 and 0x3 are valid.

uint8 sm: Sampling Mode.

Value Description

CAN_ONE_SAMPLE_POINT One sampling points is used

CAN_THREE_SAMPLE_POINTS Three sampling points are used.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

CAN_OUT_OF_RANGE Function parameter is out of range

Side Effects: None

uint8 CAN_SetRestartType(uint8 reset)

Description: This function sets reset type. Types of reset are Automatic and Manual. Manual reset is the
recommended setting.

Parameters: uint8 reset: Reset type

Value Description

CAN_MANUAL_RESTART After bus-off, the CAN must be restarted ‘by hand’. This
is the recommended setting.

CAN_AUTO_RESTART After bus-off, the CAN is restarting automatically after
128 groups of 11 recessive bits.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 25 of 52

uint8 CAN_SetSwapDataEndianness(uint8 swap)

Description: This function selects whether the data byte endianness of the CAN receive and transmit
data fields has to be swapped or not swapped. This is useful to match the data byte
endianness to the endian setting of the processor or the used CAN protocol. This function
is not applicable to PSoC 3/PSoC 5LP part families.

Parameters: uint8 swap: Swap Enable/Disable setting

Value Description

CAN_SWAP_ENDIANNESS_ENABLE Endianness of transmitted/received data byte fields
are swapped during multibyte data
transmission(Little endian).

CAN_SWAP_ENDIANNESS_DISABLE Endianness of transmitted/received data byte fields
are not swapped during multi byte data
transmission (Big endian).

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

uint8 CAN_SetEdgeMode(uint8 edge)

Description: This function sets Edge Mode. Modes are 'R' to 'D' (Recessive to Dominant) and Both
edges are used.

Parameters: uint8 edge: Edge Mode

Value Description

CAN_EDGE_R_TO_D Edge from ‘R’ to ‘D’ is used for synchronization.

CAN_BOTH_EDGES Both edges are used.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 26 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_RXRegisterInit(uint32 *regAddr, uint32 config)

Description: This function writes CAN receive registers only.

Parameters: uint32 * regAddr: Pointer to CAN receive register

uint32 configuration: Value that will be written in register

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

CAN_OUT_OF_RANGE Function parameter is out of range

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 27 of 52

uint8 CAN_SetOpMode(uint8 opMode)

Description: This function sets Operation Mode. Operation Mode values can be one from the following
table.

Parameters: uint8 opMode: Operation Mode value

Value Description

CAN_STOP_MODE The CAN controller is in the Stop mode.

CAN_ACTIVE_MODE The CAN controller is in the Active mode.

CAN_LISTEN_ONLY CAN controller in listen only mode. In this mode, the CAN
controller receives all CAN bus traffic but doesn't send any
information on the CAN bus. The output is held at ‘R’ level.
This feature is useful for automatic bit-rate detection. [2]

http://www.can-cia.org/fileadmin/cia/files/icc/9/koppe.pdf [3]

CAN_INTERNAL_LOOP_BACK_MODE CAN controller in internal loopback mode. This mode is used
for testing purpose. In this mode, the CAN controller
receives the sending data. No data is sent to the network
and no data is received. Not available for PSoC 3 /
PSoC 5LP device families.

CAN_EXTERNAL_LOOP_BACK_MODE CAN controller in external loopback mode. In this mode the
CAN controller participates in the regular CAN transmission
and reception. Further, a copy of all sending messages is
received. This mode works only if at least one additional
CAN node is on the network. Not available for PSoC 3 /
PSoC 5LP device families.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: For PSoC 4 device family, the function re-initializes the CAN registers.

2 Error! Reference source not found. and Error! Reference source not found. APIs can be used to change the
CAN bit rate. Each bit rate requires set of timing parameters that could be either calculated (refer to Functional
Description) or generated by the component's customizer for each required bitrate (refer to CAN_ARBITER,
CAN_CFG_REG_TSEG1, CAN_CFG_REG_TSEG2, CAN_CFG_REG_SJW defines in CAN.h file). If you want
to switch between several bit rates then you need to collect sets of timing parameters for each desired bitrate.

3 This external web link is provided for information only; an additional license may be required under that link or
organization. Cypress makes no representations or warranties regarding this information or its use.

http://www.can-cia.org/fileadmin/cia/files/icc/9/koppe.pdf

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 28 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_SetErrorCaptureRegisterMode(uint8 ecrMode)

Description: This function sets the error capture register mode. The 2 modes are possible: free running
and error capture mode.

Parameters: uint8 ecrMode: The Error Capture register mode setting

Value Description

CAN_ECR_FREE_RUNNING The ECR captures the field and bit position within the
current CAN frame.

CAN_ECR_ERROR_CAPTURE In this mode the ECR register only captures an error event.
For successive error captures, the ECR needs to be armed
again by writing to the ECR register.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 29 of 52

uint32 CAN_ReadErrorCaptureRegister(void)

Description: This function returns the value of error capture register.

Parameters: None

Return Value: uint32: Returns the value of error capture register

Bits Name Description

0 ECR_STATUS ECR STATUS -
0: ECR register captured an error or it is free running
mode
1: ECR register is armed

3:1 ERROR_TYPE Error type -
000 : Arbitration loss
001 : Bit Error
010 : Bit Stuffing Error
011 : Acknowledge Error
100 : Form Error
101 : CRC Error
Others : N/A

4 TX_MODE TX Mode -
0: No status
1: CAN Controller is transmitter

5 RX_MODE RX Mode -
0: No status
1: CAN Controller is receiver

11:6 BIT Bit number inside of Field

16:12 Field Field -
0x00 : Stopped
0x01 : Synchronize
0x05 : Interframe
0x06 : Bus Idle
0x07 : Start of Frame
0x08 : Arbitration
0x09 : Control
0x0A : Data
0x0B : CRC
0x0C : ACK
0x0D : End of frame
0x10 : Error flag
0x11 : Error echo
0x12 : Error delimiter
0x18 : Overload flag
0x19 : Overload echo
0x1A : Overload delimiter
Others : N/A

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 30 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_ArmErrorCaptureRegister(void)

Description: This function arms the error capture register when the ECR is in error capture mode, by
setting the ECR_STATUS bit in the ECR register.

Parameters: None

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

uint8 CAN_GetTXErrorFlag(void)

Description: This function returns the flag that indicates if the number of transmit errors equals or
exceeds 0x60.

Parameters: None

Return Value: uint8: Indication whether the number of transmit errors equals or exceeds 0x60

Side Effects: None

uint8 CAN_GetRXErrorFlag(void)

Description: This function returns the flag that indicates if the number of receive errors equals or
exceeds 0x60.

Parameters: None

Return Value: uint8: Indication whether the number of receive errors equals or exceeds 0x60

Side Effects: None

uint8 CAN_GetTXErrorCount(void)

Description: This function returns the number of transmit errors.

Parameters: None

Return Value: uint8: Number of transmit errors

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 31 of 52

uint8 CAN_GetRXErrorCount(void)

Description: This function returns the number of receive errors.

Parameters: None

Return Value: (uint8) Number of receive errors

Side Effects: None

uint8 CAN_GetErrorState(void)

Description: This function returns the error status of the CAN component.

Parameters: None

Return Value: uint8: Error status

Value Description

“00” Error active (normal operation)

“01” Error passive

“1x” Bus off

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 32 of 52 Document Number: 001-96130 Rev. *C

uint8 CAN_SetIrqMask(uint16 mask)

Description: This function enables or disables particular interrupt sources. Interrupt Mask directly writes
to the CAN Interrupt Enable register. A particular interrupt source is enabled by setting its
respective flag to 1.

Parameters: uint8 request: Interrupt enable or disable request. One bit per interrupt source.

Value Description

CAN_GLOBAL_INT_ENABLE Global Interrupt Enable Flag.

CAN_ARBITRATION_LOST_ENABLE Arbitration Loss Interrupt Enable.

CAN_OVERLOAD_ERROR_ENABLE Overload Interrupt Enable.

CAN_BIT_ERROR_ENABLE Bit Error Interrupt Enable.

CAN_STUFF_ERROR_ENABLE Stuff Error Interrupt Enable.

CAN_ACK_ERROR_ENABLE Ack Error Interrupt Enable.

CAN_FORM_ERROR_ENABLE Form Error Interrupt Enable.

CAN_CRC_ERROR_ENABLE CRC Error Interrupt Enable.

CAN_BUS_OFF_ENABLE Busoff State Interrupt Enable.

CAN_BUS_STUCK_AT_ZERO_ENABLE* Stuck at zero Interrupt Enable.

CAN_BUS_SST_ERROR_ENABLE* Single shot transmission failure
Interrupt Enable.

CAN_BUS_RTR_AUTO_REPLY_ENABLE* RTR auto reply sent interrupt enable.

CAN_RX_MSG_LOST_ENABLE Rx Msg Loss Interrupt Enable.

CAN_TX_MESSAGE_ENABLE Tx Msg Sent Interrupt Enable.

CAN_RX_MESSAGE_ENABLE Msg Recived Interrupt Enable.

* These interrupt sources are not available for PSoC 3/PSoC 5LP part families.

Return Value: uint8: Indication whether register is written and verified

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

void CAN_ArbLostIsr(void)

Description: This function is the entry point to the Arbitration Lost Interrupt. It clears the Arbitration Lost
interrupt flag. It is only generated if the Arbitration Lost Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 33 of 52

void CAN_OvrLdErrorIsr(void)

Description: This function is the entry point to the Overload Error Interrupt. It clears the Overload Error
interrupt flag. It is only generated if the Overload Error Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_BitErrorIsr(void)

Description: This function is the entry point to the Bit Error Interrupt. It clears Bit Error interrupt flag. It is
only generated if the Bit Error Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_BitStuffErrorIsr(void)

Description: This function is the entry point to the Bit Stuff Error Interrupt. It clears the Bit Stuff Error
interrupt flag. It is only generated if the Bit Stuff Error Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_AckErrorIsr(void)

Description: This function is the entry point to the Acknowledge Error Interrupt. It clears the
Acknowledge Error interrupt flag. It is only generated if the Acknowledge Error Interrupt
parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 34 of 52 Document Number: 001-96130 Rev. *C

void CAN_MsgErrorIsr(void)

Description: This function is the entry point to the Form Error Interrupt. It clears the Form Error interrupt
flag. It is only generated if the Form Error Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_CrcErrorIsr(void)

Description: This function is the entry point to the CRC Error Interrupt. It clears the CRC Error interrupt
flag. It is only generated if the CRC Error Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_BusOffIsr(void)

Description: This function is the entry point to the Bus Off Interrupt. It puts the CAN component in Stop
mode. It is only generated if the Bus Off Interrupt parameter is enabled. Enabling this
interrupt is recommended.

Parameters: None

Return Value: None

Side Effects: Stops CAN component operation.

void CAN_SSTErrorIsr(void)

Description: This function is the entry point to the single shot transmission error Interrupt. It is only
generated if the single shot transmission is enabled. Generated when the mailbox set for
single shot transmission experienced an arbitration loss or a bus error during transmission.

Parameters: None

Return Value: None

Side Effects: Removes message that failed SST transmission from the Tx mailbox.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 35 of 52

void CAN_RtrAutoMsgSentIsr(void)

Description: This function is the entry point to the RTR automatic message sent Interrupt. It is only
generated if RTR message sent interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_StuckAtZeroIsr(void)

Description: This function is the entry point to the stuck at dominant bit Interrupt. It is only generated if
Stuck at zero interrupt parameter is enabled. Enabling this interrupt is recommended.

Parameters: None

Return Value: None

Side Effects: Stops CAN component operation.

void CAN_MsgLostIsr(void)

Description: This function is the entry point to the Message Lost Interrupt. It clears the Message Lost
interrupt flag. It is only generated if the Message Lost Interrupt parameter is enabled.

Parameters: None

Return Value: None

Side Effects: None

void CAN_MsgTXIsr(void)

Description: This function is the entry point to the Transmit Message Interrupt. It clears the Transmit
Message interrupt flag. It is only generated if the Transmit Message Interrupt parameter is
enabled.

Parameters: None

Return Value: None

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 36 of 52 Document Number: 001-96130 Rev. *C

void CAN_MsgRXIsr(void)

Description: This function is the entry point to the Receive Message Interrupt. It clears the Receive
Message interrupt flag and calls the appropriate handlers for Basic and Full interrupt based
mailboxes. It is only generated if the Receive Message Interrupt parameter is enabled.
Enabling this interrupt is recommended.

Parameters: None

Return Value: None

Side Effects: None

uint8 CAN_RxBufConfig(const CAN_RX_CFG *rxConfig)

Description: This function configures all receive registers for a particular mailbox. The mailbox number
contains CAN_RX_CFG structure.

Parameters: const CAN_RX_CFG * rxConfig: Pointer to structure that contains all required values to
configure all receive registers for a particular mailbox

Return Value: uint8: Indication if particular configuration of has been accepted or rejected

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

uint8 CAN_TxBufConfig(const CAN_TX_CFG *txConfig)

Description: This function configures all transmit registers for a particular mailbox. The mailbox number
contains CAN_TX_CFG structure.

Parameters: const CAN_TX_CFG * txConfig: Pointer to structure that contains all required values to
configure all transmit registers for a particular mailbox

Return Value: uint8: Indication if particular configuration of has been accepted or rejected

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 37 of 52

uint8 CAN_SendMsg(const CANTXMsg *message)

Description: This function sends a message from one of the Basic mailboxes. The function loops through
the transmit message buffer designed as Basic CAN mailboxes. It looks for the first free
available mailbox and sends from it. There can only be three retries.

Parameters: const CAN_TX_MSG * message: Pointer to structure containing required data to send
message

Return Value: uint8: Indication if message has been sent

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

uint8 CAN_SendMsg0-7(void)

Description: These functions are the entry point to Transmit Message 0-7. This function checks if
mailbox 0-7 already has untransmitted messages waiting for arbitration. If so, it initiates
transmission of the message. Only generated for Transmit mailboxes designed as Full.

Parameters: None

Return Value: uint8: Indication if Message has been sent

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

void CAN_TxCancel(uint8 bufferld)

Description: This function cancels transmission of a message that has been queued for transmission.
Values between 0 and 7 are valid.

Parameters: uint8 bufferld: Number of Tx mailbox.

Return Value: None

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 38 of 52 Document Number: 001-96130 Rev. *C

void CAN_ReceiveMsg0-15(void)

Description: These functions are the entry point to the Receive Message 0-15 Interrupt. They clear
Receive Message 0 - 15 interrupt flags. They are only generated for Receive mailboxes
designed as Full interrupt based.

Parameters: None

Return Value: None

Side Effects: None

void CAN_ReceiveMsg(uint8 rxMailbox)

Description: This function is the entry point to the Receive Message Interrupt for Basic mailboxes. It
clears the Receive particular Message interrupt flag. It is only generated if one of the
Receive mailboxes is designed as Basic.

Parameters: uint8 rxMailbox: Mailbox number that triggers Receive Message Interrupt

Return Value: None

Side Effects: None

void CAN_Sleep(void)

Description: This is the preferred routine to prepare the component for sleep. The CAN_Sleep() routine
saves the current component state. Then it calls the CAN_Stop() function and calls
CAN_SaveConfig() to save the hardware configuration.

Call the CAN_Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function. Refer to the PSoC Creator System Reference Guide for more information about
power management functions.

Parameters: None

Return Value: None

Side Effects: None

void CAN_Wakeup(void)

Description: This is the preferred routine to restore the component to the state when CAN_Sleep() was
called. The CAN_Wakeup() function calls the CAN_RestoreConfig() function to restore the
configuration. The function restores CAN Rx and Tx buffer control register configurations
provided by the customizer. If the component was enabled before the CAN_Sleep() function
was called, the CAN_Wakeup() function will also re-enable the component.

Parameters: None

Return Value: None

Side Effects: Calling the CAN_Wakeup() function without first calling the CAN_Sleep() or
CAN_SaveConfig() function may produce unexpected behavior.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 39 of 52

uint8 CAN_Init(void)

Description: Initializes or restores the component according to the customizer Configure dialog settings.
It is not necessary to call CAN_Init() because the CAN_Start() routine calls this function and
is the preferred method to begin component operation.

Parameters: None

Return Value: uint8: Indication whether the configuration has been accepted or rejected

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: All registers will be reset to their initial values. This reinitializes the component with the
following exception: it will not clear data from the mailboxes.

Enables power to the CAN Core.

uint8 CAN_Enable(void)

Description: Activates the hardware and begins component operation. It is not necessary to call
CAN_Enable() because the CAN_Start() routine calls this function, which is the preferred
method to begin component operation.

Parameters: None

Return Value: uint8: Indication whether the configuration has been accepted or rejected

Value Description

CYRET_SUCCESS Function passed successfully.

CAN_FAIL Function failed.

Side Effects: None

void CAN_SaveConfig(void)

Description: This function saves the component configuration and non-retention registers. This function
also saves the current component parameter values, as defined in the Configure dialog or as
modified by appropriate APIs. This function is called by the CAN_Sleep() function. This
function is applicable only for PSoC 3/PSoC 5LP part families.

Parameters: None

Return Value: None

Side Effects: None

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 40 of 52 Document Number: 001-96130 Rev. *C

void CAN_RestoreConfig(void)

Description: This function restores the component configuration and non-retention registers. This function
also restores the component parameter values to what they were prior to calling the
CAN_Sleep() function. This function is applicable only for PSoC 3/PSoC 5LP part families.

Parameters: None

Return Value: None

Side Effects: Calling this function without first calling the CAN_Sleep() or CAN_SaveConfig() function may
produce unexpected behavior. The following registers will revert to default values:
CAN_INT_SR, CAN_INT_EN, CAN_CMD, and CAN_CFG.

Global Variables

Variable Description

CAN_initVar Indicates whether the CAN has been initialized. The variable is initialized to 0 and set to 1 the
first time CAN_Start() is called. This allows the component to restart without re-initialization after
the first call to the CAN_Start() routine.

If re-initialization of the component is required, then the CAN_Init() function can be called before
the CAN_Start() or CAN_Enable() function.

Macros

 Set/Clear bits macro for CAN_RX mailbox (i)

□ CAN_RX_ACK_MESSAGE(i) – acknowledges a new message

□ CAN_RX_RTR_ABORT_MESSAGE(i) – requests removal of a pending RTR
message reply

□ CAN_RX_BUF_ENABLE(i) – enables RX Buffer

□ CAN_RX_BUF_DISABLE (i) – disables RX Buffer

□ CAN_SET_RX_RTRREPLY (i) – enables automatic RTR message handling

□ CAN_CLEAR_RX_RTRREPLY (i) – disables automatic RTR message handling

□ CAN_RX_INT_ENABLE (i) – enables Interrupt generation

□ CAN_RX_INT_DISABLE (i) – disables Interrupt generation

□ CAN_SET_RX_LINKING (i) – links this buffer with the next buffer

□ CAN_CLEAR_RX_LINKING (i) – removes linking with the next buffer

□ CAN_SET_RX_WNPL (i) – sets Write Protect Bit, which lets Bits[6:3] become
modified

□ CAN_CLEAR_RX_WNPL (i) – clears Write Protect Bit, which makes Bits[6:3]
unchanged

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 41 of 52

□ CAN_SET_RX_WNPH (i) – sets Write Protect Bit

□ CAN_CLEAR_RX_WNPH(i) – clears Write Protect Bit

□ CAN_GET_DLC(mailbox) – gets Data Length Code

□ “i” – is the mailbox number.

 Set/Clear bits macro for CAN_TX mailbox (i)

□ CAN_TX_TRANSMIT_MESSAGE (i) – requests Message Transmit

□ CAN_TX_ABORT_MESSAGE (i) – requests removal of a pending message

□ CAN_TX_INT_ENABLE (i) – enables Transmit Interrupt

□ CAN_TX_INT_DISABLE (i) – disables Transmit Interrupt

□ CAN_SET_TX_WNPL (i) – sets Write Protect Bit 1

□ CAN_CLEAR_TX_WNPL (i) – sets Write Protect Bit 1

□ CAN_SET_TX_IDE (i) – sets an Extended format message

□ CAN_CLEAR_TX_IDE(i) – sets a Standard format message

□ CAN_SET_TX_RTR(i) – sets a RTR format message

□ CAN_CLEAR_TX_RTR(i) – sets a Standard format message

□ CAN_SET_TX_WNPH (i) – sets Write Protect Bit 2

□ CAN_CLEAR_TX_WNPH (i) – clears Write Protect Bit 2

□ “i” – is the mailbox number

 Other macros

□ CAN_GET_RX_IDE(i) – gets the message format

□ CAN_GET_RX_ID(i) – gets the message ID

□ CAN_RX_DATA_BYTEx(i) – gets the received byte

□ CAN_TX_DATA_BYTEx(i) – sets a byte to transmit; applicable for the PSoC 3
/PSoC 5LP part families

□ “i” – is the mailbox number; “x” – byte number

□ CAN_TX_DATA_BYTEx(i, byte) – sets a byte to transmit; applicable for the
PSoC 4 part family

□ “i” – is the mailbox number; “x” – is the byte number; “byte” – is the byte to transmit

□ CAN_RX_DATA_BYTE(mailbox, i) – gets the received byte

□ CAN_TX_DATA_BYTE(mailbox, i) – sets a byte to transmit

□ “mailbox” – is the mailbox number; “i” – is the byte number [0..7]; applicable for the
PSoC 3/PSoC 5LP part families

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 42 of 52 Document Number: 001-96130 Rev. *C

□ CAN_TX_DATA_BYTE(mailbox, i, byte) – sets a byte to transmit; applicable for the
PSoC 4 part family

□ “mailbox” – is the mailbox number; “i” – is the byte number [0..7]; “byte” is the byte
to transmit

□ CAN_SET_TX_ID_STANDARD_MSG(i, id) – sets Tx Msg Standart Indentifier in
the CAN_TX_ID register.

□ CAN_SET_TX_ID_EXTENDED_MSG(i, id) – sets Tx Msg Extended Identifier in
the CAN_TX_ID register

□ “i” – is the mailbox number; “id” – is the Identifier

User Macro Callbacks

Macro callbacks allow a user to execute code from the API files that are automatically generated
by PSoC Creator. A callback requires the user to complete the following:

 Define a macro to signal the presence of a callback (in CyAPICallbacks.h)

 Write the function declaration (in CyAPICallbacks.h)

 Write the function implementation (in any user file)

Macro callbacks [4] Associated Macro Description

CAN_ISR_InterruptCallback() CAN_ISR_INTERRUPT_CALLBACK Used in the CAN_ISR() interrupt handler to
perform additional application-specific actions.

CAN_ArbLostIsr_Callback() CAN_ARB_LOST_ISR_CALLBACK Uses in CAN_ArbLostIsr() interrupt handler to
perform additional application specific actions.

CAN_OvrLdErrorIsr_Callback() CAN_OVR_LD_ERROR_ISR_CALLB
ACK

Uses in CAN_OvrLdErrorIsr() interrupt handler to
perform additional application specific actions.

CAN_BitErrorIsr_Callback() CAN_BIT_ERROR_ISR_CALLBACK Uses in CAN_BitErrorIsr() interrupt handler to
perform additional application specific actions.

CAN_BitStuffErrorIsr_Callback() CAN_BIT_STUFF_ERROR_ISR_CAL
LBACK

Uses in CAN_BitStuffErrorIsr() interrupt handler
to perform additional application specific actions.

CAN_AckErrorIsr_Callback() CAN_ACK_ERROR_ISR_CALLBACK Uses in CAN_AckErrorIsr() interrupt handler to
perform additional application specific actions.

CAN_MsgErrorIsr_Callback() CAN_MSG_ERROR_ISR_CALLBACK Uses in CAN_MsgErrorIsr() interrupt handler to
perform additional application specific actions.

CAN_CrcErrorIsr_Callback() CAN_CRC_ERROR_ISR_CALLBACK Uses in CAN_CrcErrorIsr() interrupt handler to
perform additional application specific actions.

4 The macro callbacks name is contracting by component function name optionally appended by short explanation
and “Callback” suffix.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 43 of 52

Macro callbacks [4] Associated Macro Description

CAN_BusOffIsr_Callback(); CAN_BUS_OFF_ISR_CALLBACK Uses in CAN_BusOffIsr() interrupt handler to
perform additional application specific actions
before component stop.

CAN_MsgLostIsr_Callback() CAN_MSG_LOST_ISR_CALLBACK Uses in CAN_MsgLostIsr() interrupt handler to
perform additional application specific actions.

CAN_MsgTXIsr_Callback() CAN_MSG_TX_ISR_CALLBACK Uses in CAN_MsgTXIsr() interrupt handler to
perform additional application specific actions.

CAN_MsgRXIsr_Callback() CAN_MSG_RX_ISR_CALLBACK Uses in CAN_MsgRXIsr() interrupt handler to
perform additional application specific actions
prior to handling Receive Message.

CAN_RtrAutoMsgSentIsr_Callba
ck()

CAN_RTR_AUTO_MSG_SENT_ISR_
CALLBACK

Uses in CAN_RtrAutoMsgSentIsr() interrupt
handler to perform additional application specific
actions.

CAN_StuckAtZeroIsr_Callback() CAN_STUCK_AT_ZERO_ISR_CALLB
ACK

Uses in CAN_StuckAtZeroIsr() interrupt handler
to perform additional application specific actions
before component stop.

CAN_SSTErrorIsr_Pre_Callback(
)

CAN_SST_ERROR_ISR_PRE_CALL
BACK

Uses in CAN_SSTErrorIsr() interrupt handler to
perform additional application specific actions
before clearing the transmit mailbox.

CAN_SSTErrorIsr_Post_Callback
()

CAN_SST_ERROR_ISR_POST_CAL
LBACK

Uses in CAN_SSTErrorIsr() interrupt handler to
perform additional application specific actions
after clearing the transmit mailbox.

CAN_SendMsg_0-7_Callback() CAN_SEND_MSG_0-7_CALLBACK Uses in CAN_SendMsg0-7() function to perform
additional application specific actions.

CAN_ReceiveMsg_Callback() CAN_RECEIVE_MSG_CALLBACK Uses in CAN_ReceiveMsg() function to perform
additional application specific actions.

CAN_ReceiveMsg_0-
15_Callback()

CAN_RECEIVE_MSG_0-
15_CALLBACK

Uses in CAN_ReceiveMsg0-15() function to
perform additional application specific actions.

Sample Firmware Source Code

PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information.

MISRA Compliance

This section describes the MISRA-C: 2004 compliance and deviations for the component. There
are two types of deviations defined:

 project deviations – deviations that are applicable for all PSoC Creator components

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 44 of 52 Document Number: 001-96130 Rev. *C

 specific deviations – deviations that are applicable only for this component

This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.

The CAN component has the following specific deviations:

MISRA-
C:2004
Rule

Rule Class
(Required/
Advisory) Rule Description Description of Deviation(s)

11.4 A A cast should not be performed between a
pointer to object type and a different pointer to
object type.

Cast to pointer from 8-bit register to pointer to
16-bit register is performed to access
consecutive bytes in hardware.

13.7 R Boolean operations whose results are invariant
shall not be permitted.

The value of the controlling expressions can
always be invariant in some component’s
configurations.

17.4 R Array indexing shall be the only allowed form of
pointer arithmetic.

Array subscripting applied to an object of
pointer type. CAN component uses pointers to
structures that are mapped to the hardware
registers.

19.7 A A function should be used in preference to a
function-like macro.

This is caused by a macro statements used for
an applying binary mask, which can be
replaced by a function, but it will result lower
performance.

This component has the following embedded components: Clock, Interrupt. Refer to the
corresponding component datasheet for information on their MISRA compliance and specific
deviations.

API Memory Usage

The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.

The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration

PSoC 3 (Keil_PK51) PSoC 5LP (GCC) PSoC 4 (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Default 3737 18 2100 21 2292 2

Additional full receive buffer
usage

+ 18 – + 24 – + 24 –

Additional interrupt handler
enabled

+ 17 – + 8 – + 12 –

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 45 of 52

Interrupt Service Routines

The interrupt output is driven by the interrupt sources configured in the CAN hardware. All
sources are ORed together to create the final output signal. There are several CAN component
interrupt sources:

 Message transmitted – the queued message was sent.

 Message received – a message was received.

 Receive buffer full – a new message arrived but there was nowhere to put it.

 Bus off state – CAN has reached the bus off state.

 CRC error detected – CAN CRC error was detected.

 Message format error detected – CAN message format error was detected.

 Message acknowledge error detected – CAN message acknowledge error was detected.

 Bit stuffing error detected - a bit stuffing error was detected.

 Bit error detected – a bit error was detected.

 Overload frame received – an overload frame was received.

 Arbitration lost detected – the arbitration was lost while sending a message.

 Single shot transmission failure – a buffer set for single shot transmission experienced an
arbitration loss or a bus error during transmission. Not available for PSoC 3/PSoC 5LP
part families.

 Stuck at zero Error – stuck at dominant error was detected. Not available for PSoC 3/
PSoC 5LP part families.

 RTR automatic reply sent – RTR auto-reply message was sent. Not available for PSoC 3/
PSoC 5LP part families.

All of these interrupt sources have entry points (functions) so you can place code in them. These
functions are conditionally compiled depending on the customizer.

The Receive Message interrupt has a special handler that calls appropriate functions for Full and
Basic mailboxes.

A failure caused by RX shorted to ground at time zero, before the CAN component is started,
cannot be identified and reported to the higher level software by the CAN component. The CAN

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 46 of 52 Document Number: 001-96130 Rev. *C

state machine does reach the idle state unless a falling edge is detected on RX. It is the
responsibility of the higher level software to determine a bus short at time zero prior to
initialization of the CAN component.

Interrupt Output Use Cases

The following are example use cases of the hardware interrupt output line in the CAN
component:

Hardware Control of Logic on Interrupt Events

The hardware interrupt line can be used to perform simple tasks such as estimating the CAN bus
load. By enabling the Message Transmitted and Message Received interrupts in the CAN
component customizer, and connecting the interrupt line to a counter, the number of messages
that are on the bus during a specific time interval can be evaluated. Also, actions can be taken
directly in hardware if the message rate is above a certain value.

For PSoC 4200M family hardware, the interrupt line can be routed only to pin or to ISR
component.

Interrupt Output Interaction with DMA

The CAN component doesn't support DMA operation internally, but you can connect the DMA
component to the external interrupt line (if it is enabled). You are responsible for the DMA
configuration and operation. Also, you should keep in mind that it is necessary to handle some
housekeeping tasks (for example, acknowledging the message and clearing the interrupt flags)
in code for proper handling of CAN interrupts.

With a hardware DMA trigger you can handle registers and data transfers when a Message
Received interrupt occurs, without any firmware executing in the CPU. This is also useful when
handling RTR messages. The Message Transmitted interrupt can be used to trigger a DMA
transfer to reload the message mailbox with new data, without CPU intervention.

It is not possible to use DMA with PSoC 4200M family, as the DMA mux does not have a CAN
block interrupt as its input.

Custom External Interrupt Service Routine

Custom external ISRs can be used in addition to or as a replacement to the internal ISR. When
the external ISR is used in addition to the internal ISR, the Interrupt priority can be set to
determine which ISR should execute first (internal or external), thus forcing actions before or
after those coded in the internal ISR. When the external ISR is used as replacement for the
internal ISR, you assume all responsibility for proper handling of CAN registers and events.

For the PSoC 4200M family, only one ISR (internal or external) could be used at once.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 47 of 52

Interrupt Output Interaction with the Interrupt Subsystem

The CAN component Interrupt Output settings allow you to:

 Enable or disable an external interrupt line (customizer option)

 Disable or bypass the internal ISR (customizer option)

 Fully customize the internal ISR (customizer option)

 Enable or disable specific interrupts handling function calls in the internal ISR, when the
relevant event interrupts are enabled (customizer option). Individual interrupts (message
transmitted, message received, receive buffer full, bus off state, and so on) can be
enabled or disabled in the CAN component customizer. Once enabled the relevant
function call is executed in the internal CAN_ISR. This allows you to disable (remove)
such function calls.

The external interrupt line is visible only if enabled in the customizer.

If an external Interrupt component is connected, then the external Interrupt component is not
started as part of the CAN_Start() API, and will have to be started outside that routine.

If an external Interrupt component is connected and the internal ISR is not disabled or bypassed,
then two Interrupt components are connected to the same line. And in this case you will have
two separate Interrupt components that will handle the same interrupt events. This is a specific,
and in most cases undesirable, situation.

If the internal ISR is disabled or bypassed (using a customizer option) the internal Interrupt
component will be removed during the build process.

If you choose to disable an individual interrupt function call in the internal interrupt routine (for an
enabled interrupt event, by using a customizer option), the CAN block interrupt triggers (when
the relevant event occurs), but no internal function call is executed in the internal CAN_ISR
routine. An example use case is when you want to handle a specific event (for example,
message received) through a different path, other than the standard user function call (for
example, through DMA).

If you choose to fully customize the internal ISR (via customizer option) the CAN_ISR function
will not contain any function call.

For the PSoC 4200M family, the component will disable the internal interrupt if external ISR
option is selected.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 48 of 52 Document Number: 001-96130 Rev. *C

Functional Description

For a complete description, refer to the Controller Area Network (CAN) chapter in the appropriate
device Technical Reference Manual.

Block Diagram and Configuration

For complete block diagram and configuration information, refer to the Controller Area Network
(CAN) chapter in the appropriate device Technical Reference Manual.

References
1. ISO-11898: Road vehicles -- Controller area network (CAN):

 Part 1: Data link layer and physical signaling

 Part 2: High-speed medium access unit

 Part 3: Low-speed, fault-tolerant, medium-dependent interface

 Part 4: Time-triggered communication

 Part 5: High-speed medium access unit with low-power mode

2. CAN Specification Version 2 BOSCH

3. Inicore CANmodule-III-AHB Datasheet

Component Debug Window

PSoC Creator allows you to view debug information about components in your design. Each
component window lists the memory and registers for the instance. For detailed hardware
registers descriptions, refer to the appropriate device technical reference manual.

To open the Component Debug window:

1. Make sure the debugger is running or in break mode.

2. Choose Windows > Components… from the Debug menu.

3. In the Component Window Selector dialog, select the component instances to view and
click OK.

The selected Component Debug window(s) will open within the debugger framework. Refer to
the "Component Debug Window" topic in the PSoC Creator Help for more information.

Refer to the appropriate device technical reference manual for a detailed description of each
register. The following registers are displayed in the CAN component debug window.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 49 of 52

Register Name Description

CAN_INT_SR CAN Interrupt Status register.

CAN_BUF_SR CAN Rx and Tx message buffer status register.

CAN_ERR_SR CAN Error Status register.

CAN_TX[0..7]_ID CAN Tx message buffer identifier register.

CAN_TX[0..7]_DH CAN Tx message buffer data high register.

CAN_TX[0..7]_DL CAN Tx message buffer data low register.

CAN_RX[0..15]_ID CAN Rx message buffer identifier register.

CAN_RX[0..15]_DH CAN Rx message buffer data high register.

CAN_RX[0..15]_DL CAN Rx message buffer data low register.

CAN_ECR * CAN Error Capture register.

* Not available for PSoC 3/PSoC 5LP device families.

Resources

The CAN component uses the dedicated CAN hardware block in the silicon.

DC and AC Electrical Characteristics

Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

Note The data for the PSoC 4200L device is preliminary. Final data will be delivered in an
upcoming Component Pack.

DC Specifications

Parameter Description Conditions Min Typ Max Units

IDD Block current consumption – – 200 μA

AC Specifications

Parameter Description Conditions Min Typ Max Units

 Bit rate Minimum 10 MHz clock – – 1 Mbit

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 50 of 52 Document Number: 001-96130 Rev. *C

Component Changes

This section lists the major changes in the component from the previous version.

Current
Version Description of Changes Reason for Changes / Impact

3.0.c Updated datasheet. Added note that PSoC 4200L characterization data
is preliminary.

3.0.b Updated datasheet. Added certification statement.

3.0.a Updated datasheet. Updated Macro Callbacks section.

3.0 Added PSoC 4200M device support. Added Option to select Endianness of Data Bytes in
the customizer.

Added option to select single shot transmission of
Tx messages.

Added 3 additional interrupt enable options and
ISRs for their handling: SST Failure, Stuck at 0,
RTR Auto Reply Message sent.

Added functions to set/arm/read the Error Capture
Register.

Modified CAN_SetOperatingMode() function to
include options for internal and external loopback.

Improved the timing calculations to take into
account tolerance of source clock.

Added Macros to link mailbox names with
mailbox numbers.

Added User Macro Callbacks support.

Changed required minimum clock value for
support maximum CAN baud rate to 10 MHz.

Disabled invalid bit timing configuration.

Enabled RTR fields for Basic CAN. Enabled RTR option for basic CAN mailboxes to
enable implementation of RTR messages with
Basic CAN mailboxes.

Removed restriction on message IDs in the
component GUI.

Removing ID restriction 0x000 from the component
GUI allows users to use the messages with the
highest priority.

2.30.a Updated the datasheet. Added Component Errata section to document that
the component was changed, but there is no impact
to designs.

Removed references to obsolete PSoC 5 device.

2.30 Added MISRA Compliance section. The component has specific deviations described.

Updated API functions parameters descriptions. Incomplete API functions parameters descriptions.

PSoC® Creator™ Component Datasheet Controller Area Network (CAN)

Document Number: 001-96130 Rev. *C Page 51 of 52

Current
Version Description of Changes Reason for Changes / Impact

2.20 CAN_Start() function internal update. CAN_Start() function was not enabling the
component if it was previously initialized and
stopped.

2.10 Added PSoC 5LP device support.

Added all CAN APIs with CYREENTRANT
keyword when they included in .cyre file.

Not all APIs are truly reentrant. Comments in the
component API source files indicate which functions
are candidates.

This change is required to eliminate compiler
warnings for functions that are not reentrant used in
a safe way: protected from concurrent calls by flags
or Critical Sections.

Changed name of the component to “CAN_1”
and updated snippets of code in examples for
illustration the usage of receive and transmit
message APIs.

To meet consistency.

Updated DC and AC Electrical Characteristics
section.

2.0.a Replaced timing diagram and added descriptive
text to datasheet

Minor datasheet edits and updates

2.0 Added interrupt output to the component
symbol

Updated Marketing Requirements Document MRD
for the PSoC3 CAN Component

Added ConnectExtInterruptLine, IntISRDisable,
FullCastomIntISR, AdvancedInterruptTab
parameters and ISR helper parameters in the
component symbol

Updated Marketing Requirements Document MRD
for the PSoC3 CAN Component

Added stop statement at the beginning of the
CAN_Init() function.

To ensure that CAN is stopped at initialization

Updated interrupt handlers functions. In all
cases the interrupt flag is cleared before the
user code.

To clear interrupt flags in the same manner

Removed obsolete defines

1.50.a Added characterization data to datasheet

Datasheet text edits

1.50 Added Sleep / Wakeup APIs. These APIs provide support for low-power modes.

Added CAN_Init() and CAN_Enable() APIs. To comply with corporate standard and provide an
API to initialize/restore the component without
starting it.

Controller Area Network (CAN) PSoC® Creator™ Component Datasheet

Page 52 of 52 Document Number: 001-96130 Rev. *C

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a CAN

	Controller Area Network (CAN)
	Input/Output Connections
	rx – Input
	tx– Output
	tx_en – Output *
	interrupt – Output *

	Schematic Macro Information
	Component Parameters
	Component Update Note
	General Tab
	Add transceiver enable signal
	Transmit buffer arbitration
	Bus-off restart
	CAN bus synchronization logic
	Data byte endianness

	Timing Tab
	Calculator
	Settings
	Table

	Bit Time Segments
	SYNC SEG (Synchronization Segment)
	PROP SEG (Propagation Time Segment)
	PHASE SEG1, PHASE SEG2 (Phase Buffer Segment1/2)
	Sample Point
	Information Processing Time
	Time Quantum
	Length of Time Segments

	Interrupt Tab
	Enable interrupts
	Message transmitted
	Message received
	Receive buffer full
	Bus off state
	CRC error detected
	Message format error detected
	Message acknowledge error detected
	Bit stuffing error detected
	Bit error detected
	Overload frame received
	Arbitration lost detected
	Single shot transmission failure
	Stuck at zero
	RTR automatic reply sent
	Advanced interrupt configuration
	Enable external interrupt line
	Disable internal ISR
	Full Custom Internal ISR
	ISR Helper Function Call

	Receive Buffers Tab
	Mailbox
	Full
	Basic
	IDE
	ID
	RTR - Remote Transmission Request
	RTRreply - Remote Transmission Request Auto Reply
	IRQ
	Linking
	Receive Message Functions

	Transmit Buffers Tab
	Mailbox
	Full
	Basic
	IDE
	ID
	RTR
	DLC
	IRQ
	SST
	CAN TX Functions
	Transmit Buffers Configuration

	Clock Selection
	Application Programming Interface
	Functions
	uint8 CAN_Start(void)
	uint8 CAN_Stop(void)
	uint8 CAN_GlobalIntEnable(void)
	uint8 CAN_GlobalIntDisable(void)
	uint8 CAN_SetPreScaler(uint16 bitrate)
	uint8 CAN_SetArbiter(uint8 arbiter)
	uint8 CAN_SetTsegSample(uint8 cfgTseg1, uint8 cfgTseg2, uint8 sjw, uint8 sm)
	uint8 CAN_SetRestartType(uint8 reset)
	uint8 CAN_SetSwapDataEndianness(uint8 swap)
	uint8 CAN_SetEdgeMode(uint8 edge)
	uint8 CAN_RXRegisterInit(uint32 *regAddr, uint32 config)
	uint8 CAN_SetOpMode(uint8 opMode)
	uint8 CAN_SetErrorCaptureRegisterMode(uint8 ecrMode)
	uint32 CAN_ReadErrorCaptureRegister(void)
	uint8 CAN_ArmErrorCaptureRegister(void)
	uint8 CAN_GetTXErrorFlag(void)
	uint8 CAN_GetRXErrorFlag(void)
	uint8 CAN_GetTXErrorCount(void)
	uint8 CAN_GetRXErrorCount(void)
	uint8 CAN_GetErrorState(void)
	uint8 CAN_SetIrqMask(uint16 mask)
	void CAN_ArbLostIsr(void)
	void CAN_OvrLdErrorIsr(void)
	void CAN_BitErrorIsr(void)
	void CAN_BitStuffErrorIsr(void)
	void CAN_AckErrorIsr(void)
	void CAN_MsgErrorIsr(void)
	void CAN_CrcErrorIsr(void)
	void CAN_BusOffIsr(void)
	void CAN_SSTErrorIsr(void)
	void CAN_RtrAutoMsgSentIsr(void)
	void CAN_StuckAtZeroIsr(void)
	void CAN_MsgLostIsr(void)
	void CAN_MsgTXIsr(void)
	void CAN_MsgRXIsr(void)
	uint8 CAN_RxBufConfig(const CAN_RX_CFG *rxConfig)
	uint8 CAN_TxBufConfig(const CAN_TX_CFG *txConfig)
	uint8 CAN_SendMsg(const CANTXMsg *message)
	uint8 CAN_SendMsg0-7(void)
	void CAN_TxCancel(uint8 bufferld)
	void CAN_ReceiveMsg0-15(void)
	void CAN_ReceiveMsg(uint8 rxMailbox)
	void CAN_Sleep(void)
	void CAN_Wakeup(void)
	uint8 CAN_Init(void)
	uint8 CAN_Enable(void)
	void CAN_SaveConfig(void)
	void CAN_RestoreConfig(void)

	Global Variables
	Macros
	User Macro Callbacks
	Sample Firmware Source Code
	MISRA Compliance
	API Memory Usage

	Interrupt Service Routines
	Interrupt Output Use Cases
	Hardware Control of Logic on Interrupt Events
	Interrupt Output Interaction with DMA
	Custom External Interrupt Service Routine

	Interrupt Output Interaction with the Interrupt Subsystem

	Functional Description
	Block Diagram and Configuration

	References
	Component Debug Window
	Resources
	DC and AC Electrical Characteristics
	DC Specifications
	AC Specifications

	Component Changes

